JPS6248160B2 - - Google Patents

Info

Publication number
JPS6248160B2
JPS6248160B2 JP56152069A JP15206981A JPS6248160B2 JP S6248160 B2 JPS6248160 B2 JP S6248160B2 JP 56152069 A JP56152069 A JP 56152069A JP 15206981 A JP15206981 A JP 15206981A JP S6248160 B2 JPS6248160 B2 JP S6248160B2
Authority
JP
Japan
Prior art keywords
heat
hydrogen gas
metal hydride
storage tank
holding container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56152069A
Other languages
Japanese (ja)
Other versions
JPS5855688A (en
Inventor
Sho Kanazawa
Yoshiharu Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56152069A priority Critical patent/JPS5855688A/en
Publication of JPS5855688A publication Critical patent/JPS5855688A/en
Publication of JPS6248160B2 publication Critical patent/JPS6248160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 この発明は、金属水素化物を利用した蓄熱シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage system using metal hydrides.

TiFe.CaNi5等の水素貯蔵金属は活性化(水素
化)することにより金属水素化物となり、大量の
水素を吸・脱蔵し、吸蔵過程では発熱し、脱蔵過
程では吸熱することが知られている。金属水素化
物のこの性質を利用して、太陽熱、風力等の自然
エネルギーや工場廃熱等を水素ガスの形で蓄積
し、必要に応じて安定した熱を取出すことの出来
る蓄熱システムを作ることができる。
It is known that hydrogen storage metals such as TiFe.CaNi 5 become metal hydrides when activated (hydrogenated) and absorb and devolatilize large amounts of hydrogen, emitting heat during the occlusion process and endothermic during the devolatilization process. ing. Utilizing this property of metal hydrides, it is possible to create a heat storage system that can store natural energy such as solar heat, wind power, industrial waste heat, etc. in the form of hydrogen gas and extract stable heat as needed. can.

この原理にもとずく従来の蓄熱システムは、第
1図に示す如く、金属水素化物1の保持容器2と
水素ガス貯槽3及びこれらを接続する水素ガス導
管4を有し、金属保持容器2の熱交換部5には、
太陽熱等の外部熱源6及び温室等の熱利用装置7
内の放熱器8と夫々熱媒体流体管を介して接続さ
れる熱交換手段9,10が設けられており、又前
記の水素ガス導管4には止弁11が設けられてい
る。
A conventional heat storage system based on this principle, as shown in FIG. In the heat exchange section 5,
External heat source 6 such as solar heat and heat utilization device 7 such as a greenhouse
Heat exchange means 9 and 10 are provided which are connected to the radiator 8 inside via heat medium fluid pipes, and the hydrogen gas conduit 4 is provided with a stop valve 11.

このシステムを利用して太陽熱等の熱を蓄積
し、利用するには外部熱源6の熱を熱媒体流体を
介して熱交換手段9より保持容器2内の金属水素
化物1に伝達して加熱し、金属水素化物1より水
素ガスを脱蔵させ、止弁11を開いた水素ガス導
管4を経て、水素ガス貯槽3に貯蓄し、熱を利用
する場合は水素ガス貯槽より保持容器2に水素ガ
スを流入させて金属水素化物1に吸蔵させ、その
際発生する熱を熱交換手段10を介して熱媒体流
体に伝達し、放熱器8より熱利用装置7内に放出
して利用する。
This system is used to accumulate and utilize heat such as solar heat by transmitting the heat from the external heat source 6 to the metal hydride 1 in the holding container 2 through the heat transfer means 9 via the heat medium fluid to heat it. , hydrogen gas is devolatilized from the metal hydride 1, stored in the hydrogen gas storage tank 3 through the hydrogen gas conduit 4 with the stop valve 11 opened, and when heat is to be used, hydrogen gas is transferred from the hydrogen gas storage tank to the holding container 2. is caused to flow into the metal hydride 1, and the heat generated at this time is transferred to the heat medium fluid via the heat exchange means 10, and is released from the radiator 8 into the heat utilization device 7 for use.

上記の従来の熱利用方法においては、水素吸蔵
運転時の初期の生成熱は金属水素化物1自体及び
耐圧容器として構成された熱容量の大きい金属水
素化物保持容器2の昇温に費やされ、熱利用装置
7に熱を運搬する熱媒体流体によつて目標温度の
熱が定常的に取出される迄、かなり長い過渡特性
域が出来る。
In the conventional heat utilization method described above, the initial heat generated during hydrogen storage operation is used to raise the temperature of the metal hydride 1 itself and the metal hydride holding container 2, which has a large heat capacity and is configured as a pressure-resistant container. A fairly long transient characteristic region is created until heat at the target temperature is steadily extracted by the heat carrier fluid that conveys the heat to the utilization device 7.

