JPS59195866A - High dielectric strength bipolar transistor - Google Patents

High dielectric strength bipolar transistor

Info

Publication number
JPS59195866A
JPS59195866A JP7080983A JP7080983A JPS59195866A JP S59195866 A JPS59195866 A JP S59195866A JP 7080983 A JP7080983 A JP 7080983A JP 7080983 A JP7080983 A JP 7080983A JP S59195866 A JPS59195866 A JP S59195866A
Authority
JP
Japan
Prior art keywords
region
collector
interface
emitter
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080983A
Other languages
Japanese (ja)
Inventor
Satoru Taji
田路 悟
Masahiro Kameda
昌宏 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7080983A priority Critical patent/JPS59195866A/en
Publication of JPS59195866A publication Critical patent/JPS59195866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To increase dielectric strength between a collector and an emitter without enlarging an element, and to prevent the large reduction of a current amplification factor by making impurity concentration in the vicinity of the interface of a base region higher than that of other sections of the base region. CONSTITUTION:Arsenic or antimony is diffused onto a P substrate 1 to form a buried layer 6, an N<-> epitaxial layer 2 as a base region is grown, phosphorus or arsenic is implanted through an ion impantation method, and the concentration of an N type impurity in the vicinity of the interface 10 (a crape section) with an oxide film of the base region 2, the interface of a region held by at least an emitter region 3 and a collector region 4 is made higher than that of other sections. An isolation layer 7 is formed, and the emitter region 3, the collector region 4 and a base contact region 5 are shaped.

Description

【発明の詳細な説明】 技術分野 本発明は、個別部品としてのバイポーラトランジスタ、
−1HりHIC(S S I、 MS I、  LS 
Iすどの集積回路)lこ含丑れるバイポーラトランジス
タに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to bipolar transistors as individual components;
-1H HIC (SSI, MSI, LS
The present invention relates to bipolar transistors that can be used in integrated circuits.

従来技術 第1図5こバイポーラトランジスタの−IFIJとして
のうtラルPNPバイポーラトランジスタを示す。
Prior Art FIG. 5 shows a lateral PNP bipolar transistor as -IFIJ of the bipolar transistor.

なε、図は断面図であるがハツチングは省略にある。後
述の第3図についても同じ。P型シリコン面lこ、エミ
ッタ(E)、コレクタ(q用のP十拡散頭域3.4と、
ベース(13)コンタクト用のN十拡散[浜」或5が形
成されて、N−エピタキシャル層2がベースとなってい
る。コレクタ領域4Vi表面内でエミッタ領*3を収り
囲むように形成されていてもよい。エミッタ、コレクタ
及ヒヘースコンタクトの各領域3.4及び5(こけ、そ
れぞれ表面の絶縁層(図示略)のコンタクトホールを経
て配線が施される。6は埋込層、7は分離層である。
The figure is a cross-sectional view, but hatching is omitted. The same applies to Figure 3, which will be described later. P-type silicon surface 1, emitter (E), collector (P 10 diffused head area 3.4 for q,
A base (13) N-diffused [beach] 5 for the contact is formed and the N-epitaxial layer 2 is the base. It may be formed so as to enclose the emitter region *3 within the surface of the collector region 4Vi. Emitter, collector, and heat contact regions 3, 4, and 5 are connected via contact holes in the surface insulating layer (not shown). 6 is a buried layer, and 7 is a separation layer. be.

ところで、バイポーラトランジスタの重要な特性の1つ
にコレクタ・エミッタ間耐圧BvcEoがあるか、一般
に、この1耐圧を大きくしようとすれば素子寸法を大型
化しなくてはならないという問題がある。
By the way, one of the important characteristics of a bipolar transistor is the collector-emitter breakdown voltage BvcEo, and generally speaking, if you try to increase this 1 breakdown voltage, you have to increase the element size.

1」的 本発明は、素子か大型化しないで、しかも高耐圧を有す
るバイポーラトランジスタを提供することを目的とする
ものである。
The object of the present invention is to provide a bipolar transistor having a high breakdown voltage without increasing the size of the device.

バイポーラトランジスタの耐圧”vCE、Jは、コレ(
″目関関1系があること、さらtこ空乏層は高a度領域
(こは伸びlこくいことか見い出された。これによれ(
ばベース饋J或の不純物濃度を高くすれば耐圧の上るこ
とが予想できるが、バイポーラトランジスタの他の重要
な特性である電流増幅率11 FEが氏上してし捷うた
め、単にベース領域の濃度を高めること1こよっては上
記目的を達成することはてきない。
The withstand voltage “vCE, J” of bipolar transistor is this (
It was discovered that there is a 1-system system and that the depletion layer is in the high-a degree region.
It can be expected that by increasing the impurity concentration in the base region, the breakdown voltage will increase. The above objective cannot be achieved solely by increasing the concentration.

