JPS6154908A - Method of processing ceramics - Google Patents

Method of processing ceramics

Info

Publication number
JPS6154908A
JPS6154908A JP17682984A JP17682984A JPS6154908A JP S6154908 A JPS6154908 A JP S6154908A JP 17682984 A JP17682984 A JP 17682984A JP 17682984 A JP17682984 A JP 17682984A JP S6154908 A JPS6154908 A JP S6154908A
Authority
JP
Japan
Prior art keywords
processing
ceramics
electrolyte
machining
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17682984A
Other languages
Japanese (ja)
Other versions
JPH0423609B2 (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP17682984A priority Critical patent/JPS6154908A/en
Publication of JPS6154908A publication Critical patent/JPS6154908A/en
Publication of JPH0423609B2 publication Critical patent/JPH0423609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックスの加工方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for processing ceramics.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

一般にセラミックスと呼ばれているものには、酸化物、
窒化物、炭化物、硼化物、珪化物、弗化物、硫化物、セ
レン化物、テレル化物等の主に一種類の化合物で構成さ
れている単−相セラミ7クス、上記セラミックスの二種
以上の化合物から成る複合セラミックス、更には上記セ
ラミックスに金属を添加した酸゛化物、炭化物、若しく
は硼化物系のサーメット等の天然若しくは人工の粉末状
化合物を成型、高温焼成により作られ、金属と非金属元
素による無機化合物から成る多結晶固体材料“需=ン・
。h;(D’4”’y i、y ’)7.(Dj。56
2、−うに金属より融点が高く、且つ、その生成自由エ
ネルギ(結合エネルギ)が高く、化学的にも極めて安定
であり、また、硬度も高いため、これを機械的に加工す
るためには、ダイヤモンドやCBN (立方晶窒化硼素
)等の切削チップ又は砥粒を切刃として有する切削工具
やドリル、或いは研削砥石等の超高硬質工具によるほか
ばなく、その場合の切削又は研削加工能は金属、合金に
比較して著しく低くなり、また、脆く割れ易いので、機
械的切削又は研削による加工成形には通さない。
What is generally called ceramics includes oxides,
Single-phase ceramics mainly composed of one type of compound such as nitride, carbide, boride, silicide, fluoride, sulfide, selenide, terelide, etc., compounds of two or more of the above ceramics It is made by molding and high-temperature firing of composite ceramics consisting of natural or artificial powdered compounds such as oxides, carbides, or boride-based cermets, which are made by adding metals to the above ceramics. Polycrystalline solid materials made of inorganic compounds
. h; (D'4"'y i, y') 7. (Dj.56
2. - Uni has a higher melting point than metal, has a higher free energy of formation (bonding energy), is extremely chemically stable, and has high hardness, so in order to process it mechanically, The only option is to use ultra-hard tools such as cutting tools and drills that have cutting chips or abrasive grains such as diamond or CBN (cubic boron nitride) as cutting edges, or grinding wheels, and in that case, the cutting or grinding performance is comparable to that of metal. , is significantly lower than that of alloys, and is brittle and easily cracked, so it cannot be processed by mechanical cutting or grinding.

又、この種のセラミックスは、一般的には絶縁体とも云
うべく、その電気伝導率は金属、合金に比べ著しく低く
、又、その熱伝導率も同様に極めて低いので、ダイヤモ
ンド等のチップ又は砥粒を有する工具による切削又は研
削加工に要したエネルギは、金属、合金等の材料を加工
する場合よりも多く前記工具側に伝達され、従って、工
具側の摩耗、損傷が金属、合金の加工の場合に比べて著
しく大きくなることが少なくない。
In addition, this type of ceramic is generally referred to as an insulator, and its electrical conductivity is significantly lower than that of metals and alloys, and its thermal conductivity is also extremely low, so it cannot be used with diamond chips or abrasives. The energy required for cutting or grinding using a tool with grains is transmitted to the tool side more than when machining materials such as metals and alloys. It is often significantly larger than the actual case.

このように、セラミックスは融点が高く、高硬度である
が割れ易く、電気伝導率が低く、又、化学的にも安定で
あるところから、従来通常の加工手段に対しては、相当
な難加工材であることが知られている。
As described above, ceramics have a high melting point, high hardness, but break easily, low electrical conductivity, and are chemically stable, making them extremely difficult to process using conventional processing methods. It is known to be a material.