熱利用の面からは、過度特性域を極力短かく
し、目標温度の熱が長時間定常的に得られること
が好都合であり、又、金属水素化物の有限な発熱
量の有効利用の点からもそれが望ましい。
From the perspective of heat utilization, it is advantageous to shorten the transient characteristic range as much as possible so that heat at the target temperature can be obtained steadily for a long period of time, and from the point of view of effective use of the limited calorific value of metal hydrides. That's desirable.

本発明は、従来の金属水素化物を利用した蓄熱
システムの上述の欠点にかんがみ、過渡特性域を
なくして常に所定の目標温度の熱を取出すことの
出来る、金属水素化物を利用した蓄熱システムを
提供することを目的とする。
In view of the above-mentioned drawbacks of conventional heat storage systems using metal hydrides, the present invention provides a heat storage system using metal hydrides that eliminates transient characteristic regions and can always extract heat at a predetermined target temperature. The purpose is to

以下に本発明を、その実施例を示す図面にもと
ずいて詳細に説明する。
The present invention will be described in detail below based on drawings showing embodiments thereof.

第2図は、本発明を第1図で説明したシステム
に適用した実施例であつて、金属水素化物保持容
器2と水素ガス貯槽3とを接続する水素ガス導管
4に従来のシステムでは設けられていた止め弁1
1の代りにオリフイス12と、水素ガス貯槽3か
ら金属水素化物保持容器2に向う方向にのみ流通
可能な逆止弁14とが直列に金属水素化物保持容
器2から水素ガス貯槽3に向う方向にのみ流通可
能な逆止弁13がそれらと並列に設けられてい
る。上記オリフイス12は、金属水素化物保持容
器2への水素ガスの流入量を制限し、金属水素化
物の水素吸蔵による発熱量を制御するためのもの
である。その他の構成は前述の従来のシステムと
同様である。
FIG. 2 shows an embodiment in which the present invention is applied to the system described in FIG. Stop valve 1
1, an orifice 12 and a check valve 14 that can flow only in the direction from the hydrogen gas storage tank 3 to the metal hydride storage container 2 are connected in series in the direction from the metal hydride storage container 2 to the hydrogen gas storage tank 3. A check valve 13 that allows only flow is provided in parallel thereto. The orifice 12 is used to limit the amount of hydrogen gas flowing into the metal hydride holding container 2 and to control the amount of heat generated by hydrogen storage in the metal hydride. The rest of the configuration is similar to the conventional system described above.

以上の如く構成されたシステムは次の如く使用
される。熱利用装置7に熱を必要とするときに、
太陽熱等による外部熱源6から熱が得られる場合
は、熱交換手段9より金属水素化物に与えられた
熱は、もう一方の熱交換手段10より熱媒体流体
に回収されると同時に残余の熱は金属水素化物を
加熱して水素ガスを分離し、水素ガス導管4を経
て水素ガス貯槽3に貯蔵される。この際水素ガス
は逆止弁13を自由に通過することができる。熱
利用装置7が熱を利用しないときは、熱源からの
熱はすべて金属水素化物の水素脱蔵に使われる。
The system configured as described above is used as follows. When the heat utilization device 7 requires heat,
When heat is obtained from an external heat source 6 such as solar heat, the heat given to the metal hydride by the heat exchange means 9 is recovered by the heat medium fluid from the other heat exchange means 10, and at the same time the remaining heat is removed. The metal hydride is heated to separate hydrogen gas, which is stored in a hydrogen gas storage tank 3 via a hydrogen gas conduit 4. At this time, hydrogen gas can freely pass through the check valve 13. When the heat utilization device 7 does not utilize heat, all the heat from the heat source is used for hydrogen devolatilization of the metal hydride.