本発明者らは、バイポーラトランジスタの耐圧は、ラテ
ラル1−ランジスタだけでなくバーチカルトランジスタ
1こおいてもベース領域の表面の絶縁11にとの界面付
近が重要な役占1」を果たしていることを見い出した。
The present inventors have discovered that the vicinity of the interface between the base region and the insulator 11 on the surface plays an important role in the withstand voltage of a bipolar transistor, not only in the lateral transistor but also in the vertical transistor. I found it.

本発明は、この知見に基つき、その界面付近の不純物濃
度を高めることにより上記目的を達成せんとするもので
ある。
Based on this knowledge, the present invention aims to achieve the above object by increasing the impurity concentration near the interface.

構1戊 本発明に、P N L)型又はNPN型のうチラルバイ
ポーラトランジスタ、又はバーチカルパイポーラトラン
ジスタにおいて、ベース領域の界面付近の不純物濃度を
ベース領域の他の部分より高濃度にしたものである。
Structure 1 The present invention provides a PNL type or NPN type circular bipolar transistor or vertical bipolar transistor in which the impurity concentration near the interface of the base region is higher than that in other parts of the base region. It is.

以ド、実施例について説明する。Examples will now be described.

一実施例を第1図のl) N P型う?ラルトランジス
タについて示すと、ベース領域となるN″″″″″エピ
タキシヤル層2はシリコン酸化膜で被われているが、こ
のベース領域2の酸化膜との界面付近10(梨子地部分
)、少なくともエミッタIf¥域3とコレクタ領域41
こ挾捷れた@域の界面付近のN型不純物濃度が、そのベ
ース領域2の池の部分より高濃度番こなっている。
An example is shown in Figure 1 l) NP type? Regarding the general transistor, the N″″″″″ epitaxial layer 2 serving as the base region is covered with a silicon oxide film, and at least the area 10 near the interface with the oxide film of the base region 2 (the pear-shaped part) Emitter If area 3 and collector area 41
The N-type impurity concentration near the interface of this twisted @ region is higher than that of the pond portion of the base region 2.

このベース領域の高濃度領域の厚さは、1μ肌程度以ド
、好壕しくは5000A程度である。
The thickness of the high concentration region of the base region is about 1 μm thick or less, preferably about 5000 A thick.

次に、本実施例を製造工程とともに示すと、P基板1上
に砒素(AS)捷たはアンチモン(sb)を拡散キせて
埋込層6を形成した後、N 層2をエピタキシャル成長
させる。そのエピタ、キシff/し層2の全面にイオン
注入法によりリン(約1たは砒素を1〜3 X I O
/ca注入する。その後、通常の工&iこ従い、エピタ
キシャル層2の表面の酸化とホトエツチングを、経て、
ホウ素FB+拡散により分離層7を形成し、イオン注入
法や拡散法により工二ツタ@M、3.  コレクタfR
域4 、 及U ヘースコシタクト領域5を形成すれば
よい。
Next, to explain this embodiment together with the manufacturing process, a buried layer 6 is formed by diffusing arsenic (AS) or antimony (sb) on a P substrate 1, and then an N layer 2 is epitaxially grown. The entire surface of the epitaxial layer 2 is injected with phosphorus (approximately 1 or arsenic from 1 to 3
/ca injection. After that, the surface of the epitaxial layer 2 is oxidized and photoetched according to the usual process.
A separation layer 7 is formed by boron FB+diffusion, and Kojitsuta@M is formed by ion implantation or diffusion.3. Collector fR
Area 4, U and Height Cositact area 5 may be formed.

以上の工程により形成したうチラルl) N Pバイポ
ーラトランジスタの耐圧BVCEO及び電流増幅率11
FE  と、ベース領域界面へのリンイオン(p十)注
入爪との関係を第2図に示す。ただし、このデータのト
ランジスタでは、実効ベース領域寸法(エミッタ領域3
とコレクタ領域4の距離)は約6μ乳であり、エミッタ
、コレクタ両項域の深さは約25μmで、コレクタイ頁
域4は第1図とは異なりエミッタ頭M3を収り囲むよう
イこ形1戊されている。
The breakdown voltage BVCEO and current amplification factor of the NP bipolar transistor formed by the above steps are 11
FIG. 2 shows the relationship between FE and the phosphorus ion (p+) injection nail to the base region interface. However, for the transistor with this data, the effective base area size (emitter area 3
The distance between the emitter head M3 and the collector region 4) is approximately 6 μm, the depth of both the emitter and collector regions is approximately 25 μm, and the collector region 4 is square-shaped to enclose the emitter head M3, unlike in Fig. 1. 1 has been pierced.