〔発明がIW決しようとする問題点〕[Problems that the invention attempts to resolve]

而して、セラミックスに用いられている金属酸化物の如
き化学的に安定な化合物は、通常の金属、合金に比べて
、一般的に耐酸及び耐アルカリ性に優れているが、これ
は、例えば室温程度の比較的低温領域のことであって、
高温域では、金属、合。
Chemically stable compounds such as metal oxides used in ceramics generally have superior acid and alkali resistance compared to ordinary metals and alloys; It is a relatively low temperature region of about
In high temperature ranges, metals and metals.

金等に或いは劣らない程度に反応性が高い。即ち、一般
的に知られているように通常の金属酸化物は高温域(例
えば、約100℃前後よりも高い約100〜400℃前
後)の酸(例えば硫酸等の強酸)、アルカリ (例えば
、水酸化ナトリウム等の強アルカリ)に溶解する。
It has high reactivity as much as gold. That is, as is generally known, ordinary metal oxides are difficult to react with acids (e.g., strong acids such as sulfuric acid), alkalis (e.g., Dissolves in strong alkalis (such as sodium hydroxide).

然しなから、上記の如き高温の酸やアルカリ等による化
学反応作用をセラミックスに対して行なうにしても、そ
のような高温の酸やアルカリ等に耐え得る容器や供給、
回収等を行なうの信頼性をおける物及び手段がな(、又
、この化学反応作用を被加工体セラミックスの所望局部
部分のみに作用させることも従来技術では難しかった。
However, even if a chemical reaction using high-temperature acids, alkalis, etc. as described above is carried out on ceramics, there is a need for containers, supplies, etc. that can withstand such high-temperature acids, alkalis, etc.
There are no reliable materials or means for recovery, etc. (Also, it was difficult in the prior art to cause this chemical reaction to act only on desired local portions of the ceramic workpiece.

〔問題点を解決するための手段〕[Means for solving problems]

このような高温の酸やアルカリによる反応作用を、セラ
ミックスの所望加工部分に限定して局部的に与えて周囲
の他の部分から切り離し、そしてその加工部分を何等か
の手段で除去することができれば、セラミックスの加工
が可能となる。
If it were possible to apply the reaction effect of such high-temperature acids and alkalis locally to the desired processed part of the ceramic, to separate it from other surrounding parts, and then to remove that processed part by some means. , it becomes possible to process ceramics.

かかる加工の態様は高温の酸、アルカリに限らず、例え
ば、電解により正極に酸、そして負極にアルカリを生ず
るNaC1等の中性塩の電解液、化学的に活性なイオン
、例えば、ハロゲンイオン01 等を所定の高温条件下
でセラミックスに作用させて、当該部分の酸化物を分解
させる態様のものであってもよい。
Such processing is not limited to high-temperature acids and alkalis; for example, electrolytic solutions of neutral salts such as NaCl, which generate acid at the positive electrode and alkali at the negative electrode, chemically active ions, such as halogen ions, etc. It may also be an embodiment in which the oxide in the part concerned is decomposed by acting on the ceramic under predetermined high temperature conditions.

本発明は叙上の観点に立ってなされたものであり、被加
工体セラミックスの所望加工部分の表面領域の単位局部
に酸、アルカリ等の電解質を水に溶解した加工液を所望
単位量だけ噴射、流下、滴加等により供給介在せしめた
状態で、当該局部に電気エネルギを供給−し、放電を生
ぜしめて高温状態とし、更には電解作用を生ぜしめ、当
該局部に於て酸又はアルカリ等の加工液の高温状態に於
けるセラミックスとの反応を好ましくは供給加工液中の
酸又はアルカリ等の全部乃至大部分が行なうようにし、
この反応による変質生成物又は残留物、或いは前記反応
により脆弱化等した反応部分を超音波振動エネルギが付
与される超音波振動加工用工具によって前記局部から機
械的に除去することにより加工が行なわれるようにした
ち、ので、前記加工局部を被加工体セラミックス上の水
平面内の所定の位置又は厚さ方向に順次に制御移動させ
て所望の目的加工が行なわれるものである。
The present invention has been made based on the above-mentioned viewpoint, and involves injecting a desired unit amount of a processing fluid in which an electrolyte such as acid or alkali is dissolved in water onto a unit local area of the surface area of a desired processing portion of a ceramic workpiece. Electrical energy is supplied to the local area by flowing, dripping, etc., causing electric discharge and a high temperature state, and further producing an electrolytic action, causing acid or alkali, etc. to be applied to the local area. Preferably, all or most of the acid or alkali in the supplied machining fluid reacts with the ceramics in the high temperature state of the machining fluid,
Processing is performed by mechanically removing altered products or residues from this reaction, or reaction parts weakened by the reaction, from the local area using an ultrasonic vibration processing tool to which ultrasonic vibration energy is applied. Then, the desired target processing is performed by sequentially controlling and moving the processing local area to a predetermined position on the ceramic workpiece in a horizontal plane or in the thickness direction.

