JPS591953B2 - Control method and device for heat storage/dissipation system using metal hydride - Google Patents

Control method and device for heat storage/dissipation system using metal hydride

Info

Publication number
JPS591953B2
JPS591953B2 JP55150824A JP15082480A JPS591953B2 JP S591953 B2 JPS591953 B2 JP S591953B2 JP 55150824 A JP55150824 A JP 55150824A JP 15082480 A JP15082480 A JP 15082480A JP S591953 B2 JPS591953 B2 JP S591953B2
Authority
JP
Japan
Prior art keywords
heat
hydrogen gas
reaction tank
heat exchange
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55150824A
Other languages
Japanese (ja)
Other versions
JPS5774593A (en
Inventor
祥 金沢
寿 樋高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP55150824A priority Critical patent/JPS591953B2/en
Publication of JPS5774593A publication Critical patent/JPS5774593A/en
Publication of JPS591953B2 publication Critical patent/JPS591953B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 この発明は、金属水素化物の水素吸・脱蔵の際の生成熱
を利用する蓄・放熱システムの制御方法並びにその装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling a heat storage/radiation system that utilizes the heat generated during hydrogen absorption/devolatilization of a metal hydride.

一般に水素貯蔵金属と称する、ランタニド(Lanth
anide、希土類)アクチニド(Actinide)
元素を含めて、周期律表第3〜第5周期の遷位金属元素
、又はそれらの元素を含む合金例えばT1Fe等は、あ
る温度、圧力条件のもとで大量の水素ガスを吸蔵して金
属水素化物を作り易く、その過程では発熱し、別のある
温度、圧力条件のもとで水素を脱蔵し、その過程では吸
熱することが知られている。
Lanthanides (Lanth) are commonly referred to as hydrogen storage metals.
anide, rare earth) actinide
Including elements, transition metal elements in periods 3 to 5 of the periodic table, or alloys containing these elements, such as T1Fe, absorb a large amount of hydrogen gas under certain temperature and pressure conditions and become metal. It is known that it is easy to form hydrides, generates heat in the process, devolatilizes hydrogen under certain temperature and pressure conditions, and absorbs heat in the process.

水素貯蔵金属の上述の特性を利用することにより、金属
水素化物を蓄熱体に使つて太陽熱、風力等の自然エネル
ギーや工業廃熱等を蓄熱し、必要に応じて熱を取出して
冷暖房等に利用するエネルギー貯蔵・利用システムの研
究開発が各方面で活発に行なわれているが、実用化には
まだ数多くの問題が残されている。
By utilizing the above-mentioned properties of hydrogen storage metals, metal hydrides can be used as heat storage bodies to store natural energy such as solar heat, wind power, industrial waste heat, etc., and extract heat as needed for use in air conditioning, heating, etc. Although research and development of energy storage and utilization systems for energy storage and utilization are actively being carried out in various fields, there are still many problems that remain before practical application.

金属水素化物を保持して、これに外部より熱を与えて蓄
熱させるとともに水素ガスを脱蔵させ、必要に応じて上
記の水素ガスを吸蔵させることに’ より放熱させ、こ
の熱を熱交換流体を介して取出して利用する熱交換器は
反応槽と云われる。
The metal hydride is held, heat is applied to it from the outside to store heat, hydrogen gas is devolatilized, and if necessary, the hydrogen gas is occluded to radiate heat, and this heat is transferred to a heat exchange fluid. The heat exchanger from which the heat is taken out for use is called a reaction tank.