第2図の結果によれば、ベース領域へのイオン注入を行
なわない従来の場合(注入goの点)に比べて、イオン
注入を行なうと耐圧BvCEOが増大して行く。そして
、電流増幅率11 p Eけ減少して行くが、大きくは
イに少しない。実用上適用なイオン注入量は、第2図か
ら1〜3 X I O”/ctl である。
According to the results shown in FIG. 2, when ion implantation is performed, the withstand voltage BvCEO increases compared to the conventional case (point of implantation go) in which ion implantation into the base region is not performed. Then, the current amplification factor decreases by 11 pE, but it is not as large as A. As shown in FIG. 2, the practically applicable ion implantation amount is 1 to 3 X I O''/ctl.

この実施例のように、P N P ’)ランジスタの場
合の注入イオンとして、リンのほかに砒素を用いても同
じ結果が得られることは容易に予想される。
It is easily expected that the same result will be obtained even if arsenic is used in addition to phosphorus as the implanted ions in the case of a P N P ') transistor as in this embodiment.

第3図は本発明の第2の実施例が適用されるバーチカル
PNP トランジスタを表わす。このトランジスタで1
dN−エピタキシャル層2がベースとなることは第1図
と同じであるが、P基板lがコレクタとなる点で異なる
。そのため、エミッタ領域3.エピタキシャル層2(ベ
ース)、及ヒ基板1(コレクタ)の間で垂直方向のバイ
ポーラトランジスタが形成されるものであるか、コレク
タコンタクト14が基板21こつながる分離層7中に形
成されているため、ラテラルトランジスタと同様に水平
方向にもPNP )、ランジスタか形成されている。そ
して、耐圧lこ関しては後者の水平方向のトランジスタ
成分も重要な役削を果たしている。
FIG. 3 shows a vertical PNP transistor to which a second embodiment of the present invention is applied. 1 with this transistor
The dN-epitaxial layer 2 serves as the base, which is the same as in FIG. 1, but the difference is that the P substrate 1 serves as the collector. Therefore, the emitter region 3. Either a vertical bipolar transistor is formed between the epitaxial layer 2 (base) and the substrate 1 (collector), or the collector contact 14 is formed in the separation layer 7 connected to the substrate 21. Similar to the lateral transistor, a PNP (PNP) transistor is also formed in the horizontal direction. Regarding the breakdown voltage, the latter horizontal transistor component also plays an important role.

本実施列は、このようなバーチカルトランジスタtこお
いて、第1図と同様lこエピタキシャル層2の全面にイ
オン注入を施し、ベースff1i域の表面I浚化膜との
界面付近10の不純物濃度を高めたものである。その結
果、ラテラルトランジスタはど顕著な効果はないとして
も、従来のトランジスタに比べると高耐圧トランジスタ
となる。
In this example, in such a vertical transistor, ions are implanted into the entire surface of the epitaxial layer 2 in the same manner as in FIG. It is an enhanced version of As a result, even if the lateral transistor does not have any significant effect, it becomes a transistor with a higher breakdown voltage than the conventional transistor.

」−1,己実施例に1いずれも1°IN F トランジ
スタ(こついてのものであるが、I’J P N )、
ランジスタ(こついても全く同様に構成することができ
る。たたし、その場合ベース領域の界面付近の制岬され
る不純物はP型不純物である点で相徹する。例えばエピ
タキシャル層がP型である場合には、その表面1こP型
不純物をイオン注入してその界面付近のP型不純物濃度
を増り口させ7′L!ばよい。
”-1, in my own example 1 1° IN F transistor (I'J P N although it is a complicated one),
A transistor can be constructed in exactly the same way. However, in that case, it is consistent that the impurity to be suppressed near the interface of the base region is a P-type impurity. For example, if the epitaxial layer is P-type. In this case, it is sufficient to ion-implant a P-type impurity into the surface to increase the P-type impurity concentration near the interface by 7'L!.

また、このよう(こ表面の不純物濃度を増D■させる方
法としては、実施11jの如くイオン注入法か最も適し
ているか、拡紋法IこよってもOr能である。
In addition, as a method for increasing the impurity concentration on the surface D2, the most suitable method is the ion implantation method as in Example 11j, or the spreading method I is more suitable.

さらに贅だ、バイポーラトランジスタは、エピタキシャ
ル層を部用せずに、基板半導体中に形成されることもあ
る。本発明は、そのよりな〕くイポーラトランジスタに
も適用されることは占うまでもなく、その場外、界面付
近の不純物濃1ブを増加させるためのイオン注入処理な
どは基板lこ施されることになる。
Even more sophisticated, bipolar transistors may be formed in the substrate semiconductor without the use of epitaxial layers. Needless to say, the present invention is also applicable to supolar transistors, and ion implantation treatment to increase the impurity concentration outside the field and near the interface is performed on the substrate. It turns out.

