JPS59152020A - Grind wheel used for electrolytic and electric discharge machining - Google Patents

Grind wheel used for electrolytic and electric discharge machining

Info

Publication number
JPS59152020A
JPS59152020A JP18754882A JP18754882A JPS59152020A JP S59152020 A JPS59152020 A JP S59152020A JP 18754882 A JP18754882 A JP 18754882A JP 18754882 A JP18754882 A JP 18754882A JP S59152020 A JPS59152020 A JP S59152020A
Authority
JP
Japan
Prior art keywords
conductive
workpiece
electrolytic
grinding
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18754882A
Other languages
Japanese (ja)
Inventor
Akio Kuromatsu
黒松 彰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO JIKI KENKYUSHO KK
Original Assignee
OYO JIKI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO JIKI KENKYUSHO KK filed Critical OYO JIKI KENKYUSHO KK
Priority to JP18754882A priority Critical patent/JPS59152020A/en
Publication of JPS59152020A publication Critical patent/JPS59152020A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To increase efficiency of electrolytic and electric discharge machining by constructing a grind wheel so as to carry out electrolytic operation, mechanical grinding operation, and electric discharge operation. CONSTITUTION:On the circumferential surface of a non-conductive grind wheel A, a conductive zones B constructed by conductive material and grinding zones C, in which non-conductive grains are being exposed, are formed alternately. Current collecting plates D are installed on the sides of the grind wheel A being formed in such a way that each conductive plate can be electrically connected to them. Electrolytic operation is carried out with a workpiece M being brought in contact with the conductive zones B of the grind wheel A. Then, oxydizing film is removed by means of grinding zones C. And electric discharge machining is carried out with the workpiece M being momentarily brought in contact with the conductive zone B.

Description

【発明の詳細な説明】 本発明は電解放電研削用の円盤砥石に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a disc grindstone for electrolytic discharge grinding.

超硬合金等の難削材の加工には、従来の機械研削による
加工方法では加工能力が低く加工が困難であった。
When machining difficult-to-cut materials such as cemented carbide, conventional machining methods using mechanical grinding have low machining capabilities and are difficult to process.

そのため本発明の発明者は特殊な砥石を用いた加工効率
の高い電解放電加工方法を提案した。
Therefore, the inventor of the present invention proposed an electrolytic discharge machining method that uses a special grindstone and has high machining efficiency.

以下にその電解放電加工につ馳て簡単に説明する。The electrolytic discharge machining will be briefly explained below.

〈イ〉 砥石の構造 第6図にお−で(A)は非導電性の砥石であシ、この砥
石(A)の円周面には導電性の素材で構成する導電帯(
B)と非導電性の砥粒がそのまま露出した研摩帯(0)
を交互に形成しである。
<A> Structure of the grindstone In Figure 6, (A) is a non-conductive grindstone, and the circumferential surface of this grindstone (A) is equipped with a conductive band (made of a conductive material).
B) and the polishing band (0) with the non-conductive abrasive grains exposed as they are.
are formed alternately.

また砥石(A)の側面には集電板(D)を配置して各導
電板(B)が電気的に連絡するよう構成しである。
Further, a current collector plate (D) is arranged on the side surface of the grindstone (A) so that each conductive plate (B) is electrically connected.

く口〉 加工方法 この砥石の導電帯(B)と被加工物(M)との間に通電
して加工液を供給しつつ砥石を回転させる。
Machining method Electricity is applied between the conductive band (B) of this grindstone and the workpiece (M) to supply machining fluid and rotate the grindstone.

すると被加工物(M)には導電帯(B)と研摩帯(0)
とが交互に接触するから電解作用と機械的研摩作用の外
に放電作用も行なわれ、難削材を効率よく研削できるこ
とが判明した。
Then, the workpiece (M) has a conductive band (B) and an abrasive band (0).
It has been found that because of the alternating contact between the two, an electric discharge action is performed in addition to the electrolytic action and the mechanical polishing action, and it has been found that difficult-to-cut materials can be efficiently ground.

各作用のメカニズムについて検討すると次のようになる
The mechanism of each action is considered as follows.