熱源6は太陽熱、風力等の自然エネルギーや工
場廃熱を利用しているので、天候、昼夜、工場の
操業状態によつて発生熱量が変動する。熱利用装
置7が利用する熱量又は非使用時に金属水素化物
1を所定の温度に維持するに必要とする熱量より
も、熱源6の発生熱量が不足する場合は金属水素
化物の温度が低下し、水素を吸蔵し保持容器2内
の水素ガス圧力が下るので、水素ガス貯槽3より
オリフイス12を通つて水素ガスが金属水素化物
保持容器2に供給され、金属水素化物1に吸蔵さ
れて発熱し、所定の温度を維持することができ
る。この場合、逆止弁13は閉じているので水素
ガスの流量はオリフイス12により適度に制御さ
れ金属水素化物保持容器の圧力の過昇、過熱は防
止される。
Since the heat source 6 uses natural energy such as solar heat or wind power or factory waste heat, the amount of heat generated fluctuates depending on the weather, day and night, and the operating status of the factory. If the amount of heat generated by the heat source 6 is insufficient than the amount of heat used by the heat utilization device 7 or the amount of heat required to maintain the metal hydride 1 at a predetermined temperature when not in use, the temperature of the metal hydride decreases, As hydrogen is stored and the hydrogen gas pressure in the holding container 2 decreases, hydrogen gas is supplied from the hydrogen gas storage tank 3 to the metal hydride holding container 2 through the orifice 12, is stored in the metal hydride 1, and generates heat. A predetermined temperature can be maintained. In this case, since the check valve 13 is closed, the flow rate of hydrogen gas is appropriately controlled by the orifice 12, and excessive rise in pressure and overheating of the metal hydride holding container are prevented.

以上の如く、本発明によれば熱利用装置が熱を
利用する場合にも非利用時にも、熱源の余剰熱量
が水素の形で貯蓄され、不足時に熱として放出さ
れ、あたかも液圧装置におけるアキユムレータの
如く働き、変動の多い熱源の熱を必要時に過渡特
性域を経ることなく常に所定の目標温度の定常的
な熱に変換して利用することができる。
As described above, according to the present invention, the surplus heat of the heat source is stored in the form of hydrogen, whether the heat utilization device uses heat or not, and is released as heat when there is a shortage. It works as follows, and the heat from the heat source, which fluctuates frequently, can be converted into steady heat at a predetermined target temperature and used whenever necessary without passing through the transient characteristic range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属水素化物利用蓄熱システム
の一例を示す系統図、第2図は本発明の実施例の
系統図である。 1……金属水素化物、2……保持容器、3……
水素ガス貯槽、4……水素ガス導管、6……熱
源、7……熱利用装置、12……オリフイス、1
3,14……逆止弁。
FIG. 1 is a system diagram showing an example of a conventional heat storage system using metal hydrides, and FIG. 2 is a system diagram of an embodiment of the present invention. 1... Metal hydride, 2... Holding container, 3...
Hydrogen gas storage tank, 4...Hydrogen gas conduit, 6...Heat source, 7...Heat utilization device, 12...Orifice, 1
3,14...Check valve.

Claims (1)

【特許請求の範囲】[Claims] 1 金属水素化物を容器内に保持し、外部熱源に
よりこれを加熱して水素ガスを脱蔵させ、水素ガ
ス導管を介して水素ガス貯槽に移送して蓄積し、
必要に応じて該水素ガス貯槽より上記水素ガス導
管を通じて上記金属水素化物保持容器に水素ガス
を流入させ金属水素化物に吸蔵させてその際発生
する反応熱を利用する蓄熱システムにおいて、前
記の水素ガス導管にオリフイスと上記水素ガス貯
槽から金属水素化物保持容器に向う方向にのみ流
通可能な逆止弁とを直列に金属水素化物保持容器
から水素ガス貯槽に向う方向にのみ流通可能な逆
止弁をそれらと並列に設けたことを特徴とする蓄
熱システム。
1. Holding a metal hydride in a container, heating it with an external heat source to devolatilize hydrogen gas, and transferring it to a hydrogen gas storage tank via a hydrogen gas conduit to accumulate it;
In a heat storage system in which hydrogen gas is caused to flow into the metal hydride holding container from the hydrogen gas storage tank through the hydrogen gas conduit as necessary, the hydrogen gas is occluded by the metal hydride, and the reaction heat generated at that time is utilized. A check valve that allows flow only in the direction from the metal hydride holding container to the hydrogen gas storage tank is connected in series with an orifice in the conduit and a check valve that allows flow only in the direction from the hydrogen gas storage tank to the metal hydride holding container. A heat storage system characterized by being installed in parallel with these.
JP56152069A 1981-09-28 1981-09-28 Heat accumulating system utilizing hydrogenated metal Granted JPS5855688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56152069A JPS5855688A (en) 1981-09-28 1981-09-28 Heat accumulating system utilizing hydrogenated metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152069A JPS5855688A (en) 1981-09-28 1981-09-28 Heat accumulating system utilizing hydrogenated metal

