JP3194621B2 - Method and apparatus for generating spherical surface - Google Patents

Method and apparatus for generating spherical surface

Info

Publication number
JP3194621B2
JP3194621B2 JP17171292A JP17171292A JP3194621B2 JP 3194621 B2 JP3194621 B2 JP 3194621B2 JP 17171292 A JP17171292 A JP 17171292A JP 17171292 A JP17171292 A JP 17171292A JP 3194621 B2 JP3194621 B2 JP 3194621B2
Authority
JP
Japan
Prior art keywords
electrode
grinding
conductive
dress
grinding tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17171292A
Other languages
Japanese (ja)
Other versions
JPH05337826A (en
Inventor
優 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP17171292A priority Critical patent/JP3194621B2/en
Publication of JPH05337826A publication Critical patent/JPH05337826A/en
Application granted granted Critical
Publication of JP3194621B2 publication Critical patent/JP3194621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解インプロセスドレ
ッシング法を用いたCG加工方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CG processing method using an electrolytic in-process dressing method and an apparatus therefor.

【0002】[0002]

【従来の技術】上記したインプロセスドレッシング法を
CG加工に適用した文献は既に知られている。例えば、
特開平3−60973号公報がある。この公報に記載さ
れている技術を図9〜図12に基づいて説明する。図9
は、上記公報に記載されている第1図(イ)を示し、実
施例1の要部を示す側面よりの断面図である。図10
は、上記公報に記載されている第3図(イ)を示し、実
施例3の電極部の形成方法の要部を示す側面よりの断面
図である。図11は、上記公報に記載されている第3図
(ロ)を示し、図10に続く創成作用を示す要部の側面
を示す断面図である。図12は、上記公報に記載されて
いる第3図(ハ)を示し、上記図11に続く創成作用を
示す側面よりの断面図である。
2. Description of the Related Art Documents in which the above-described in-process dressing method is applied to CG processing are already known. For example,
JP-A-3-60973 is known. The technique described in this publication will be described with reference to FIGS. FIG.
FIG. 1A is a cross-sectional view showing a main part of Example 1 shown in FIG. FIG.
FIG. 3B is a cross-sectional view showing a main part of a method for forming an electrode portion according to a third embodiment, which is shown in FIG. FIG. 11 is a cross-sectional view showing FIG. 3 (b) described in the above-mentioned publication and showing a side surface of a main part showing a generating operation subsequent to FIG. FIG. 12 shows FIG. 3 (c) described in the above-mentioned publication, and is a cross-sectional view from the side showing the generating action subsequent to FIG.

【0003】図9に示すように、回転自在に構成された
チャック31に装填されたワーク32の軸心33に対し
て、スイベル角αに配設された研削面34をワークの曲
率と同一形状に形成された導電性研削工具35が回転軸
心36にて回転自在に保持されている。また、ブラシ3
7には電源装置38より(+)電極が、印加され、ワー
ク32の加工曲率Rと近似形状の曲率R−lに形成
された(−)電極39が、導電性研削工具35の研削面
34とワーク32との間に配設されている。(−)電極
39の近傍には、(−)電極39と研削面34との間に
クーラント40を介在させ、電源装置38より供給され
る電流によって研削面34の電解ドレス(即ち、電解ド
レッシング)を行うためノズル41が配設されている。
上記構成によるCG加工方法は、チャック31を回動さ
せると共に、導電性研削工具35を回動し、(−)電極
39と研削面34との間で研削面34の電解ドレスを行
いながら、研削面34をワーク32に当接しワーク32
の研削加工が行われている。
As shown in FIG. 9, a grinding surface 34 disposed at a swivel angle α with respect to an axis 33 of a work 32 loaded on a rotatable chuck 31 has the same shape as the curvature of the work. The conductive grinding tool 35 formed on the rotary shaft 36 is rotatably held at a rotation axis 36. Also, brush 3
7, a (+) electrode is applied from a power supply device 38, and a (-) electrode 39 formed into a curvature R A- 1 having a shape approximate to the processing curvature R A of the work 32 is ground by the conductive grinding tool 35. It is arranged between the surface 34 and the work 32. In the vicinity of the (−) electrode 39, a coolant 40 is interposed between the (−) electrode 39 and the grinding surface 34, and an electric current supplied from the power supply device 38 causes an electrolytic dress (that is, electrolytic dressing) of the grinding surface 34. A nozzle 41 is provided to perform the above operation.
In the CG processing method having the above configuration, the grinding is performed while rotating the chuck 31 and the conductive grinding tool 35 to perform electrolytic dressing of the grinding surface 34 between the (−) electrode 39 and the grinding surface 34. The surface 34 contacts the work 32 and
Grinding has been performed.