(ロー1)電解作用 被加工物(M)と砥石(A)の導電帯(B)とが接触し
た瞬間、被加工物(M)の表面に電気分解が生じ被加工
物(M)の表面が金属イオンとなって溶けだす。
(Row 1) Electrolytic action At the moment when the workpiece (M) and the conductive band (B) of the grindstone (A) come into contact, electrolysis occurs on the surface of the workpiece (M). becomes metal ions and begins to dissolve.

(ロー2)機械研削作用 この直後に砥石(A)の研摩帯(0)が通過するので砥
粒は溶解部分や酸化膜を削り取ってしまう。このように
酸化膜等が発生後直ちに除去されるため常に加工面は活
性化されている。
(Row 2) Mechanical grinding action Immediately after this, the abrasive band (0) of the grindstone (A) passes, and the abrasive grains scrape off the dissolved portion and oxide film. In this way, the processed surface is always activated because the oxide film and the like are removed immediately after they are generated.

そのため従来の電解研削よりもずっと小さい電流によっ
て電解が可能となる。
Therefore, electrolysis is possible with a much smaller current than in conventional electrolytic grinding.

(ロー3)放電作用 従来の電解研削用の砥石と異なシ導電帯(B)が不連続
に存在している。
(Row 3) Discharge action Different from conventional electrolytic grinding wheels, conductive bands (B) are discontinuously present.

そのためひとつの導電帯(B)は被加工物(M)と−瞬
間接触するだけである。そのため接触と離脱の短時間の
間に充電とノξルス電流による放電現象が生じ両者間に
火花が飛ぶ。
Therefore, one conductive band (B) is only in momentary contact with the workpiece (M). Therefore, during a short period of time between contact and separation, charging and discharging phenomena occur due to the Norse current, and sparks fly between the two.

火花はすぐに細いスパークの柱すなわち非常に電流密度
の高い電子の流れとなって被加工物(M)の一点を溶か
して吹き飛ばす。
The spark immediately turns into a thin column of sparks, that is, a flow of electrons with extremely high current density, melting and blowing away one point on the workpiece (M).

このようにして放電加工が行なわれることになる。Electric discharge machining is performed in this manner.

ところで前記構造の砥石(人)は加工中砥石仏)と被加
工物(M)との間に所定の加工液を供給しても砥石(人
)の円周面が平滑に形成しであるために刀ロエ液の進入
が困難となり、十分に加工液を加工部分に供給すること
ができなかった。
By the way, with the above-mentioned structure, the circumferential surface of the whetstone (man) remains smooth even if a predetermined machining liquid is supplied between the whetstone (M) and the workpiece (M) during processing. It became difficult for the Loe liquid to enter the machine, and it was not possible to sufficiently supply the machining liquid to the machining part.

このことは特に砥石(A)の切込みが増して被加工物(
M)との接触面積が大きくなると加工液の十分な供給が
期待できなくなシ、その結果加工能率の低下を許容せざ
るを得なかった。
This is especially true when the cutting depth of the grindstone (A) increases and the workpiece (
When the contact area with M) becomes large, sufficient supply of machining fluid cannot be expected, and as a result, a decrease in machining efficiency has to be tolerated.

また前述した放電加工の際、砥石(A)の導電帯(B)
と被加工物(M)の間には効率的な放電加工を得るため
に両者間に一定の間隔(放電ギャップ)が形成されこの
間隔を維持されていることが望ましいが積極的にその間
隔を維持することは困難であった。
Also, during the electric discharge machining described above, the conductive band (B) of the grinding wheel (A)
and the workpiece (M), a certain distance (discharge gap) is formed between them in order to obtain efficient electrical discharge machining, and it is desirable to maintain this distance. It was difficult to maintain.

本発明は上述の点についてなされたもので、以下に示す
ような電解放電研削用の円盤砥石を提供することを目的
とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a disc grindstone for electrolytic discharge grinding as shown below.

〈イ〉被加工物との間に加工液の供給が十分に行なえる
電解放電研削用の円盤砥石、 〈口〉放電ギャップの発生が容易でありかつその放電ギ
ャップを維持できる電解放電研削用の円盤砥石。
<B> Disc grinding wheel for electrolytic discharge grinding that can supply sufficient machining fluid between the workpiece and the workpiece. Disc whetstone.

次に実施例について説明する。Next, an example will be described.