Publications (2)

Publication Number Publication Date
JPS5855688A JPS5855688A (en) 1983-04-02
JPS6248160B2 true JPS6248160B2 (en) 1987-10-12

Family

ID=15532369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152069A Granted JPS5855688A (en) 1981-09-28 1981-09-28 Heat accumulating system utilizing hydrogenated metal

Country Status (1)

Country Link
JP (1) JPS5855688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733106B2 (en) 2013-05-24 2017-08-15 Allegro Microsystems, Llc Magnetic field sensor to detect a magnitude of a magnetic field in any direction

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055769U (en) * 1983-09-26 1985-04-18 マツダ株式会社 engine heating device
JPS61202051A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Solar energy utilizing device
US9062990B2 (en) 2011-02-25 2015-06-23 Allegro Microsystems, Llc Circular vertical hall magnetic field sensing element and method with a plurality of continuous output signals
US8786279B2 (en) 2011-02-25 2014-07-22 Allegro Microsystems, Llc Circuit and method for processing signals generated by a plurality of sensors
US8729890B2 (en) 2011-04-12 2014-05-20 Allegro Microsystems, Llc Magnetic angle and rotation speed sensor with continuous and discontinuous modes of operation based on rotation speed of a target object
US8860410B2 (en) 2011-05-23 2014-10-14 Allegro Microsystems, Llc Circuits and methods for processing a signal generated by a plurality of measuring devices
US8890518B2 (en) 2011-06-08 2014-11-18 Allegro Microsystems, Llc Arrangements for self-testing a circular vertical hall (CVH) sensing element and/or for self-testing a magnetic field sensor that uses a circular vertical hall (CVH) sensing element
US8793085B2 (en) 2011-08-19 2014-07-29 Allegro Microsystems, Llc Circuits and methods for automatically adjusting a magnetic field sensor in accordance with a speed of rotation sensed by the magnetic field sensor
US8922206B2 (en) 2011-09-07 2014-12-30 Allegro Microsystems, Llc Magnetic field sensing element combining a circular vertical hall magnetic field sensing element with a planar hall element
US9285438B2 (en) 2011-09-28 2016-03-15 Allegro Microsystems, Llc Circuits and methods for processing signals generated by a plurality of magnetic field sensing elements
US9046383B2 (en) 2012-01-09 2015-06-02 Allegro Microsystems, Llc Systems and methods that use magnetic field sensors to identify positions of a gear shift lever
US9182456B2 (en) 2012-03-06 2015-11-10 Allegro Microsystems, Llc Magnetic field sensor for sensing rotation of an object
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US9606190B2 (en) 2012-12-21 2017-03-28 Allegro Microsystems, Llc Magnetic field sensor arrangements and associated methods
US9417295B2 (en) 2012-12-21 2016-08-16 Allegro Microsystems, Llc Circuits and methods for processing signals generated by a circular vertical hall (CVH) sensing element in the presence of a multi-pole magnet
US8749005B1 (en) 2012-12-21 2014-06-10 Allegro Microsystems, Llc Magnetic field sensor and method of fabricating a magnetic field sensor having a plurality of vertical hall elements arranged in at least a portion of a polygonal shape
US9548443B2 (en) 2013-01-29 2017-01-17 Allegro Microsystems, Llc Vertical Hall Effect element with improved sensitivity
US9389060B2 (en) 2013-02-13 2016-07-12 Allegro Microsystems, Llc Magnetic field sensor and related techniques that provide an angle error correction module
US9377285B2 (en) 2013-02-13 2016-06-28 Allegro Microsystems, Llc Magnetic field sensor and related techniques that provide varying current spinning phase sequences of a magnetic field sensing element
US9099638B2 (en) 2013-03-15 2015-08-04 Allegro Microsystems, Llc Vertical hall effect element with structures to improve sensitivity
US9400164B2 (en) 2013-07-22 2016-07-26 Allegro Microsystems, Llc Magnetic field sensor and related techniques that provide an angle correction module
US9312473B2 (en) 2013-09-30 2016-04-12 Allegro Microsystems, Llc Vertical hall effect sensor
US10120042B2 (en) 2013-12-23 2018-11-06 Allegro Microsystems, Llc Magnetic field sensor and related techniques that inject a synthesized error correction signal into a signal channel to result in reduced error
US9574867B2 (en) 2013-12-23 2017-02-21 Allegro Microsystems, Llc Magnetic field sensor and related techniques that inject an error correction signal into a signal channel to result in reduced error
US9547048B2 (en) 2014-01-14 2017-01-17 Allegro Micosystems, LLC Circuit and method for reducing an offset component of a plurality of vertical hall elements arranged in a circle
US9753097B2 (en) 2014-05-05 2017-09-05 Allegro Microsystems, Llc Magnetic field sensors and associated methods with reduced offset and improved accuracy
US9448288B2 (en) 2014-05-20 2016-09-20 Allegro Microsystems, Llc Magnetic field sensor with improved accuracy resulting from a digital potentiometer
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9638766B2 (en) 2014-11-24 2017-05-02 Allegro Microsystems, Llc Magnetic field sensor with improved accuracy resulting from a variable potentiometer and a gain circuit
US9684042B2 (en) 2015-02-27 2017-06-20 Allegro Microsystems, Llc Magnetic field sensor with improved accuracy and method of obtaining improved accuracy with a magnetic field sensor
US11163022B2 (en) 2015-06-12 2021-11-02 Allegro Microsystems, Llc Magnetic field sensor for angle detection with a phase-locked loop
US9739847B1 (en) 2016-02-01 2017-08-22 Allegro Microsystems, Llc Circular vertical hall (CVH) sensing element with signal processing
US10481220B2 (en) 2016-02-01 2019-11-19 Allegro Microsystems, Llc Circular vertical hall (CVH) sensing element with signal processing and arctangent function
US9739848B1 (en) 2016-02-01 2017-08-22 Allegro Microsystems, Llc Circular vertical hall (CVH) sensing element with sliding integration
US10385964B2 (en) 2016-06-08 2019-08-20 Allegro Microsystems, Llc Enhanced neutral gear sensor
US10585147B2 (en) 2016-06-14 2020-03-10 Allegro Microsystems, Llc Magnetic field sensor having error correction
US10739164B2 (en) 2017-01-27 2020-08-11 Allegro Microsystems, Llc Circuit for detecting motion of an object
US10495701B2 (en) 2017-03-02 2019-12-03 Allegro Microsystems, Llc Circular vertical hall (CVH) sensing element with DC offset removal
US11802922B2 (en) 2021-01-13 2023-10-31 Allegro Microsystems, Llc Circuit for reducing an offset component of a plurality of vertical hall elements arranged in one or more circles
US11473935B1 (en) 2021-04-16 2022-10-18 Allegro Microsystems, Llc System and related techniques that provide an angle sensor for sensing an angle of rotation of a ferromagnetic screw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733106B2 (en) 2013-05-24 2017-08-15 Allegro Microsystems, Llc Magnetic field sensor to detect a magnitude of a magnetic field in any direction