反応槽は上記目的に対して、金属水素化物の粒子を保持
するスペースと該スペースに保持された金属水素化物に
水素ガスを供給し、脱蔵された水素ガス・ を回収する
ため通気性壁を介して上記金属保持スペースに隣接し、
水素ガスホルダーと水素ガス配管で接続された水素ガス
保持スペースと、反応熱を取り出すために上記金属保持
スペース内に配設した熱交換管又は該スペースの壁面と
しての熱交換面を有し、水素吸脱蔵時の反応熱は上記熱
交換管又は熱交換面を介して熱交換流体により回収・供
給されるようになつている。
For the above purpose, the reaction tank has a space for holding metal hydride particles and a permeable wall for supplying hydrogen gas to the metal hydride held in the space and recovering the devolatilized hydrogen gas. adjacent to the metal holding space above through;
It has a hydrogen gas holding space connected to a hydrogen gas holder by hydrogen gas piping, and a heat exchange tube installed in the metal holding space to extract reaction heat, or a heat exchange surface as a wall of the space. The heat of reaction during absorption and desorption is recovered and supplied by a heat exchange fluid via the heat exchange tube or heat exchange surface.

さて、金属水素化物の特徴の一つに、水素ガスの吸脱蔵
速度の速いことがあるが、同金属を用いた蓄・放熱シス
テムの場合は、これが欠点となり、金属の発・吸熱出力
のコントロールが困難となる。
Now, one of the characteristics of metal hydrides is that they have a fast absorption and desorption rate of hydrogen gas, but in the case of heat storage and release systems using the same metal, this is a drawback, and the metal's heat generation and heat absorption output is reduced. Control becomes difficult.

従来、熱負荷の変動に対して金属水素化物の発熱量出力
を調整する方法としては、反応槽に水素ガスを供給する
水素ガス配管に流量調節弁を設け、これにより反応槽に
流入する水素ガスの体積流量、質量通量をコントロール
する方法や、反応槽内の圧力をコントロールする方法が
考えられているが、このような方法でコントロールする
場合は、流量調節弁及びその制御機構が必要となり、機
構が複雑になるのみならず、広範囲の熱負荷変動に対応
させることが困難である。又、システムに一つの反応槽
しかない場合は、その保守点検修理の場合、5システム
の全機能が停止する欠点がある。本発明は、従来考えら
れている流量調節弁又は圧力コントロールによる熱出力
の制御方法及び一つの反応槽で構成された蓄・放熱シス
テムの上述の欠点にかんがみ、制御機構が単純で安価な
、し 乏かも広範囲の熱負荷変動に対応でき、さらに保
守点検修理に際しても全機能が停止することのない、金
属水素化物による蓄・放熱システムの制御方法及びその
装置を提供することを目的とする。
Conventionally, as a method to adjust the calorific value output of metal hydride in response to fluctuations in heat load, a flow rate control valve is installed in the hydrogen gas piping that supplies hydrogen gas to the reaction tank, and this allows the hydrogen gas flowing into the reaction tank to be adjusted. Methods of controlling the volumetric flow rate and mass flow rate of the reactor, and methods of controlling the pressure inside the reaction tank have been considered, but when controlling with these methods, a flow rate adjustment valve and its control mechanism are required. Not only is the mechanism complicated, but it is also difficult to accommodate a wide range of heat load fluctuations. Furthermore, if the system has only one reaction tank, there is a drawback that all functions of the five systems will stop when maintenance, inspection, and repair is performed. In view of the above-mentioned drawbacks of the conventional heat output control method using a flow control valve or pressure control and the heat storage/dissipation system composed of one reaction tank, the present invention provides a method with a simple and inexpensive control mechanism. An object of the present invention is to provide a method and device for controlling a heat storage/dissipation system using a metal hydride, which can cope with a wide range of heat load fluctuations, even when the heat load is low, and which prevents all functions from stopping even during maintenance, inspection, and repair.

以下、本発明を、その実施例を示す図面にもと 3ずい
て詳細に説明する。第1図は、本発明を適用した蓄・放
熱システムの第1実施例の配管系統図である。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a piping system diagram of a first embodiment of a heat storage/radiation system to which the present invention is applied.