【0004】また、図10,図11,図12は上記公報
における別の実施例を示すものである。図に示すように
導電性研削工具42の研削面43に対向して配設した矩
形状の電極ブランク44を、回動する上記導電性研削工
具42の研削面43に当接し、導電性研削工具42を電
極ブランク44に対して切込み、図11に示すように電
極ブランク44の研削面43との対向面を研削面43と
同一形状に形成し(−)電極とする。図12に示すよう
に、ワーク45の加工時においては研削面43と(−)
電極との間にわずかの隙間46を維持しながら電解イン
プロセスドレッシング法によるCG加工が行われるよう
構成されている。
FIGS. 10, 11 and 12 show another embodiment of the above publication. As shown in the figure, a rectangular electrode blank 44 arranged opposite to the grinding surface 43 of the conductive grinding tool 42 is brought into contact with the grinding surface 43 of the rotating conductive grinding tool 42, and the conductive grinding tool 42 is cut into the electrode blank 44, and the surface of the electrode blank 44 facing the ground surface 43 is formed in the same shape as the ground surface 43 as shown in FIG. As shown in FIG. 12, when the work 45 is machined, the ground surface 43 and the (−)
The CG processing by the electrolytic in-process dressing method is performed while maintaining a small gap 46 between the electrodes.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記公
報に記載されている球面創成加工方法による電解インプ
ロセスドレッシングを精密に行うためには、(−)電極
の研削面との対向面の各点と研削面との距離を一定にし
て、電解ドレスされる研削面の各点における電流密度を
均一にする必要がある。しかし、図9に示すような導電
性研削砥石の研削面は、研削加工とドレッシング効果に
よってその研削面は削られてゆくため、固定された電極
の電極面と砥石の研削面との距離が遠ざかっていき、導
電性研削砥石の研削面の曲率Rに対して曲率R−l
に形成された(−)電極と研削面とを正確で常に一定距
離となるように配設することは、困難であった。
However, in order to accurately perform electrolytic in-process dressing by the spherical surface forming method described in the above-mentioned publication, it is necessary to make each point on the surface facing the ground surface of the (-) electrode. It is necessary to keep the distance from the ground surface constant and to make the current density at each point of the ground surface to be electrolytically dressed uniform. However, the ground surface of the conductive grinding wheel as shown in FIG. 9 is gradually ground by the grinding process and the dressing effect, so that the distance between the electrode surface of the fixed electrode and the ground surface of the wheel is increased. The radius of curvature R A− l with respect to the radius of curvature R A of the ground surface of the conductive grinding wheel.
It is difficult to dispose the (-) electrode formed in the above and the ground surface accurately and always at a constant distance.

【0006】また、上記不具合点を解決するために、図
10,図11,図12に示すように、砥石研削面が消耗
していく方向に電極を駆動し、電極の電極面と砥石研削
面との距離を一定とする技術が記載されている。この場
合においては、電極面の曲率と、研削面の曲率とが同一
半径であるので互いの曲率中心は一致せず、従って、
(−)電極の曲率Rを形成後、隙間lを維持した際
に、(−)電極の研削面と対向する各点と導電性工具の
研削面との距離(即ち、前記研削面での法線方向におけ
る当該研削面と(−)電極との距離)は一定とならな
い。従って、上記公報の技術においては、砥石研削面で
の法線方向における当該研削面と(−)電極との距離
が、前記各点で異なると、各点と研削面との間の放電作
用に差異が生じ、精密に電解インプロセスドレッシング
を行うことができない。即ち、精度の高い球面創成加工
を行うことは不可能である。
Further, in order to solve the above-mentioned problems, as shown in FIGS. 10, 11 and 12, the electrode is driven in a direction in which the grinding wheel grinding surface wears out, and the electrode surface of the electrode and the grinding wheel grinding surface are driven. A technique for keeping the distance to the camera constant is described. In this case, since the curvature of the electrode surface and the curvature of the ground surface have the same radius, their centers of curvature do not coincide with each other.
(−) When the gap l is maintained after the curvature RA of the electrode is formed, (−) the distance between each point facing the ground surface of the electrode and the ground surface of the conductive tool (that is, the distance at the ground surface). The distance between the ground surface and the (-) electrode in the normal direction is not constant. Therefore, in the technique of the above publication, when the distance between the ground surface and the (−) electrode in the normal direction on the grinding surface of the grinding stone is different at each of the points, the discharge action between each point and the ground surface is reduced. Differences occur and the electrolytic in-process dressing cannot be performed precisely. That is, it is impossible to perform the spherical surface creation processing with high accuracy.