Also Published As

Publication number Publication date
JPS5855688A (en) 1983-04-02

Similar Documents

Publication Publication Date Title
JPS6248160B2 (en)
US4044819A (en) Hydride heat pump
US3965683A (en) Solar electrical generating system
JPS5712294A (en) Heat exchanger utilizing hydrogen occluding material
US4433673A (en) Method and apparatus for continuously supplying a load
WO2022015232A1 (en) Thermochemical energy storage device
GB1600752A (en) Fluid heating and cooling system with thermal storage
CN111854193B (en) Integrated solar receiver-multistage heat storage system
US20120055462A1 (en) Solar derived thermal storage system and method
GB1585557A (en) Heating system
JP2573862B2 (en) Heat storage device
JPS591949B2 (en) Control method for heat exchange device with built-in hydrogen storage metal
JPH0227387B2 (en)
JPS5849496Y2 (en) heat storage device
JPS5943720B2 (en) Heat storage and heat extraction method
JPS591934B2 (en) Automatic control method of heat storage/dissipation system using metal hydrides
JPS5864490A (en) Operation of heating system using metal hydride
SU670774A1 (en) Storage vessel
JPS61202050A (en) Heat accumulating device using solar energy
JP2783693B2 (en) Method of generating hydrogen from metal hydride
JPS5892794A (en) Thermal utilization system having heat accumulating and releasing equipment using metal hydride
JPS638391B2 (en)
JPS61202051A (en) Solar energy utilizing device
JPS63161354A (en) Heat storage type electric water heater
JPS59219648A (en) Hot water supply system