このシステムは、例えば野菜々園の温室暖房に使用され
る。この例の場合、システム全体に使用される金属水素
3.化物1は5等分されて、5個の反応槽A,B,C
,D,E内の金属水素化物保持スペース3に収容されて
いる。反応槽の数は必ずしも5個に限らず、又各反応槽
ごとの金属の種類及び量ぱ異つても差支えない。上記の
金属保持スペース3を囲繞して、≠通気性壁を介してそ
の外側に水素ガス保持スペース4が設けられている。各
水素ガス保持スペースには、図示しない水素ガスホルダ
ーとの間に水素ガス管5a,5b,・・・,5eが配管
されている。これらの各水素ガス管5a,5b,・・・
,5eにはそれぞれオリフイス2及び弁Al,Bl,C
l,Dl,Elが設けられている。上記の水素ガス管及
び弁の接続方法は、図に示す如く、 反応槽Aは弁A1を介して 〃 Bは弁B,,Alを介して 〃 Cは弁Cl,Bl,Alを介して 〃 Dは弁D,,Cl,B,,A,を介して〃 Eは弁
El,Dl,Cl,Bl,Alを介してそれぞれ水素ガ
スホルダーにつながるようになつている。
This system is used, for example, to heat greenhouses in vegetable gardens. In this example, metallic hydrogen used throughout the system 3. Compound 1 is divided into 5 equal parts and 5 reaction vessels A, B, C
, D, and E are accommodated in the metal hydride holding spaces 3. The number of reaction vessels is not necessarily limited to five, and the type and amount of metal in each reaction vessel may be different. A hydrogen gas holding space 4 is provided surrounding the metal holding space 3 and on the outside thereof via an air-permeable wall. Hydrogen gas pipes 5a, 5b, . . . , 5e are piped between each hydrogen gas holding space and a hydrogen gas holder (not shown). Each of these hydrogen gas pipes 5a, 5b,...
, 5e respectively have an orifice 2 and valves Al, Bl, C.
1, Dl, and El are provided. The above hydrogen gas pipes and valves are connected as shown in the figure: reaction tank A is connected through valve A1; B is connected through valves B, Al; and C is connected through valves Cl, Bl, and Al. D is connected to the hydrogen gas holder via valves D, Cl, B, , A, and E is connected to the hydrogen gas holder via valves El, Dl, Cl, Bl, and Al, respectively.

各反応槽A,B,C,D,Eの金属水素化物保持スペー
ス3には、内部を熱交換用流体が流れる熱交換コイル6
a,6b,・・・,6eが設けられている。
The metal hydride holding space 3 of each reaction tank A, B, C, D, and E includes a heat exchange coil 6 through which a heat exchange fluid flows.
a, 6b, . . . , 6e are provided.

これらの熱交換コイルは間に弁B3,C3,D3,E3
を介して直列に接続されているとともに、熱交換流体の
供給管7と各コイル6a,6b,・・・,6eの流入側
との間にそれぞれ弁A2,B2,C2,D2,E2を設
けた管が配管されており、コイル6aの排出側は熱交換
流体排出管8に接続されている。水素ガス用弁Al,B
l,C2,Dl,El及び熱交換流体用弁A2,B2,
C2,D2,E2;B3,C3,D3,E3は熱利用施
設例えば野菜菜園の温室の熱負荷に対応する弁開放駆動
用信号(例えば温度信号)(a),(b),(c),(
d),(e)により開閉制御されるようになつている。
These heat exchange coils have valves B3, C3, D3, E3 between them.
and valves A2, B2, C2, D2, E2 are provided between the heat exchange fluid supply pipe 7 and the inflow side of each coil 6a, 6b, . . . , 6e. The discharge side of the coil 6a is connected to a heat exchange fluid discharge pipe 8. Hydrogen gas valve Al, B
l, C2, Dl, El and heat exchange fluid valves A2, B2,
C2, D2, E2; B3, C3, D3, E3 are valve opening drive signals (e.g. temperature signals) corresponding to the heat load of a heat utilization facility such as a greenhouse for a vegetable garden (a), (b), (c), (
Opening/closing is controlled by d) and (e).

こ\に(ωはこのシステムの最大出力に対して1/5負
荷、(b)は2/5負荷、(c)は3/5負荷、(d)
は4/5負荷、 eは全負荷に対応する信号である。
Here, (ω is 1/5 load with respect to the maximum output of this system, (b) is 2/5 load, (c) is 3/5 load, (d)
is a signal corresponding to 4/5 load, and e is a signal corresponding to full load.