〈イ〉円盤本体 円盤本体は公知の非導電性の砥粒を適当なノ々イングー
を用いて焼き固めた円盤(1)である。
<A> Disk main body The disk main body is a disk (1) made of known non-conductive abrasive grains baked and hardened using a suitable non-conductive abrasive.

砥粒の一例として、グリーンカーボランダム、ホワイト
アランダム、ピンクアランダム、シリカ等を使用するこ
とができる。
Examples of abrasive grains that can be used include green carborundum, white alundum, pink alundum, and silica.

上記材料は非導電性であるだめ円盤(1)は導電性を有
しない。
The material is non-conductive; the disk (1) has no conductivity.

〈口〉溝の開設 円盤(1)の側面には周端に達するたとえば断面コ字形
V字形、半円形等の溝(2)を不連続に複数箇所開設す
る。
<Mouth> Creation of grooves A plurality of discontinuous grooves (2) are formed on the side surface of the disk (1), reaching the circumferential edge and having, for example, a U-shaped, V-shaped, or semicircular cross section.

溝(2)は円盤(1)の厚さの半分を少し越える程度の
深さに形成し、円盤(1)の表裏両面に交互に形成する
The grooves (2) are formed to a depth slightly exceeding half the thickness of the disk (1), and are formed alternately on both the front and back surfaces of the disk (1).

つまり円盤(1)の円周面には一方の側面に開設した溝
(2)と溝(2)の中間に、他方の側面に開設した溝(
2)が位置するよう交互に形成することになる。
In other words, the circumferential surface of the disk (1) has grooves (2) on one side and grooves (2) in the middle, and grooves (2) on the other side.
2) will be formed alternately so that they are located.

その結果各溝(2)内には相対向する壁面(21)と、
両壁面(21)を連絡する底面(22)が形成される。
As a result, each groove (2) has walls (21) facing each other,
A bottom surface (22) is formed that connects both wall surfaces (21).

<・・〉導電帯の形成 前記溝(2)内の壁面(21)と底面(22)には導電
性の被膜で被覆して導電帯(3)を形成する。
<...> Formation of conductive band The wall surface (21) and bottom surface (22) in the groove (2) are coated with a conductive film to form a conductive band (3).

この被膜の形成は電気的抵抗の低い公知の導電性の素材
を使用し、焼付け、塗付、貼付等の方法で薄く被覆する
To form this film, a known conductive material with low electrical resistance is used, and a thin coating is applied by baking, painting, pasting, or the like.

その結果、円盤(1)の円周面には断面コ字形の導電帯
(3)と、導電帯(3)以外の部分に非導電性の砥粒で
構成する研摩帯(4)が露出して形成される。
As a result, a conductive band (3) with a U-shaped cross section is exposed on the circumferential surface of the disk (1), and an abrasive band (4) made of non-conductive abrasive grains is exposed outside the conductive band (3). It is formed by

ぐつ通電板 円盤(1)の側面中心にはドーナツ状の導電性を有する
通電板(5)を設ける。
A donut-shaped conductive current-carrying plate (5) is provided at the center of the side surface of the shoe current-carrying plate disc (1).

通電板(5)は円盤(1)の両側面に設は前記各導電帯
(2)に電気的に連絡するよう接続する。
Current-carrying plates (5) are provided on both sides of the disc (1) and are electrically connected to each of the conductive bands (2).

次に研削方法について説明する。Next, the grinding method will be explained.

〈1〉通電回路の形成 前記構造の円盤(1)の通電板(5)と被加工物(M)
にはそれぞれ電極を接続し通電回路を形成する。
<1> Formation of energizing circuit The energizing plate (5) of the disk (1) with the above structure and the workpiece (M)
Connect electrodes to each to form a current-carrying circuit.

円盤(1)と被加工物(M)の間に通電する電源は交流
まだは直流のいずれか一方の電源や交流と直流を組み合
わせた電源等を被加工物(M)の素材に応じて適切に使
い分けて使用する。
The power supply that passes between the disc (1) and the workpiece (M) can be either AC, DC, or a combination of AC and DC, depending on the material of the workpiece (M). Use them differently.

<2〉研削開始 円盤(1)に回転を与え、所定の加工液を供給しつつ円
盤(1)を被加工物(M)に接触させる。
<2> Rotate the grinding start disk (1) and bring the disk (1) into contact with the workpiece (M) while supplying a predetermined machining fluid.