【0007】本発明は、上記問題点に鑑みてなされたも
ので、(−)電極の研削面と対向する各点と当該各点の
法線方向における砥石研削面の距離を一定とし、砥石研
削面を精密に電解インプロセスドレッシングし、精度の
高い球面創成加工を行う方法、および装置を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a constant distance between each point facing a grinding surface of an electrode and a grinding wheel grinding surface in the normal direction of each point. It is an object of the present invention to provide a method and an apparatus for precisely performing electrolytic in-process dressing of a surface and performing high-accuracy spherical surface creation processing.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明の球面創成加工装置は、ワークの曲
率と同一形状に形成された研削面を設けた導電性研削工
具と、この導電性研削工具の研削面と対向する位置に配
設したドレス電極と、このドレス電極の前記導電性研削
工具との間に弱電性クーラントを供給するクーラント供
給手段と、前記ドレス電極に印加する極性を、前記導電
性研削工具の研削面の電解ドレッシングを行うときと前
記ドレス電極の電極面の電解加工を行うときとで切り換
える極性切り換え手段と、を具備したことを特徴とす
る。請求項2の発明の球面創成加工方法は、ワークを研
削する導電性研削工具の研削面と該研削面に対して一定
の間隔を設けて対向配設したドレス電極との間に、弱電
性クーラントを供給し、前記ドレス電極に陽極を、前記
導電性研削工具に陰極をそれぞれ印加して前記ドレス電
極を電解加工する工程を有することを特徴とする。請求
項3の発明の球面創成加工方法は、ワークを研削する導
電性研削工具の研削面と該研削面に対して一定の間隔を
設けて対向配設したドレス電極との間に、弱電性クーラ
ントを供給し、前記ドレス電極に陽極を、前記導電性研
削工具に陰極をそれぞれ印加して前記ドレス電極を電解
加工する工程と、前記ドレス電極に陰極を、前記導電性
工具に陽極をそれぞれ印加して前記導電性研削工具の研
削面を電解ドレッシングする工程とを有することを特徴
とする。請求項4の発明の球面創成加工方法は、ワーク
を研削する導電性研削工具の研削面と該研削面に対して
一定の間隔を設けて対向配設したドレス電極との間に、
弱電性クーラントを供給し、前記ドレス電極と前記導電
性研削工具の各極性を切り換えて前記導電性研削工具の
研削面の電解ドレッシングまたは前記ドレス電極の電極
面の電解加工を行い、前記導電性研削工具の研削面の電
解ドレッシング加工時に前記導電性研削工具の研削面で
ワークの加工を行うことを特徴とする。
In order to solve the above-mentioned problems, a spherical surface generating apparatus according to the first aspect of the present invention comprises: a conductive grinding tool provided with a grinding surface formed in the same shape as the curvature of a work; A dress electrode disposed at a position facing the grinding surface of the conductive grinding tool, coolant supply means for supplying a weakly conductive coolant between the dress electrode and the conductive grinding tool, and application to the dress electrode Polarity switching means for switching the polarity between when performing the electrolytic dressing of the grinding surface of the conductive grinding tool and when performing the electrolytic processing of the electrode surface of the dress electrode is provided. According to a second aspect of the present invention, there is provided a method for generating a spherical surface, wherein a weakly electric coolant is provided between a ground surface of a conductive grinding tool for grinding a workpiece and a dress electrode provided to be opposed to the ground surface at a predetermined interval. And applying a positive electrode to the dress electrode and a negative electrode to the conductive grinding tool to electrolytically process the dress electrode. According to a third aspect of the present invention, there is provided the spherical surface forming method, wherein the weakly electric coolant is provided between a grinding surface of a conductive grinding tool for grinding a workpiece and a dress electrode provided at a predetermined distance from the grinding surface. Supplying an anode to the dress electrode, a step of electrolytically processing the dress electrode by applying a cathode to the conductive grinding tool, and applying a cathode to the dress electrode and an anode to the conductive tool, respectively. And electrolytically dressing the grinding surface of the conductive grinding tool. The method for generating a spherical surface according to the invention of claim 4 is characterized in that between a grinding surface of a conductive grinding tool for grinding a workpiece and a dress electrode provided opposite to the grinding surface at a constant interval.
Supplying a weakly conductive coolant, switching the respective polarities of the dress electrode and the conductive grinding tool to perform electrolytic dressing of the grinding surface of the conductive grinding tool or electrolytic processing of the electrode surface of the dress electrode, and performing the conductive grinding. The workpiece is processed on the ground surface of the conductive grinding tool during electrolytic dressing of the ground surface of the tool.

【0009】請求項1の発明によれば、極性切換手段に
よってドレス電極に印加する極性を、導電性研削工具の
研削面の電解ドレッシングを行うときと、ドレス電極の
電極面の電解加工を行うときとで切り換えることによ
り、導電性研削工具の研削面の電解ドレッシングが行え
るとともに、ドレス電極の電極面を電解加工することが
できる。請求項2の発明によれば、ドレス電極に陽極
を、導電性研削工具に陰極をそれぞれ印加することによ
りドレス電極を電解加工することができる。請求項3の
発明によれば、ドレス電極に陽極を、導電性研削工具に
陰極をそれぞれ印加することによりドレス電極の電解加
工を行い、ドレス電極に陰極を、導電性研削工具に陽極
をそれぞれ印加することにより導電性研削工具の研削面
を電解ドレッシングすることができる。請求項4の発明
によれば、ドレス電極と導電性研削工具の各極性を切り
換えることにより導電性研削工具の研削面の電解ドレッ
シングまたはドレス電極の電極面の電解加工を行い、導
電性研削工具の研削面の電解ドレッシング加工を行いな
がら、同時に研削面でワークの加工を行うことができ
る。
According to the first aspect of the present invention, the polarity to be applied to the dress electrode by the polarity switching means is determined when the electrolytic dressing of the ground surface of the conductive grinding tool is performed and when the electrolytic processing of the electrode surface of the dress electrode is performed. By performing the above switching, it is possible to perform electrolytic dressing on the ground surface of the conductive grinding tool and to perform electrolytic processing on the electrode surface of the dress electrode. According to the second aspect of the invention, the dress electrode can be electrolytically processed by applying the anode to the dress electrode and the cathode to the conductive grinding tool. According to the invention of claim 3, electrolytic processing of the dress electrode is performed by applying the anode to the dress electrode and the cathode to the conductive grinding tool, and the cathode is applied to the dress electrode and the anode is applied to the conductive grinding tool. This makes it possible to electrolytically dress the ground surface of the conductive grinding tool. According to the invention of claim 4, electrolytic dressing of the ground surface of the conductive grinding tool or electrolytic processing of the electrode surface of the dress electrode is performed by switching the respective polarities of the dress electrode and the conductive grinding tool. The workpiece can be processed on the ground surface at the same time as performing the electrolytic dressing on the ground surface.