又、図中記号(a),(b),・・・,(e)で示した
信号により制御される弁、即ちAl,・・・,E1 ;
B3,・・・E3は、夫々の信号に対応する熱負荷及び
それ以上の熱負荷に対して開状態となり、(?,5,・
・・,ωで示した信号により開閉制御される弁、即ちA
2,B2,・・・,E2はその信号のときにのみ弁が開
状態になり、他の信号に対しては閉止状態になるように
なつている。したがつて、所要熱負荷に対応する信号と
弁の開閉状態との関係を一覧表にして示せば次の如くな
る。以上の如く構成された蓄・放熱システムを用いて例
えば野菜々園の温室暖房を行う場合の制御動作を以下に
説明する。
Also, valves controlled by signals indicated by symbols (a), (b), ..., (e) in the figure, namely Al, ..., E1;
B3, . . . E3 are in an open state against the heat load corresponding to each signal and a higher heat load, and (?, 5, . . .
..., a valve whose opening/closing is controlled by a signal indicated by ω, that is, A
2, B2, . . . , E2, the valves are open only when that signal is received, and are closed when other signals are received. Therefore, the relationship between the signal corresponding to the required heat load and the opening/closing state of the valve can be summarized as follows. The control operation when heating a greenhouse in a vegetable garden, for example, using the heat storage/dissipation system configured as described above will be described below.

日中、外気温度が高い時、温室内の温度が高いため熱負
荷は小さく、本蓄放熱システムの最大出力のI/5程度
でよい。
During the day, when the outside temperature is high, the temperature inside the greenhouse is high, so the heat load is small, and only needs to be about I/5 of the maximum output of this heat storage/dissipation system.

この時温室内温度は高いので温度信号は(AXa)とな
り、前掲の表にしたがつて弁Al,A2のみが開き、水
素ガスは反応槽Aのみを流通し、又熱交換流体は熱交換
コイル6a内のみを循環し、反応槽Aのみが作動する。
したがつてこの場合本システムの最大熱出力の1/5の
熱出力となる。夕方になり、温室内の温度が下ると、温
室からの温度信号は(b),8となり、弁Al,Bl,
B3,B2が開き、反応槽A,Bが作動する。
At this time, since the temperature inside the greenhouse is high, the temperature signal becomes (AXa), and according to the table above, only valves Al and A2 are opened, hydrogen gas flows only through reaction tank A, and heat exchange fluid flows through the heat exchange coil. It circulates only in 6a, and only reaction tank A operates.
Therefore, in this case, the heat output is 1/5 of the maximum heat output of the system. In the evening, when the temperature inside the greenhouse drops, the temperature signal from the greenhouse becomes (b), 8, and the valves Al, Bl,
B3 and B2 are opened and reaction vessels A and B are activated.

したがつて日中の2倍の熱量が本システムより供給され
る。夜半、温室内の温度がさらに下ると温室からの温度
信号が(c),(c)となり、反応槽A,B,Cが作動
する。明方、熱負荷が最大となると温室からの温度信号
は(d),(d)となり、反応槽A,B,C,Dが作動
する。
Therefore, twice as much heat as during the day is supplied by this system. In the middle of the night, when the temperature inside the greenhouse drops further, the temperature signals from the greenhouse become (c) and (c), and reaction vessels A, B, and C are activated. At dawn, when the heat load is at its maximum, the temperature signals from the greenhouse become (d) and (d), and reaction vessels A, B, C, and D are activated.

更に熱負荷が大きい場合、例えば厳冬期の夜半、夜明等
には温度信号(e),ωとなり、5つの反応槽がすべて
作動し、このシステムの最大熱出力が発揮される。
Furthermore, when the heat load is large, for example, at midnight or dawn in the middle of the winter, the temperature signal becomes (e), ω, and all five reaction vessels are activated and the maximum heat output of this system is exerted.