円盤(1)の円周面に露出して形成する導電帯(3)が
被加工物(M)に接触して通電がなされると両者(3)
(M)間に既述のように放電現象が発生して被加工物(
M)の表面を溶解し、次に非導電性の砥粒で構成する研
摩帯(4)が通過してこの溶解部分を削り取ってしまう
When the conductive band (3) formed exposed on the circumferential surface of the disk (1) contacts the workpiece (M) and is energized, both (3)
(M) As mentioned above, a discharge phenomenon occurs and the workpiece (
The surface of M) is melted, and then a polishing band (4) made of non-conductive abrasive grains passes through and scrapes off this melted portion.

また円盤(1)の導電帯(3)と被加工物(M)の間に
電解液としての性格も有する加工液を介して通電がなさ
れると、電気分解によって被加工物(M)のイオン分解
が進行する。
Furthermore, when electricity is applied between the conductive band (3) of the disk (1) and the workpiece (M) through a working fluid that also has the characteristics of an electrolyte, ions of the workpiece (M) are caused by electrolysis. Decomposition progresses.

この直後に研摩帯(4)が通過し、イオン分解された被
加工物(M)の表面を削り取っていく。
Immediately after this, the polishing band (4) passes through and scrapes off the surface of the ionically decomposed workpiece (M).

なお以上の加工はそれぞれ円盤(1)の表裏両面によっ
て交互に行なわれる。
Note that the above processing is performed alternately on both the front and back surfaces of the disk (1).

従って円盤(1)の両側の各導電帯(3)は円盤(1)
の約半分の厚を越えた深さに形成しであるため研削残し
の心配はない。
Therefore, each conductive band (3) on both sides of the disk (1) is connected to the disk (1).
Since it is formed to a depth that exceeds about half the thickness of

〈3〉放電ギャップの維持 研削加工中1円盤(1)の円周端の各導電帯(3)は第
3図に示すように、溝(2)の先端角部が被加工物(M
)と接触して微かに欠けるので、被加工物(−M )の
表面との間に間@(H)を形成する。
<3> Maintaining the discharge gap During grinding Each conductive band (3) at the circumferential edge of the disk (1) is connected to the workpiece (M
) and is slightly chipped, forming a gap @(H) between the surface of the workpiece (-M) and the surface of the workpiece (-M).

この間隔(H)は溝(2)の先端角部が円盤(1)の摩
耗に応じて欠けるのでほぼ一定の距離建株たれる。
This interval (H) is maintained at a substantially constant distance because the tip corner of the groove (2) is chipped as the disk (1) wears.

従ってこの間隔(H)は良好な放電を行なうために最適
な放電間隔である放電ギャップとなり、研削中は常に放
電ギャップが維持されることになる。
Therefore, this interval (H) becomes a discharge gap which is an optimum discharge interval for performing a good discharge, and the discharge gap is always maintained during grinding.

<4〉閉切シの場合 円盤(1)は被加工物(M)との間において放電加工、
電解加工2機械研削加工をそれぞれ交互に行ないながら
被加工物(M)の研削を進行するが、被加工物(M)へ
の切込み量が増して深切りとなった場合には円盤(1)
の側面に凹設する導電帯(3)の溝(2)に加工液が案
内されて被加工物(M)との接触部分に確実に供給され
るので、加工液不足に因る発熱、研削帯(4)の目詰ま
シ瞥 を防止し、それぞれ効率的な放電加工、電解加工および
機械的加工が行なわれる。
<4> In the case of closed cutter, the disk (1) and the workpiece (M) undergo electric discharge machining,
Grinding of the workpiece (M) progresses while performing electrolytic machining 2 mechanical grinding processes alternately, but if the depth of cut into the workpiece (M) increases and becomes a deep cut, the disk (1)
The machining fluid is guided to the groove (2) of the conductive band (3) recessed on the side surface of the workpiece (M) and is reliably supplied to the contact area with the workpiece (M), thereby preventing heat generation and grinding caused by insufficient machining fluid. Clogging of the band (4) is prevented, and efficient electrical discharge machining, electrolytic machining, and mechanical machining are performed.

<5〉その他の実施例 加工液の供給も兼ねた導電帯は前記実施例の他に第4図
に示すような傾斜溝(6)内に形成する導電帯(3)を
採用することもできる。
<5> Other Examples In addition to the above embodiments, a conductive band (3) formed in an inclined groove (6) as shown in FIG. 4 may be used as the conductive band that also serves as a supply of machining fluid. .

すなわち非導電性の砥粒で構成する円盤(1)の側面に
は円周面へ近ずくほど深くなる傾斜溝(6)を円周面に
達して、円盤(1)の両側に交互に開設する。
That is, on the side surface of the disk (1) made of non-conductive abrasive grains, inclined grooves (6) which become deeper as they get closer to the circumferential surface are formed alternately on both sides of the disk (1), reaching the circumferential surface. do.

次に各傾斜溝(6)の内壁は導電性に優れた低抵抗の導
電材で被覆し、導電帯(3)を形成する。
Next, the inner wall of each inclined groove (6) is coated with a conductive material having excellent conductivity and low resistance to form a conductive band (3).

研削方法および効果については前記実施例と同様である
The grinding method and effects are the same as in the previous embodiment.

また以上の実施例は円盤(1)の円周面に導電帯(3)
を形成する場合、円周面を途中まで横断した溝(2)(
6)内に設ける場合について説明しだが、第5図に示す
ような円周面を横断して開設した横断溝(7)内に導電
性の被膜で被覆し導電帯(3)を形成しても同様の効果
を期待することができる。
Furthermore, in the above embodiment, a conductive band (3) is provided on the circumferential surface of the disk (1).
When forming a groove (2) (
6) As shown in Fig. 5, a transverse groove (7) opened across the circumferential surface is coated with a conductive film to form a conductive band (3). can also be expected to have similar effects.

本発明の円盤は以上説明したようになるから次のような
効果を期待することができる。
Since the disc of the present invention is constructed as described above, the following effects can be expected.

〈イ〉円盤の側面には円周端へ連絡する溝を設けたこと
によシ、加工液がこの溝に案内されて被加工物との間に
案内されるので加工液の十分な供給を行なうことができ
る。
<B> By providing a groove on the side surface of the disk that communicates with the circumferential edge, the machining fluid is guided by this groove and guided between it and the workpiece, ensuring a sufficient supply of machining fluid. can be done.

〈口〉溝内に導電性の被膜を被覆して導電帯を形成した
ことによシ、研削中溝の先端角部が円盤の摩耗に応じて
欠けるので導電帯と被加工物の表面の間には一定の間隙
が形成される。
<Mouth> By coating the groove with a conductive film to form a conductive band, the tip corner of the groove is chipped during grinding due to wear of the disk, so there is a gap between the conductive band and the surface of the workpiece. A certain gap is formed.

従ってこの間隙が放電ギャップとなシ、良好な研削を行
なうことができる。
Therefore, this gap becomes a discharge gap and good grinding can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1m:本発明による円盤の一実施例説明図筒2園二円
盤の円周面の部分拡大説明図第3図:研削中の説明図 第4,5図:その他の実施例の説明図 第6図:特殊な砥石を用いた加工方法の説明図1=円盤
      2:溝 3:導電帯     4:研摩帯 第2図 3 手続補正書 1.事件の表示 特願昭57−187548号 2、発明の名称 電解放電加工に用いる円盤砥石 3、補正をする者 事件との関係   特許出願人 住 所  神奈川県横浜市鶴見区駒岡町602名 称 
  有限会社 応用磁気研究所代表者  黒松彰雄 4、代理人 〒105 住 所  東京都港区新橋三丁目1番10号 丸藤ビル
9F6、補正の対象 明細書 7、補正の内容 明細書の第1頁1、発明の名称を「電解放電加工に用い
る円盤砥石」と訂正する。
No. 1m: An explanatory diagram of one embodiment of a disc according to the present invention Tube 2 An enlarged partial explanatory diagram of the circumferential surface of the disc. Fig. 3: An explanatory diagram during grinding. Figure 6: Explanation of processing method using special grindstone 1 = Disc 2: Groove 3: Conductive band 4: Abrasive band Figure 2 3 Procedural amendment 1. Indication of the case Japanese Patent Application No. 57-187548 2, Name of the invention Disc grinding wheel used for electrolytic discharge machining 3, Person making the amendment Relationship to the case Patent applicant Address 602 Komaoka-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Name
Applied Magnetic Research Institute Ltd. Representative: Akio Kuromatsu 4, Agent: 105 Address: 9F6 Marufuji Building, 3-1-10 Shinbashi, Minato-ku, Tokyo, Specification subject to amendment 7, Page 1 of the statement of contents of amendment 1. The name of the invention is corrected to "Disc grindstone used for electrolytic discharge machining."

Claims (1)

【特許請求の範囲】 非導電性の砥粒から成る砥石には、 側面から円周面へ達する溝を不連続忙複数箇所開設し、 溝内には導電性の被膜を付して導電帯を形成し、円周面
の導電帯以外の部分は研摩帯を形成し、各導電帯を通電
可能に構成する、 電解放電加工に用いる円盤砥石。
[Scope of Claims] A grindstone made of non-conductive abrasive grains has grooves extending from the side surface to the circumferential surface at multiple discontinuous locations, and a conductive coating is applied to the grooves to form conductive bands. A disc grindstone used for electrolytic discharge machining, in which the circumferential surface other than the conductive band forms an abrasive band, and each conductive band is configured to conduct electricity.
JP18754882A 1982-10-27 1982-10-27 Grind wheel used for electrolytic and electric discharge machining Pending JPS59152020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18754882A JPS59152020A (en) 1982-10-27 1982-10-27 Grind wheel used for electrolytic and electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18754882A JPS59152020A (en) 1982-10-27 1982-10-27 Grind wheel used for electrolytic and electric discharge machining

Publications (1)

Publication Number Publication Date
JPS59152020A true JPS59152020A (en) 1984-08-30

Family

ID=16208001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18754882A Pending JPS59152020A (en) 1982-10-27 1982-10-27 Grind wheel used for electrolytic and electric discharge machining

Country Status (1)

Country Link
JP (1) JPS59152020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795874A (en) * 1987-01-15 1989-01-03 Retech, Inc. Saw blade with non-magnetic inserts for electric arc saw and method of making same
WO2020232791A1 (en) * 2019-05-21 2020-11-26 深圳大学 Combined electric spark grinding machining tool, tool manufacturing method and machining method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107837A (en) * 1980-02-01 1981-08-27 Akio Kuromatsu Grinding wheel for electrolytic electrospark machining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107837A (en) * 1980-02-01 1981-08-27 Akio Kuromatsu Grinding wheel for electrolytic electrospark machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795874A (en) * 1987-01-15 1989-01-03 Retech, Inc. Saw blade with non-magnetic inserts for electric arc saw and method of making same
WO2020232791A1 (en) * 2019-05-21 2020-11-26 深圳大学 Combined electric spark grinding machining tool, tool manufacturing method and machining method

Similar Documents

Publication Publication Date Title
US4849599A (en) Machining method employing cutting or grinding by conductive grindstone
US4448656A (en) Electrolytic/electric discharge machining of a non-conductive workpiece
JPH05131365A (en) Method and device for seting grinding wheel
JPS59152020A (en) Grind wheel used for electrolytic and electric discharge machining
JPH07205006A (en) Lens grinding method
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
JPS59152019A (en) Electrolytic, electric discharge and grind wheel machining
JPS5959321A (en) Electrolytic discharge method
CN114654383B (en) Precise trimming method for concave arc metal bond diamond grinding wheel
JPS6228172A (en) Formation of grindstone
JPS5976721A (en) Electrolytic and electric discharge machining method
JPS5926425B2 (en) Electrolytic grinding method for non-conductive materials
GB1247910A (en) Cleaning method and means for electro-chemical grinder
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPS6228121A (en) Method and device for electrolytic discharge grinding
SU1547980A1 (en) Method of electrochemical dressing of face grinding wheels on metal binder
JPS59156619A (en) Method of electric discharge/electrolytic grinding and cutting
GB724521A (en) Working metals and other materials by electrical erosion
US5269889A (en) Electrolytic cleaning and refurbishing of grinding wheels
JPS58165926A (en) Electrolytic machining method
Setti Electric Discharge Grinding (EDG)
JPS58196973A (en) Grinding disk
JPS5919637A (en) Power source circuit employed in electrolytic discharge machining
SU1020197A1 (en) Method of electric erosion machining
JPH0957622A (en) Grinding method with in-process electrolytic dressing