【0010】[0010]

【実施例1】本発明の概念を図面に基づいて説明する。
図1は、本発明の球面創成加工方法および装置の概念を
示す側面よりの断面図である。図2は、図1に示す球面
創成加工方法および装置による作用状態を示す側面より
の断面図である。図1に示すようにカップ形状の導電性
研削工具1の先端縁辺部には研削砥石2が一体的に装着
構成され、その基端部は図示されない駆動手段と連動し
て矢印にて示す方向に回転するよう構成されている。上
記研削砥石2の研削面3は、ワーク(不図示)と同じ曲
率Rに形成され、回転する導電性研削工具1に対し
て、研削面3と対向する面を曲率Rと近似形状に形成
したドレス電極4を、わずかな隙間1を設けて配設して
いる。そして、図2に示すとおり、導電性研削工具1を
回転するとともに導電性研削工具1に電源装置5の
(−)極を、ドレス電極4に電源装置5の(+)極をそ
れぞれ図1の電解ドレッシング加工状態とは切り換えて
接続し、弱電性クーラント6を介在させながら電源装置
5より電力を供給する。上記構成による作用を説明す
る。図2のように研削面3を(−)電極とし、(+)電
極としたドレス電極4を被加工物として、導電性研削工
具1を回転させながら電解加工する。電解加工において
は、被加工物の溶出除去速度は、被加工物上の各点にお
ける(−)電極との距離に比例する。その結果ワークを
加工するときには、極性を切り換えて図1に示すように
すると、図2においてドレス電極4の研削面3との対向
面の各点は、研削面3との距離(即ち、球面である研削
面3の法線方向におけるドレス電極4との距離、換言す
ると、ドレス電極4の前記各点の法線方向における当該
各点と研削面3との距離)が精密に等距離となるように
なっているので、ドレス電極4によって研削面3が良好
に電解加工される。本発明の球面創成加工方法および装
置の具体例を図面に基づいて説明する。本実施例は、カ
ーブジェネレータ方式を用いた電解インプロセスドレッ
シング研削による球面創成加工方法である。図3は、本
発明の球面創成加工方法および装置の実施例1の要部を
示す側面よりの断面図である。図4は、図3の装置によ
り、ワークを研削する作用状態を示す側面よりの断面図
である。なお、図中において上記図1および図2と同一
部材、同一形状、同一構成については同一符号を付しそ
の説明を省略する。
Embodiment 1 The concept of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view showing the concept of a method and apparatus for generating a spherical surface according to the present invention. FIG. 2 is a cross-sectional side view showing an operation state of the method and apparatus for generating a spherical surface shown in FIG. As shown in FIG. 1, a grinding wheel 2 is integrally mounted on the edge of the tip of a cup-shaped conductive grinding tool 1, and its base end is moved in the direction indicated by an arrow in conjunction with driving means (not shown). It is configured to rotate. The grinding surface 3 of the grinding wheel 2 is formed to have the same curvature R A as that of a work (not shown), and the surface facing the grinding surface 3 has a shape approximate to the curvature R A with respect to the rotating conductive grinding tool 1. The formed dress electrode 4 is disposed with a slight gap 1 provided. Then, as shown in FIG. 2, the conductive grinding tool 1 is rotated, and the conductive grinding tool 1 is connected to the (-) pole of the power supply 5 and the dress electrode 4 is connected to the (+) pole of the power supply 5 in FIG. The connection is made by switching from the electrolytic dressing processing state, and power is supplied from the power supply device 5 with the weakly electric coolant 6 interposed therebetween. The operation of the above configuration will be described. As shown in FIG. 2, electrolytic processing is performed while rotating the conductive grinding tool 1 using the dressing electrode 4 having the grinding surface 3 as a (−) electrode and the (+) electrode as a workpiece. In electrolytic processing, the elution removal rate of a workpiece is proportional to the distance between each point on the workpiece and a (-) electrode. As a result, when processing the work, if the polarity is switched as shown in FIG. 1, each point of the surface of the dress electrode 4 facing the grinding surface 3 in FIG. The distance between the grinding surface 3 and the dress electrode 4 in the normal direction of the certain grinding surface 3 (in other words, the distance between each point and the grinding surface 3 in the normal direction of each point of the dress electrode 4) is precisely equidistant. Therefore, the grinding surface 3 is favorably electrolytically processed by the dress electrode 4. A specific example of the method and apparatus for generating a spherical surface according to the present invention will be described with reference to the drawings. The present embodiment is a method for generating a spherical surface by electrolytic in-process dressing grinding using a curve generator method. FIG. 3 is a cross-sectional side view showing a main part of Embodiment 1 of the method and apparatus for generating spherical surface according to the present invention. FIG. 4 is a side sectional view showing an operation state of grinding a workpiece by the apparatus of FIG. In the drawings, the same members, the same shapes, and the same configurations as those in FIGS.

【0011】図4に示すように、傾斜配設した回転軸と
連設したチャック16に装填された凸形状のワーク7の
研削仕上げ面と同一の曲率Rにその表面を形成された
研削面3を有するカップ状の導電性研削工具1が図示さ
れていない駆動手段によって矢印にて示す方向に回転す
るよう構成されている。図3に示すように、研削面3に
対向して、Cuからなる研削面3との対向面を、研削面
3の曲率Rと近似形状に形成されたL字形のドレス電
極4が駆動ユニット10によって矢印にて示す方向に移
動自在に保持構成されている。また、導電性研削工具1
の外周面には電極ブラシ11が摺動自在に当接構成され
ており、ドレス電極4と電極ブラシ11は直流パルス電
流を供給する電源装置5に電気的に接続されている。ま
た、電源装置5の出力端子の(+)極、(−)極の極性
切り換え手段としての切り換えSW13によりドレス電
極4と電極ブラシ11の極性は変更可能な構成となって
いる。砥石2とドレス電極4の下方位置近傍に示す符号
14は、研削面3とドレス電極4の間に、図示されない
クーラント供給手段から弱電性クーラント6を供給する
ためのクーラントノズルである。
As shown in FIG. 4, a ground surface having the same curvature RA as the ground surface of the convex workpiece 7 loaded on the chuck 16 connected to the inclined rotating shaft is provided. The cup-shaped conductive grinding tool 1 having a rotating member 3 is configured to be rotated in a direction indicated by an arrow by a driving unit (not shown). As shown in FIG. 3, an L-shaped dress electrode 4, which faces the grinding surface 3 and faces the grinding surface 3 made of Cu and has an approximate shape to the curvature RA of the grinding surface 3, is driven by a drive unit. Reference numeral 10 denotes a holding structure that is movable in the direction indicated by the arrow. In addition, conductive grinding tool 1
An electrode brush 11 is slidably abutted on the outer peripheral surface of the electrode, and the dress electrode 4 and the electrode brush 11 are electrically connected to a power supply device 5 for supplying a DC pulse current. Further, the polarity of the dress electrode 4 and the electrode brush 11 can be changed by the switching SW 13 as the polarity switching means of the (+) pole and the (−) pole of the output terminal of the power supply device 5. Reference numeral 14 shown near the position below the grindstone 2 and the dress electrode 4 is a coolant nozzle for supplying the weak electric coolant 6 from coolant supply means (not shown) between the grinding surface 3 and the dress electrode 4.