なお、オリフイス2は、金属水素化物に与えられる水素
ガスの流量を絞つて熱出力が長時間均一になるようにす
るために設けられたものである。
Note that the orifice 2 is provided to restrict the flow rate of hydrogen gas applied to the metal hydride so that the heat output becomes uniform over a long period of time.

(例えば水素分圧20kν舖2Gで流量係数CVL−4
×10−4になるようなものが適当である。)第2図は
本発明を適用した蓄・放熱システムの第2実施例を示す
配管系統図である。この実施例においては、システムの
全熱出力を5等分して5つの反応槽A,B,C,D,E
を設けた点及び各反応槽への水素ガス導管及び弁、オリ
フイスの配列及び弁A,B,C,D,Eの開閉制御方法
は前記第1実施例と同じであるが、各反応槽内の熱交換
コイル6a,6b,・・・,6eがそれぞれ金属水素化
物保持スペース3の外側に接触して囲繞するジヤケツト
となつており、かつ各反応槽の熱交換コイル6e,6d
,6c,6b,6aはこの順に、弁を介することなく直
列に接続されており、熱交換流体流入管7はコイル6e
の流入端に、又熱交換流体排出管8はコイル6aの流出
端に接続されている。
(For example, at a hydrogen partial pressure of 20kν or 2G, the flow coefficient CVL-4
A suitable value is x10-4. ) FIG. 2 is a piping system diagram showing a second embodiment of the heat storage/radiation system to which the present invention is applied. In this example, the total heat output of the system is divided into five equal parts, and five reactors A, B, C, D, and E are used.
The arrangement of the hydrogen gas pipes, valves and orifices to each reaction tank, and the opening/closing control method of valves A, B, C, D, and E are the same as in the first embodiment, except that The heat exchange coils 6a, 6b, . . . , 6e respectively form a jacket that contacts and surrounds the outside of the metal hydride holding space 3, and the heat exchange coils 6e, 6d of each reaction tank
, 6c, 6b, and 6a are connected in series in this order without using a valve, and the heat exchange fluid inflow pipe 7 is connected to the coil 6e.
A heat exchange fluid discharge pipe 8 is connected to the inflow end of the coil 6a, and a heat exchange fluid discharge pipe 8 is connected to the outflow end of the coil 6a.

したがつて、日中の熱負荷の少い場合は、温室より温度
信号(a)が発せられ弁A1のみが開き、水素ガスは反
応槽Aのみに流通する。
Therefore, when the heat load is low during the day, the temperature signal (a) is emitted from the greenhouse, only valve A1 is opened, and hydrogen gas flows only to reaction tank A.

一方、熱交換流体はすべての反応槽の熱交換コイル6e
,6d,6c,6b,6aを順次流れ反応槽Aのコイル
6aの部分だけで金属水素化物の発生する熱を熱交換し
て温室に供給する。夕方になつて温度信号力亀)となり
、夜中になつて温度信号が(c)となり、更に明方にな
つて温度信号が(4)となるに従つて、作動する反応槽
の数は2個,3個,4個と変化するが、熱交換流体の行
程は変化せず、熱交換の行なわれる部分、即ち熱交換長
さ(面積)を変化させることにより、熱負荷の変化に対
するコントロールを行なうのである。
On the other hand, the heat exchange fluid is used for all the heat exchange coils 6e of the reaction vessels.
, 6d, 6c, 6b, and 6a in order, and the heat generated from the metal hydride is exchanged only at the coil 6a of the reaction tank A and supplied to the greenhouse. In the evening, the temperature signal changes to (tortoise), in the middle of the night, the temperature signal changes to (c), and as dawn approaches, the temperature signal changes to (4), and the number of operating reaction vessels decreases to 2. , 3, and 4, but the stroke of the heat exchange fluid does not change, and the change in heat load is controlled by changing the part where heat exchange is performed, that is, the heat exchange length (area). It is.