また、本発明は、従来からある電気加工、超音波加工、
化学加工等の各加工方法を個別に適用する単純加工では
なく、上記の加工方法を各加工方法の特質、特性だけで
な(、加工を施すタイミング、即ち、例えば被加工体の
同一箇所に対して略同時又は一方の加工方法の適用後時
間を置かずに直後に引き続いて他の加工方法を適用する
とか、或いは、二つ以上の加工方法を交互に適用する等
、一方の加工方法による加工作用又は効果が残存してい
る状態に於て他の加工方法を通用するようにした複合加
工方法によりセラミックス加工の難点を克服したもので
ある。
In addition, the present invention can be applied to conventional electrical machining, ultrasonic machining,
Rather than simple processing in which each processing method such as chemical processing is applied individually, the above processing methods are not limited to the characteristics and characteristics of each processing method (i.e., the timing of processing, for example, for the same part of the workpiece). Processing using one processing method, such as applying another processing method almost simultaneously or immediately after applying one processing method, or applying two or more processing methods alternately. This method overcomes the difficulties in processing ceramics by using a composite processing method that allows other processing methods to be used as long as the action or effect remains.

〔作用〕[Effect]

上記のような構成により、高温の酸又はアルカリ等の加
工液の加工部からの回収除去は、たとえ成る程度の回収
量があるにしても、超音波加工に冷却液を必要としない
場合には、その量は極めて少なくすることができ、又、
回収加工液が高温状態である可能性はほとんどないから
、本発明の目的を達成する加工装置を構成することが可
能となる。
With the above configuration, high-temperature acid or alkali machining fluids can be collected and removed from the machining section, even if there is a sufficient amount to be collected, if cooling fluid is not required for ultrasonic machining. , the amount can be extremely small, and
Since there is almost no possibility that the recovered machining fluid is in a high temperature state, it is possible to construct a machining apparatus that achieves the object of the present invention.

本発明では、前記の所望加工部分に供給するエネルギと
して電解放電エネルギ(電解による電気化学的作用、電
気の通電に伴う通電加熱作用や放電による熱及び衝撃作
用等の複合作用を伴う)を用い、これを、例えば数10
μm〜1μmの所定の局部範囲に作用させ、それ以外の
領域には熱等を全く作用させないので、局部加工が可能
となる。
In the present invention, electrolytic discharge energy (accompanied by combined effects such as electrochemical action due to electrolysis, energization heating action due to electricity supply, and heat and impact action due to discharge) is used as the energy supplied to the desired machining part, For example, convert this to number 10
Since the heat is applied to a predetermined local range of μm to 1 μm and no heat is applied to other areas, local processing becomes possible.

また、被加工体セラミックスが熱伝導が悪く、加工局部
から熱拡散が比較的少ないことから、本発明に於ける高
温に加熱された酸又はアルカリ等による反応は局部的に
行なわれるのである。
Further, since the ceramic material to be processed has poor thermal conductivity and relatively little heat diffusion from the local part of the workpiece, the reaction with the acid, alkali, etc. heated to high temperature in the present invention takes place locally.

〔実施例〕〔Example〕

以下、図面を参照しつ\本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

図面は本発明方法を実施する際に用いる加工装置の一実
施例を示す説明図である。
The drawing is an explanatory diagram showing one embodiment of a processing device used when carrying out the method of the present invention.

図中、1は加工液供給ノズル、2は加工液供給ノズル1
の先端部に設けた一方の電極、3はアーム、4はアーム
3に取り付けられた他方の電極、5は超音波振動子、6
は超音波振動子5の一端に取り付けられたホーン、7は
ホーン、6の先端に取り付けられた超音波加工用工具、
8は被加工体である。
In the figure, 1 is the machining fluid supply nozzle, 2 is the machining fluid supply nozzle 1
one electrode provided at the tip of the arm, 4 the other electrode attached to the arm 3, 5 an ultrasonic transducer, 6
is a horn attached to one end of the ultrasonic vibrator 5; 7 is a horn; an ultrasonic processing tool attached to the tip of 6;
8 is a workpiece.