【0012】次に、上記構成よりなる本実施例の作用を
説明する。まず、図3の状態において、電荷を負荷しな
いで導電性研削工具1を矢印方向に回転させ、弱電クー
ラント6を研削面3とドレス電極4の接触面に向けて供
給する。続いて、駆動ユニット10を矢印方向に駆動さ
せることにより、ドレス電極4と導電性研削工具1の研
削面3とを当接させて、導電性研削工具1にてドレス電
極4を研削して導電性研削工具1の研削面3の形状をド
レス電極4に転写する。この場合、上記のように、導電
性研削工具1およびドレス電極には、電荷を負荷しな
い。上記により導電性研削工具1の研削面3をドレス電
極4の面へ転写することが終了し、ドレス電極4は駆動
手段10の駆動にて矢印に示す方向(元の位置)に移動
され、ドレス電極4と研削面3との間に所定の隙間lが
構成配設される。
Next, the operation of the present embodiment having the above configuration will be described. First, in the state of FIG. 3, the conductive grinding tool 1 is rotated in the direction of the arrow without applying a charge, and the weak electric coolant 6 is supplied toward the contact surface between the grinding surface 3 and the dress electrode 4. Subsequently, by driving the drive unit 10 in the direction of the arrow, the dress electrode 4 and the grinding surface 3 of the conductive grinding tool 1 are brought into contact with each other, and the dress electrode 4 is ground by the conductive grinding tool 1 so as to be conductive. The shape of the grinding surface 3 of the abrasive grinding tool 1 is transferred to the dress electrode 4. In this case, no charge is applied to the conductive grinding tool 1 and the dress electrode as described above. The transfer of the grinding surface 3 of the conductive grinding tool 1 to the surface of the dress electrode 4 is completed as described above, and the dress electrode 4 is moved in the direction indicated by the arrow (original position) by the driving of the driving means 10, and the dress is moved. A predetermined gap 1 is provided between the electrode 4 and the grinding surface 3.

【0013】上記において、ドレス電極4に形成された
新しい電極面には、研削砥石2の研削面3と同一の曲率
を有しており、ドレス電極4と導電性研削工具1との間
に隙間lを構成すると、ドレス電極4の電極面の曲率中
心と研削砥石2の研削面3の曲率中心とが離れ、電極の
各点と当該各点での法線方向で対向する研削面の各点と
の距離が一定でなくなる。上記電極の各点と法線方向で
対向する研削面3の各点との距離を一定とするには、ド
レス電極4の電極面の曲率中心と研削砥石2の曲率中心
とを一致することにより一定となる。
In the above, the new electrode surface formed on the dress electrode 4 has the same curvature as the grinding surface 3 of the grinding wheel 2, and a gap between the dress electrode 4 and the conductive grinding tool 1. When l is configured, the center of curvature of the electrode surface of the dress electrode 4 and the center of curvature of the grinding surface 3 of the grinding wheel 2 are separated from each other, and each point of the electrode and each point of the grinding surface facing each other in the normal direction at the point. Distance is no longer constant. In order to keep the distance between each point of the electrode and each point of the grinding surface 3 facing in the normal direction constant, the center of curvature of the electrode surface of the dress electrode 4 and the center of curvature of the grinding wheel 2 are matched. It will be constant.

【0014】そのため次に、図3に示すように導電性研
削工具1の外周面に配設した電極ブラシ11に電源装置
5の(−)極を、ドレス電極4に(+)極をそれぞれ接
続し、電源装置5より直流パルス電流を供給する。この
場合、ドレス電極4に対して曲率Rの研削面3を
(−)電極とした電解加工が施され、ドレス電極4の研
削面3との対向面には、対向面の各点と研削砥石2の研
削面3との距離(即ち、法線方向での距離)が一定とな
るような曲率のR形状が形成される。
Next, as shown in FIG. 3, the (−) pole of the power supply 5 is connected to the electrode brush 11 disposed on the outer peripheral surface of the conductive grinding tool 1, and the (+) pole is connected to the dress electrode 4. Then, a DC pulse current is supplied from the power supply device 5. In this case, the dress electrode 4 is subjected to electrolytic processing using the ground surface 3 having the curvature RA as the (-) electrode, and the surface of the dress electrode 4 facing the ground surface 3 is ground with each point of the facing surface. An R shape having a curvature is formed such that the distance between the grinding wheel 2 and the grinding surface 3 (that is, the distance in the normal direction) is constant.