この実施例のシステムは第1実施例のシステムと比較す
れば熱交換流体用弁A2,B2,B3,C2,C3等が
不要となるとともに機構が単純になり、コストダウンに
役立つ。以上の如く、本発明によれば、流量調節弁が不
要となり、制御機構が簡単になつてコストダウンに役立
ち、又広範囲の熱負荷変動に対処することができる。
Compared to the system of the first embodiment, the system of this embodiment eliminates the need for heat exchange fluid valves A2, B2, B3, C2, C3, etc., and has a simpler mechanism, which helps to reduce costs. As described above, the present invention eliminates the need for a flow rate regulating valve, simplifies the control mechanism, contributes to cost reduction, and makes it possible to cope with a wide range of heat load fluctuations.

さらに反応槽をユニツト化して複数個設けたことにより
、保守点検、修理時にも、システムの全機能が停止する
ことを回避することが出来る。(なお、この場合は各弁
の弁開閉信号の設定値を一時変更するだけでよい。)又
、反応槽が小型になるので輸送、据付が容易になる効果
も得られる。
Furthermore, by providing a plurality of reaction vessels as a unit, it is possible to avoid stopping all functions of the system during maintenance, inspection, and repair. (In this case, it is only necessary to temporarily change the set values of the valve opening/closing signals of each valve.) Furthermore, since the reaction tank is made smaller, transportation and installation can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した蓄・放熱システムの第1実施
例を示す配管系統図、第2図は第2実施例を示す配管系
統図である。 1・・・金属水素化物、5a,5b,・・・,5e・・
・水素ガス配管、6・・・熱交換コイル、A,B,C,
D,E″″3ユニツト反応槽、Al9Bl9Cl9Dl
El・・・水素ガス用弁、A2,B2,C2,D2,E
2;B3,C3,D3,E3・・・熱交換用流体用弁、
(a)9(b)?(c)?(d)9(e)9G09Gδ
ラG)9aD9G)31弁の開閉駆動用信号(例えば温
度信号)。
FIG. 1 is a piping system diagram showing a first embodiment of a heat storage/radiation system to which the present invention is applied, and FIG. 2 is a piping system diagram showing a second embodiment. 1... Metal hydride, 5a, 5b,..., 5e...
・Hydrogen gas piping, 6...Heat exchange coil, A, B, C,
D, E″″3 unit reaction tank, Al9Bl9Cl9Dl
El...Hydrogen gas valve, A2, B2, C2, D2, E
2; B3, C3, D3, E3... valve for heat exchange fluid;
(a)9(b)? (c)? (d)9(e)9G09Gδ
G) 9aD9G) 31 Valve opening/closing driving signal (for example, temperature signal).

Claims (1)

【特許請求の範囲】 1 金属水素化物を保持し、外部より熱を与えて蓄熱さ
せるとともに水素ガスを脱蔵させ、必要に応じて前記の
水素ガスを吸蔵させることにより熱を放出させ、熱交換
流体により回収する反応槽を備えた蓄・放熱システムの
制御方法において、反応槽をユニット化して複数個設け
、熱負荷条件に対応する信号により使用する反応槽のユ
ニットの数を自動的に切換えるようにしたことを特徴と
する制御方法。 2 金属水素化物を保持し、外部より熱を与えて蓄熱さ
せるとともに水素ガスを脱蔵させ、必要に応じて前記の
水素ガスを吸蔵させることにより熱を放出させ、熱交換
流体により回収する反応槽を備えた蓄・放熱システムの
制御装置において、反応槽をユニット化して複数個設け
、各反応槽に接続された水素ガス配管に、熱利用施設の
、ある熱負荷及びそれ以上の熱負荷に夫々対応する信号
により開状態となる弁を設け、上記各弁を開く最小熱負
荷の大きさを各反応槽毎に段階的に変化させて設定した
ことを特徴とする制御装置。 3 前記の各反応槽に設けた熱交換管のすべてが相互間
に弁を介することなく直列に接続されていることを特徴
とする特許請求の範囲第2項に記載の制御装置。
[Scope of Claims] 1. A metal hydride is held, heat is applied from the outside to store heat, hydrogen gas is devolatilized, and if necessary, the hydrogen gas is occluded to release heat, and heat exchange is performed. In a method for controlling a heat storage/dissipation system equipped with a reaction tank that is recovered by fluid, a plurality of reaction tanks are provided as units, and the number of reaction tank units used is automatically switched by a signal corresponding to the heat load condition. A control method characterized by: 2. A reaction tank that holds a metal hydride, stores heat by applying heat from the outside, devolatilizes hydrogen gas, and if necessary releases heat by occluding the hydrogen gas and recovers it with a heat exchange fluid. In a control device for a heat storage/dissipation system equipped with a heat storage/dissipation system, a plurality of reaction tanks are installed as units, and the hydrogen gas piping connected to each reaction tank is connected to a certain heat load and a higher heat load of the heat utilization facility, respectively. A control device characterized in that valves are provided that are opened in response to a corresponding signal, and the magnitude of the minimum heat load for opening each valve is set by changing stepwise for each reaction tank. 3. The control device according to claim 2, wherein all of the heat exchange tubes provided in each of the reaction vessels are connected in series without any valves between them.
JP55150824A 1980-10-29 1980-10-29 Control method and device for heat storage/dissipation system using metal hydride Expired JPS591953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55150824A JPS591953B2 (en) 1980-10-29 1980-10-29 Control method and device for heat storage/dissipation system using metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55150824A JPS591953B2 (en) 1980-10-29 1980-10-29 Control method and device for heat storage/dissipation system using metal hydride