効果 以上のように、本発明はノくイポーラトランジスタのベ
ースイ直載のその1絶λイ1模とθ)界面(=J近の子
糸IL物濃度をベース領域の池の部分より高くしたので
、素子を大型化しないで耐圧BVCEO力く増大し、し
力・も電流増幅率11 に Eが大して減少しない・く
イポーラトランジスタをfAゴることかできた。
Effects As described above, the present invention makes the concentration of IL substances near the absolute λ, 1, and θ interfaces (=J) directly mounted on the base of a polar transistor higher than that of the pond in the base region. Therefore, it was possible to greatly increase the withstand voltage BVCEO without increasing the size of the element, and to increase the current amplification factor to 11 without significantly reducing E, making it possible to convert the polar transistor to fA.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1d本発明の一実施例を示す(既略断面図、第2
図は同実施例による特性をイオン注入量との関・糸で示
した図、第3図は本発明の池の実施汐1jを示す・概略
断111ii図である。 1 ・基(及、2−・・エピタキシャル層(ベース)、
3 ・エミッタ領域、4・・・コレクタ頭載、10 ・
ペースの界面付近の領域、14・・コレクタコンタクト
。 特許出願人   株式会社リコー
Fig. 1d shows one embodiment of the present invention (schematic sectional view, second
The figure shows the characteristics according to the same embodiment in relation to the amount of ion implantation, and FIG. 3 is a schematic cross-sectional view 111ii showing the embodiment 1j of the pond of the present invention. 1. group (and, 2-... epitaxial layer (base),
3 ・Emitter area, 4... Collector head mounted, 10 ・
Area near the interface of the pace, 14...Collector contact. Patent applicant Ricoh Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)エミッタ領域とコレクタ領域1こ挾まれたベース
領域の絶縁膜との界面伺近の不純・物濃度を高くしたこ
とを特徴とする高耐圧バイポーラトランジスタ。
(1) A high-voltage bipolar transistor characterized in that the concentration of impurities and substances near the interface between the emitter region and the insulating film of the base region sandwiched between the emitter region and the collector region 1 is increased.
JP7080983A 1983-04-21 1983-04-21 High dielectric strength bipolar transistor Pending JPS59195866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080983A JPS59195866A (en) 1983-04-21 1983-04-21 High dielectric strength bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080983A JPS59195866A (en) 1983-04-21 1983-04-21 High dielectric strength bipolar transistor

Publications (1)

Publication Number Publication Date
JPS59195866A true JPS59195866A (en) 1984-11-07

Family

ID=13442262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080983A Pending JPS59195866A (en) 1983-04-21 1983-04-21 High dielectric strength bipolar transistor

Country Status (1)

Country Link
JP (1) JPS59195866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242075A (en) * 1985-04-19 1986-10-28 Sanyo Electric Co Ltd Lateral transistor
JPS63219165A (en) * 1986-10-17 1988-09-12 Sanyo Electric Co Ltd Semiconductor integrated circuit
JP2008211445A (en) * 2007-02-26 2008-09-11 Kyocera Mita Corp Original feeder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242075A (en) * 1985-04-19 1986-10-28 Sanyo Electric Co Ltd Lateral transistor
JPS63219165A (en) * 1986-10-17 1988-09-12 Sanyo Electric Co Ltd Semiconductor integrated circuit
JP2008211445A (en) * 2007-02-26 2008-09-11 Kyocera Mita Corp Original feeder

Similar Documents

Publication Publication Date Title
JPH07326742A (en) Semiconductor device and manufacture thereof
JPS59195866A (en) High dielectric strength bipolar transistor
JPH0582534A (en) Semiconductor device
JPH0369180B2 (en)
JPS61161761A (en) Semiconductor device
JP3089755B2 (en) Semiconductor integrated circuit device
JPH06163909A (en) Vertical field effect transistor
JPS58212171A (en) Semiconductor device
JPH0256935A (en) Semiconductor integrated circuit device
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JPH02106961A (en) Semiconductor device
JPS63186463A (en) Complementary insulated-gate field-effect semiconductor device
JPH01112763A (en) Semiconductor device
JPS61182253A (en) Manufacture of a semiconductor ic device
JPH0269974A (en) Manufacture of semiconductor device
JPS5910590B2 (en) Manufacturing method of semiconductor device
JPH0235470B2 (en)
JPH01187868A (en) Semiconductor device
JPH01186673A (en) Semiconductor device
JPH0254535A (en) Semiconductor device
JPS58161357A (en) Semiconductor device
JPH02186638A (en) Semiconductor device
JPH02181931A (en) Manufacture of semiconductor device
JPS60224241A (en) Manufacture of semiconductor device
JPH03165522A (en) Semiconductor device