【0015】電解加工においては、被加工物と電極との
距離が接近している程被加工物の溶出除去速度は速くな
り、逆に被加工物と電極との距離が離れている程被加工
物の溶出除去速度は遅くなる。そのために、ドレス電極
4を電解加工すると、ドレス電極4の各点と法線方向で
対向する研削面3の各点との距離が一定となる。ここ
で、ドレス電極4に形成された電極面(R面)の曲率中
心は、研削砥石2の曲率中心と一致した状態となってい
る。
In electrolytic machining, the elution and removal speed of the workpiece increases as the distance between the workpiece and the electrode increases, and conversely, as the distance between the workpiece and the electrode increases. The rate of elution and removal of the substance becomes slow. Therefore, when the dress electrode 4 is electrolytically processed, the distance between each point of the dress electrode 4 and each point of the ground surface 3 facing in the normal direction becomes constant. Here, the center of curvature of the electrode surface (R surface) formed on the dress electrode 4 coincides with the center of curvature of the grinding wheel 2.

【0016】ドレス電極4の電解加工終了後、図4に示
すように極性を切り換えて、電極ブラシ11に電源装置
5の(+)極を、ドレス電極4に(−)極をそれぞれ接
続し電流を供給することにより、研削面3には、精密に
均一な電解ドレッシングが施される。電解ドレッシング
が完了後、回転自在に構成されたチャック16に装填さ
れたワーク7を研削加工することによって、精度の高い
球面創成加工が行われる。上記球面創成加工を続ける
と、電極面と研削面3との距離が遠ざかり、研削加工初
期と同じ条件での電解ドレスが行えなくなる。そこで、
研削面が消耗することによって遠ざかった電極面と研削
面3との距離を、加工初期と同一の間隔に保ように、駆
動装置により電極面を図に示す矢印方向に駆動すること
により研削加工初期の同一条件で電解ドレスができる。
After the electrolytic processing of the dress electrode 4 is completed, the polarity is switched as shown in FIG. 4, and the (+) pole of the power supply 5 is connected to the electrode brush 11, and the (-) pole is connected to the dress electrode 4, so that the current is applied. The grinding surface 3 is precisely and uniformly subjected to electrolytic dressing. After the completion of the electrolytic dressing, the workpiece 7 loaded in the rotatable chuck 16 is ground to perform a highly accurate spherical generation processing. If the above-mentioned spherical surface generation processing is continued, the distance between the electrode surface and the grinding surface 3 increases, and it becomes impossible to perform electrolytic dressing under the same conditions as in the initial stage of the grinding processing. Therefore,
The driving device drives the electrode surface in the direction of the arrow shown in the drawing so as to keep the distance between the electrode surface and the grinding surface 3 separated by the consumption of the grinding surface at the same interval as that in the initial processing. Electrolytic dressing can be performed under the same conditions.

【0017】[0017]

【実施例2】図5〜図8に基づいて本発明の球面創成加
工方法および装置の実施例2を説明する。図5は、本発
明の球面創成加工方法および装置の実施例2に係わる要
部を示す側面よりの断面図である。図6は、図5に基づ
く作用状態を示した砥石とドレス電極との要部構成を拡
大にて示す側面よりの断面図である。図7は、図6に続
く作用状態を示した砥石とドレス電極との要部構成を拡
大にて示す側面よりの断面図である。図8は、図7に続
く作用状態を示した砥石とドレス電極との要部構成を拡
大にて示す側面よりの断面図である。なお、図中におい
て上記した図1,図2の概念図および図3,図4の実施
例1における同一部材、同一形状および同一構成につい
ては、同地符号を付しその説明を省略する。
Second Embodiment A second embodiment of the method and apparatus for generating a spherical surface according to the present invention will be described with reference to FIGS. FIG. 5 is a side sectional view showing a main part according to a second embodiment of the method and the apparatus for generating a spherical surface according to the present invention. FIG. 6 is a cross-sectional view of a main part configuration of the grindstone and the dress electrode in a state of operation based on FIG. FIG. 7 is a cross-sectional view of a main part configuration of the grindstone and the dress electrode in a state of operation following FIG. FIG. 8 is an enlarged cross-sectional side view showing a main part configuration of the grindstone and the dress electrode in an operation state following FIG. In the drawings, the same members, the same shapes, and the same configurations as those in the conceptual diagrams of FIGS. 1 and 2 and the first embodiment of FIGS. 3 and 4 are denoted by the same reference numerals and description thereof is omitted.

【0018】本実施例と上記実施例1との構成上の相違
点は、上記実施例1においては、一般電極材にてドレス
電極4を形成したのに対し、本実施例においては、ドレ
ス電極17を導電性の研削工具材にて形成した点であ
る。その外の構成作用は実施例1と同様に構成されてお
り、従って研削方法も実施例1と同様の方法によってド
レス電極を形成し、電解インプロセスドレッシング研削
法により球面創成加工が行われる。
The difference between the present embodiment and the first embodiment is that the dress electrode 4 is formed of a general electrode material in the first embodiment, whereas the dress electrode 4 is formed in the present embodiment. 17 is made of a conductive grinding tool material. The rest of the construction is the same as in the first embodiment. Therefore, the dressing electrode is formed by the same method as in the first embodiment, and the spherical surface is formed by electrolytic in-process dressing grinding.