加工液供給ノズル1はその先端噴出口が幅広の偏平とな
っており、ここには一方の電極2(子種)が設けられて
おり、他方の電極4(−極)はノズル1から前方に延び
たアーム3の先端部に、ノズル1から噴出した加工液と
接するように設けられている。
The machining fluid supply nozzle 1 has a wide and flat end spout, and one electrode 2 (son) is provided here, and the other electrode 4 (minus) extends forward from the nozzle 1. It is provided at the tip of the extended arm 3 so as to be in contact with the machining fluid ejected from the nozzle 1.

超音波振動子5は超音波加工機のアーム(図示せず)に
取り付けられ、高周波電流を機械的な振動に変換し、超
音波振動子5の一端に設けたホーン6はこの振動の振幅
を拡大し、先端部に取り付けた工具7に伝達する。
The ultrasonic vibrator 5 is attached to the arm (not shown) of the ultrasonic processing machine and converts high frequency current into mechanical vibration, and the horn 6 provided at one end of the ultrasonic vibrator 5 converts the amplitude of this vibration. It is enlarged and transmitted to the tool 7 attached to the tip.

被加工体8ば、図示しないクロススライドテーブルに取
り付けられ、水平面上で任意の位置にサーボ制御移動さ
れるよう構成されている。
The workpiece 8 is attached to a cross slide table (not shown) and is configured to be moved to any position on a horizontal plane under servo control.

而して、加工液供給ノズル1から、例えば、濃度5〜.
40%の塩M(HCI)を、速度約lQm/s〜100
 m/ s 、流量約1〜1Qccで超音波加工用工具
7による加工領域に合わせてフィルム状に噴出させ、こ
の加工液にノズル1に設けた一方の電極2(子種)と、
他方の電極4(−極)との間に直流、交流、高周波、又
は間歇的電圧パルスの電圧を印加して、この加工液を通
電、電解、及び放電により所定の高温状態に加熱した状
態で被加工体8の加工すべきセラミックス表面に供給し
、セラミックスの分解、反応層、脆化層8aを生ぜしめ
、同時に被加工体8を図中矢印方向に順次に制御移動せ
しめてこの層8aに超音波加工用工具7を軽く接触させ
て超音波振動エネルギを与え、これにより超音波振動a
削加工除去する。
Then, from the machining liquid supply nozzle 1, for example, a concentration of 5 to .
40% salt M (HCI) at a speed of about lQm/s ~ 100
m/s and a flow rate of approximately 1 to 1 Qcc in a film form according to the processing area by the ultrasonic processing tool 7, and one electrode 2 (child seed) provided in the nozzle 1 is attached to this processing liquid.
A voltage of direct current, alternating current, high frequency, or intermittent voltage pulses is applied between the other electrode 4 (-electrode), and the machining fluid is heated to a predetermined high temperature state by energization, electrolysis, and discharge. The material is supplied to the surface of the ceramic to be processed on the workpiece 8 to cause decomposition of the ceramic, a reaction layer, and an embrittlement layer 8a, and at the same time, the workpiece 8 is sequentially controlled and moved in the direction of the arrow in the figure to form this layer 8a. Lightly contact the ultrasonic machining tool 7 to apply ultrasonic vibration energy, thereby causing ultrasonic vibration a.
Remove by cutting.

尚、必要があれば、超音波加工用工具7と被加工体8と
の間に砥粒を超音波加工の常套手段に応じ、軽油等に混
合、分散させたものを適宜の手段により供給介在させて
もよい。
If necessary, abrasive grains mixed and dispersed in light oil or the like may be supplied between the ultrasonic machining tool 7 and the workpiece 8 by an appropriate means according to the conventional means of ultrasonic machining. You may let them.

また、加工液供給ノズル1から供給する加工液中の電解
質は必ずしも強酸及び強アルカリである必要はなく、例
えば塩化ナトリウムとか塩化カリウム等の中性塩であっ
てもよく、この場合には電解により正極で酸、負極でア
ルカリが生成し、同様な効果が得られるものである。
Further, the electrolyte in the machining fluid supplied from the machining fluid supply nozzle 1 does not necessarily have to be a strong acid or a strong alkali, and may be a neutral salt such as sodium chloride or potassium chloride. A similar effect can be obtained by generating acid at the positive electrode and alkali at the negative electrode.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酸又はアルカリ等の加工液を電気エネ
ルギにより通電及び通電で高温に加熱し、更には電解し
て、被加工体セラミックス上に局部的に供給し、これに
より被加工体セラミックスの少なくとも一部以上を分解
、溶解等反応させ、また部分的に脆弱化し、そしてその
部分を超音波振動エネルギが付与される超音波加工用工
具により機械的に除去加工するという特殊な複合加工方
法の適用により被加工体セラミックスへの穿孔、型彫、
切断、溝形成等の成形等の加工が可能となり、広い範囲
への適用が予想されるセラミックス製品の容易且つ安価
な提供を可能とするものである。
According to the present invention, a machining fluid such as an acid or alkali is heated to a high temperature by applying and energizing electric energy, and is further electrolyzed to be locally supplied onto the ceramic workpiece, whereby the workpiece ceramic A special composite machining method in which at least a portion of the material undergoes a reaction such as decomposition, melting, etc., weakens the part, and then mechanically removes that part using an ultrasonic machining tool that is applied with ultrasonic vibration energy. By applying this, drilling, engraving, and
Processing such as cutting, forming of grooves, etc. is possible, and it is possible to easily and inexpensively provide ceramic products that are expected to be applied in a wide range of areas.

面、加工液が成る程度以上の量供給される場合には、被
加工体の載物台を一方の電極とし、超音波加工用工具を
他方の電極として通電すると、超音波加工用工具の主と
して被加工体近接先端部周囲に於て微小1jk電が生起
して本発明の目的を達し得るから、電極2.4等は本発
明の必須構成要件ではない。
If the machining fluid is supplied in an amount larger than the surface, the workpiece stage is used as one electrode and the ultrasonic machining tool is used as the other electrode. Since the object of the present invention can be achieved by generating a minute 1jk electric current around the proximal tip of the workpiece, the electrodes 2, 4, etc. are not essential components of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図面ば本発明方法を実施する際に用いる加工装置の一実
施例を示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of a processing device used when carrying out the method of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)被加工体セラミックスの所望加工部の表面部領域
に、電解質を水に溶解した加工液を供給浸漬等により介
在せしめた状態で上記加工部の表面領域に電気エネルギ
を付与して上記加工部を変質せしめ、次いで上記変質加
工部に超音波振動エネルギが付与される超音波振動加工
用工具により超音波加工することを特徴とするセラミッ
クスの加工方法。
(1) Supplying a processing liquid in which an electrolyte is dissolved in water to the surface area of the desired processing part of the ceramic workpiece. Electrical energy is applied to the surface area of the processing part in a state in which it is interposed by immersion, etc., and the above processing is performed. 1. A method for processing ceramics, which comprises altering a portion of the ceramic, and then subjecting the altered portion to ultrasonic processing using an ultrasonic vibration processing tool that applies ultrasonic vibration energy to the altered portion.
(2)上記電解質が強酸である特許請求の範囲第1項記
載のセラミックスの加工方法。
(2) The method for processing ceramics according to claim 1, wherein the electrolyte is a strong acid.
(3)上記電解質が強塩基である特許請求の範囲第1項
記載のセラミックスの加工方法。
(3) The method for processing ceramics according to claim 1, wherein the electrolyte is a strong base.
(4)上記電解質が塩である特許請求の範囲第1項記載
のセラミックスの加工方法。
(4) The method for processing ceramics according to claim 1, wherein the electrolyte is a salt.
(5)上記加工部表面領域に付与される電気エネルギが
、上記加工液を介して通電される電流である特許請求の
範囲第1項乃至第4項記載のセラミックスの加工方法。
(5) The method for processing ceramics according to any one of claims 1 to 4, wherein the electric energy applied to the surface area of the processing part is a current passed through the processing fluid.
(6)上記加工部表面領域に付与される電気エネルギが
、加工部表面に近接して設けられた一対の電極間の放電
により与えられるエネルギである特許請求の範囲第1項
乃至第4項記載のセラミックスの加工方法。
(6) Claims 1 to 4, wherein the electrical energy applied to the surface area of the processed part is energy provided by electric discharge between a pair of electrodes provided close to the surface of the processed part. How to process ceramics.
JP17682984A 1984-08-27 1984-08-27 Method of processing ceramics Granted JPS6154908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17682984A JPS6154908A (en) 1984-08-27 1984-08-27 Method of processing ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17682984A JPS6154908A (en) 1984-08-27 1984-08-27 Method of processing ceramics