Publications (2)

Publication Number Publication Date
JPS5774593A JPS5774593A (en) 1982-05-10
JPS591953B2 true JPS591953B2 (en) 1984-01-14

Family

ID=15505199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55150824A Expired JPS591953B2 (en) 1980-10-29 1980-10-29 Control method and device for heat storage/dissipation system using metal hydride

Country Status (1)

Country Link
JP (1) JPS591953B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231394A (en) * 1983-06-10 1984-12-26 Kubota Ltd Hydrogen occlusion and emission type heat exchanger
CN102607307B (en) * 2011-01-19 2014-05-07 北京兆阳光热技术有限公司 Heat accumulation device
JP6007859B2 (en) * 2013-05-20 2016-10-12 株式会社豊田自動織機 Chemical heat storage device
CN105627799A (en) * 2014-10-31 2016-06-01 中广核太阳能开发有限公司 Stepped heat storage system and stepped heat storage method

Also Published As

Publication number Publication date
JPS5774593A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
JPS6248160B2 (en)
US4161211A (en) Methods of and apparatus for energy storage and utilization
JPS591953B2 (en) Control method and device for heat storage/dissipation system using metal hydride
JP2006220234A (en) Hydrogen supply system
JPH0518261A (en) Control method for temperature of hydrogen storage alloy in hydrogen storage alloy containing container
JP2643235B2 (en) Metal hydride heating and cooling equipment
CN219872887U (en) Double-loop cooling device for water-cooled coil of Tokamak test device
KR102573325B1 (en) Steam generation system of nuclear reactor
JPS5889678A (en) Absorption of fluctuation in heat load in batch type operation
JPS6273092A (en) Heat accumulating device
JPS61151001A (en) Method of raising hydrogen gas pressure
JPS638391B2 (en)
JP2580402B2 (en) Heat utilization system
JPS5892794A (en) Thermal utilization system having heat accumulating and releasing equipment using metal hydride
JP3270272B2 (en) Control system for heat source system for air conditioning
JPS62196597A (en) System utilizing heat
JPS61202090A (en) Heat accumulator
JPS591949B2 (en) Control method for heat exchange device with built-in hydrogen storage metal
JPS61173062A (en) Method of utilizing waste heat by using metallic hydride
CN116525147A (en) Double-loop cooling device for water-cooled coil of Tokamak test device and use method
Rodgers Heat generator
JPH10122694A (en) Cold water manufacturing heat storage system using hydrogen storage alloy
JPS59112297A (en) Atomic power plant
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
JPS61202051A (en) Solar energy utilizing device