【0019】ところで、上記球面創成加工を多数のワー
ク7に対して連続で行った場合、図6にて示すように、
導電性研削工具1の研削面3が偏磨耗する。このため
に、精密な球面創成加工が行えなくなるという問題が生
じる。図7に示すように、本実施例においては研削面3
が偏磨耗した時点で駆動ユニット10によってドレス電
極17を研削面3に対して当接し所望の寸法に切り込
む。ドレス電極17は上記したドレス電極17を形成す
る工程で電解加工されると同時にドレッシングもされて
いるので、研削面3にはドレス電極17の形状が転写さ
れ、研削面3の偏磨耗部が除去される。次に、図8に示
すように駆動ユニット10によってドレス電極17と研
削面3との間にわずかな隙間lを設け、ドレス電極17
に電源装置5の(−)極を、電源ブラシ11に(+)極
を電気的に接続し、直流パルス電流を供給することによ
って、研削面3は精密に電解ドレスされ、再び精度の高
い球面創成加工が行われる。
By the way, when the above-mentioned spherical surface forming processing is continuously performed on a large number of works 7, as shown in FIG.
The grinding surface 3 of the conductive grinding tool 1 wears unevenly. For this reason, there arises a problem that precise spherical surface generation processing cannot be performed. As shown in FIG. 7, in this embodiment, the ground surface 3
The drive unit 10 makes the dress electrode 17 abut against the ground surface 3 and cuts into a desired size when uneven wear occurs. Since the dress electrode 17 is subjected to electrolytic processing and dressing in the above-described process of forming the dress electrode 17, the shape of the dress electrode 17 is transferred to the ground surface 3, and uneven wear portions of the ground surface 3 are removed. Is done. Next, as shown in FIG. 8, a slight gap 1 is provided between the dress electrode 17 and the ground surface 3 by the drive unit 10, and the dress electrode 17 is formed.
The (−) pole of the power supply device 5 is electrically connected to the (+) pole of the power supply brush 11, and a DC pulse current is supplied. Creation processing is performed.

【0020】[0020]

【発明の効果】本発明によれば、簡単な装置と方法によ
りドレス電極と導電性研削工具の砥石の研削面との当該
研削面の法線方向での距離が常に精密に一定に保持する
ことができるため、ワークの研削面の電解ドレスが精密
に行えるので、精度の高い球面創成加工が連続して行う
ことができる効果を奏する。
According to the present invention, the distance between the dress electrode and the grinding surface of the grinding wheel of the conductive grinding tool in the normal direction of the grinding surface is always kept precisely and constant by a simple apparatus and method. Therefore, the electrolytic dressing of the ground surface of the work can be performed precisely, so that there is an effect that highly accurate spherical surface generation processing can be continuously performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の球面創成加工方法および装置の概念の
構成を示す側面よりの断面図である。
FIG. 1 is a side sectional view showing a conceptual configuration of a method and apparatus for generating a spherical surface according to the present invention.

【図2】図1の構成による作用状態を示す側面よりの断
面図である。
FIG. 2 is a side sectional view showing an operation state according to the configuration of FIG. 1;

【図3】本発明の球面創成加工方法および装置の実施例
1の要部を示す側面よりの断面図である。
FIG. 3 is a side sectional view showing a main part of the first embodiment of the method and apparatus for generating a spherical surface according to the present invention.

【図4】図3の装置によりワークを研削する作用状態を
示す側面よりの断面図である。
FIG. 4 is a side sectional view showing an operation state of grinding a workpiece by the apparatus of FIG. 3;

【図5】本発明の球面創成加工方法および装置の実施例
2に係わる要部を示す側面よりの断面図である。
FIG. 5 is a side sectional view showing a main part according to a second embodiment of the spherical surface forming method and apparatus of the present invention.

【図6】図5に基づく作用状態を示した砥石とドレス電
極との要部構成を拡大に示す側面よりの断面図である。
FIG. 6 is a cross-sectional side view showing a main part configuration of a grindstone and a dress electrode in an operation state based on FIG. 5 in an enlarged manner.

【図7】図6に続く作用状態を示した砥石とドレス電極
との要部構成を拡大にて示す側面よりの断面図である。
FIG. 7 is a cross-sectional view of a main part configuration of the grindstone and the dress electrode in a state of operation following FIG.

【図8】図7に続く作用状態を示した砥石とドレス電極
との要部構成を拡大にて示した側面よりの断面図であ
る。
FIG. 8 is an enlarged side sectional view of a main part configuration of a grindstone and a dress electrode showing an operation state following FIG. 7;

【図9】従来の球面創成加工方法の要部を示す側面より
の断面図である。
FIG. 9 is a side sectional view showing a main part of a conventional spherical surface generating method.

【図10】図9とは異なる従来の球面創成加工方法の作
用状態を示す側面よりの断面図である。
FIG. 10 is a side sectional view showing an operation state of a conventional spherical surface forming method different from FIG. 9;

【図11】図10に続く球面創成加工方法の作用状態を
示す側面よりの断面図である。
FIG. 11 is a side sectional view showing an operation state of the spherical surface generating method subsequent to FIG. 10;

【図12】図11に続く球面創成加工方法の作用状態を
示す側面よりの断面図である。
FIG. 12 is a side sectional view showing an operation state of the spherical surface generating method subsequent to FIG. 11;

【符号の説明】[Explanation of symbols]

1 導電性研削工具 2 砥石 3 研削面 4,17 ドレス電極 5 電源装置 6 弱電性クーラント 7 ワーク 10 駆動手段 11 電極ブラシ 13 切替えSW 14 クーラントノズル 16 チャック DESCRIPTION OF SYMBOLS 1 Conductive grinding tool 2 Grinding stone 3 Grinding surface 4, 17 Dress electrode 5 Power supply device 6 Weakly conductive coolant 7 Work 10 Driving means 11 Electrode brush 13 Switching SW 14 Coolant nozzle 16 Chuck