Publications (2)

Publication Number Publication Date
JPS6154908A true JPS6154908A (en) 1986-03-19
JPH0423609B2 JPH0423609B2 (en) 1992-04-22

Family

ID=16020564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17682984A Granted JPS6154908A (en) 1984-08-27 1984-08-27 Method of processing ceramics

Country Status (1)

Country Link
JP (1) JPS6154908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399129A1 (en) * 1989-05-19 1990-11-28 Akio Nakano Ultrasonic machining method
JP2006159369A (en) * 2004-12-09 2006-06-22 Institute Of Physical & Chemical Research Nozzle type elid grinding method and device
CN102513622A (en) * 2011-11-09 2012-06-27 扬州大学 Micro and fine machining method for material difficult to machine and machining system
CN105619186A (en) * 2016-02-29 2016-06-01 南京航空航天大学 Machining method and device for silicon carbide mirror
CN112809111A (en) * 2021-01-20 2021-05-18 南方科技大学 Ultrasonic-plasma electrolytic combined machining method and machining device for workpiece

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399129A1 (en) * 1989-05-19 1990-11-28 Akio Nakano Ultrasonic machining method
JP2006159369A (en) * 2004-12-09 2006-06-22 Institute Of Physical & Chemical Research Nozzle type elid grinding method and device
US7758741B2 (en) 2004-12-09 2010-07-20 Riken Method and apparatus for nozzle type ELID grinding
JP4658578B2 (en) * 2004-12-09 2011-03-23 独立行政法人理化学研究所 Nozzle ELID grinding method and apparatus
CN102513622A (en) * 2011-11-09 2012-06-27 扬州大学 Micro and fine machining method for material difficult to machine and machining system
CN105619186A (en) * 2016-02-29 2016-06-01 南京航空航天大学 Machining method and device for silicon carbide mirror
CN112809111A (en) * 2021-01-20 2021-05-18 南方科技大学 Ultrasonic-plasma electrolytic combined machining method and machining device for workpiece
CN112809111B (en) * 2021-01-20 2022-05-20 南方科技大学 Ultrasonic-plasma electrolytic combined machining method and machining device for workpiece

Also Published As

Publication number Publication date
JPH0423609B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US3873512A (en) Machining method
US4559115A (en) Method of and apparatus for machining ceramic materials
CN104742002A (en) Intelligent grinding device for short chip removing and cooling by means of pulse electric smelting
CN102259214B (en) Efficient machining method of controllable ablation metallic material based on electric-spark induction
CA2023388A1 (en) Chip breaker for polycrystalline cbn and diamond compacts
Ghosh Electrochemical discharge machining: Principle and possibilities
CN104128783A (en) Method for manufacturing single-blade diamond micro-milling cutter
US1733241A (en) of houston
Saxena et al. Electrochemical based hybrid machining
Mallick et al. Experimental investigation for improvement of micro-machining performances of µ-ECDM process
JPS6154908A (en) Method of processing ceramics
CN102172833B (en) Controllable and ablated non-conductive engineering ceramic grinding method based on discharge induction
Coteaţă et al. Electrochemical discharge machining of small diameter holes
JPS6234715B2 (en)
Gadalla et al. Expanding heat source model for thermal spalling of TiB2 in electrical discharge machining
Chak Electro chemical discharge machining: process capabilities
CN1034157A (en) Processing method for polymorphic diamond compound blade before welding
Ranjan et al. A Comprehensive Review on the Machining Process: Unconventional as an Alternative to Conventional Machining
US3377696A (en) Bonding diamond to molybdenum
CN114406375B (en) Electrochemical discharge energized micro grinding method for micro parts of silicon-based material
JPS6310090A (en) Ceramics working device
Panda ELECTROCHEMICAL SPARK MACHINING: A HYBRID MACHINING PROCESS
SU674850A1 (en) Tool soldering method
JPH0433541B2 (en)
CN106048511A (en) Mechanical-assisted chemical heat treatment method for metal surfaces