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ワークの曲率と同一形状に形成された研
削面を設けた導電性研削工具と、この導電性研削工具の
研削面と対向する位置に配設したドレス電極と、このド
レス電極の前記導電性研削工具との間に弱電性クーラン
トを供給するクーラント供給手段と、前記ドレス電極に
印加する極性を、前記導電性研削工具の研削面の電解ド
レッシングを行うときと前記ドレス電極の電極面の電解
加工を行うときとで切り換える極性切り換え手段と、を
具備したことを特徴とする球面創成加工装置。
A conductive grinding tool provided with a grinding surface formed in the same shape as the curvature of a workpiece; a dress electrode disposed at a position facing the grinding surface of the conductive grinding tool; Coolant supply means for supplying a weakly conductive coolant between the conductive grinding tool, and the polarity to be applied to the dress electrode, when performing electrolytic dressing of the grinding surface of the conductive grinding tool, and the electrode surface of the dress electrode. And a polarity switching means for switching between when and when performing the electrolytic machining of the spherical surface.
【請求項2】 ワークを研削する導電性研削工具の研削
面と該研削面に対して一定の間隔を設けて対向配設した
ドレス電極との間に、弱電性クーラントを供給し、前記
ドレス電極に陽極を、前記導電性研削工具に陰極をそれ
ぞれ印加して前記ドレス電極を電解加工する工程を有す
ることを特徴とする球面創成加工方法。
2. A method according to claim 1, further comprising: supplying a weakly electric coolant between a ground surface of a conductive grinding tool for grinding a workpiece and a dress electrode disposed at a predetermined distance from the ground surface. And applying a cathode to the conductive grinding tool to subject the dress electrode to electrolytic machining.
【請求項3】 ワークを研削する導電性研削工具の研削
面と該研削面に対して一定の間隔を設けて対向配設した
ドレス電極との間に、弱電性クーラントを供給し、前記
ドレス電極に陽極を、前記導電性研削工具に陰極をそれ
ぞれ印加して前記ドレス電極を電解加工する工程と、前
記ドレス電極に陰極を、前記導電性工具に陽極をそれぞ
れ印加して前記導電性研削工具の研削面を電解ドレッシ
ングする工程とを有することを特徴とする球面創成加工
方法。
3. The method according to claim 1, further comprising: supplying a weakly electric coolant between a ground surface of a conductive grinding tool for grinding a workpiece and a dress electrode disposed at a predetermined distance from the ground surface. An anode, a step of electrolytically processing the dress electrode by applying a cathode to the conductive grinding tool, and a cathode to the dress electrode, applying an anode to the conductive tool, respectively. A step of electrolytically dressing the ground surface.
【請求項4】 ワークを研削する導電性研削工具の研削
面と該研削面に対して一定の間隔を設けて対向配設した
ドレス電極との間に、弱電性クーラントを供給し、前記
ドレス電極と前記導電性研削工具の各極性を切り換えて
前記導電性研削工具の研削面の電解ドレッシングまたは
前記ドレス電極の電極面の電解加工を行い、前記導電性
研削工具の研削面の電解ドレッシング加工時に前記導電
性研削工具の研削面でワークの加工を行うことを特徴と
する球面創成加工方法。
4. A weakly electric coolant is supplied between a grinding surface of a conductive grinding tool for grinding a workpiece and a dress electrode provided at a predetermined distance from the grinding surface and facing the dressing electrode. Performing electrolytic dressing of the grinding surface of the conductive grinding tool or electrolytic processing of the electrode surface of the dress electrode by switching each polarity of the conductive grinding tool and performing the electrolytic dressing of the grinding surface of the conductive grinding tool. A method for generating a spherical surface, comprising processing a workpiece on a ground surface of a conductive grinding tool.
JP17171292A 1992-06-05 1992-06-05 Method and apparatus for generating spherical surface Expired - Fee Related JP3194621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17171292A JP3194621B2 (en) 1992-06-05 1992-06-05 Method and apparatus for generating spherical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17171292A JP3194621B2 (en) 1992-06-05 1992-06-05 Method and apparatus for generating spherical surface

Publications (2)

Publication Number Publication Date
JPH05337826A JPH05337826A (en) 1993-12-21
JP3194621B2 true JP3194621B2 (en) 2001-07-30

Family

ID=15928283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17171292A Expired - Fee Related JP3194621B2 (en) 1992-06-05 1992-06-05 Method and apparatus for generating spherical surface

Country Status (1)

Country Link
JP (1) JP3194621B2 (en)

Also Published As

Publication number Publication date
JPH05337826A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JPH0343144A (en) Method and device for grinding lens
JPH0343145A (en) Grinding device
US6447376B1 (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
JP3194621B2 (en) Method and apparatus for generating spherical surface
JPH07205006A (en) Lens grinding method
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH05277938A (en) Mounting type discharge truing and its device
JP3194624B2 (en) Grinding method and apparatus
JP3304163B2 (en) Electrolytic in-process dressing grinding machine
JP2639811B2 (en) Discharge forming method of blade edge
JPH06114732A (en) Grinding wheel side surface shaping method by on-machine discharge truing method
JPH01121172A (en) Grinding attachment equipped with electric discharge forming area for blade edge
JPH07328907A (en) Spherical surface creative processing method and device thereof
JP3078404B2 (en) Electrolytic dressing grinding method
JPH05104430A (en) Electro-chemical machining for concave lens
JPH08197423A (en) Grinding method and grinding device
JP3294399B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH0475873A (en) Grinding device
JPH05277937A (en) Mounting type discharge truing/dressing
JPH0373268A (en) Grinding method and grinding grindstone
JPH0632902B2 (en) Grooving / cutting device
KR100561771B1 (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
JPH07186029A (en) Spherical surface formation working method and device
JPH08276363A (en) Grinding method and its device
JPH0716866B2 (en) Spherical surface generating method and device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees