JPS5864490A - Operation of heating system using metal hydride - Google Patents

Operation of heating system using metal hydride

Info

Publication number
JPS5864490A
JPS5864490A JP56162775A JP16277581A JPS5864490A JP S5864490 A JPS5864490 A JP S5864490A JP 56162775 A JP56162775 A JP 56162775A JP 16277581 A JP16277581 A JP 16277581A JP S5864490 A JPS5864490 A JP S5864490A
Authority
JP
Japan
Prior art keywords
heat
temperature
heat source
heat radiating
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56162775A
Other languages
Japanese (ja)
Inventor
Sho Kanazawa
金沢 祥
Yoshiharu Koyama
小山 芳治
Hisashi Hidaka
樋高 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56162775A priority Critical patent/JPS5864490A/en
Publication of JPS5864490A publication Critical patent/JPS5864490A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To extend the time of using the titled system at a stabilized temperature by elongating a constant characteristic operaion zone by a method wherein the heat source for a transitional characteristic operation zone at the initial stage of hydrogen adsorbing and heat radiating operation of the titled system is made up for by the calorific power of another heat source so as to bring about a constant heat radiating condition as early as possible and thence the hydrogen adsorbing reactions of the metal hydride are utilized. CONSTITUTION:In the transitional characteristic operation zone at the initial stage of the hydrogen adsorbing and heat radiating operation by the titled heating system, the required heat is supplied from an external heat source 2 and an auxiliary heat source 13 until a target heat radiating temperature T1 is reached so that a constant operation temperature is obtained quickly after the initiation of the operation of the heating system. As a consequence, the system can be operated at the target temperature T1 for a prolonged period of time thereby improve the thermal efficiency of the system.

Description

【発明の詳細な説明】 この発明は、金属水素化物を用いた熱利用システムの運
転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a heat utilization system using metal hydrides.

TiFe、 CaNi、等の水素貯蔵金属は活性化(水
素化コすることにより金属水素化物となり、大量の水素
を吸・脱蔵し、吸蔵過程では発熱し、脱蔵過程では吸熱
することが知られている。金属水素化物のこの性質を利
用することにより、太陽熱、風力等の自然エネルギーや
工場廃熱等を水素と云う化学エネルギーの形で蓄積し、
必要に応じて安定した熱を取出すことの出来る熱利用シ
ステムを作ることができる。
It is known that hydrogen storage metals such as TiFe and CaNi become metal hydrides through activation (hydrogenation), absorb and desorb large amounts of hydrogen, and generate heat during the occlusion process and endotherm during the devolatilization process. By utilizing this property of metal hydrides, natural energy such as solar heat and wind power, as well as factory waste heat, can be stored in the form of chemical energy called hydrogen.
It is possible to create a heat utilization system that can extract stable heat as needed.

この原理による熱利用システムの従来の考案の一例を第
1図により説明すると、金属保持容器1と太陽熱等外部
熱源2と熱利用装置3内に設けた放熱部4から成り、金
属保持容器1は、熱交換部6内に設けられ前記外部熱源
2と接続されその熱を金属5に供給する熱交換手段10
と、前記熱利用装置3内の放熱部4に接続され金属5の
水素吸蔵時の熱を回収する熱交換手段11とにより構成
されている。
An example of a conventional heat utilization system based on this principle will be explained with reference to FIG. , a heat exchange means 10 provided in the heat exchange section 6 and connected to the external heat source 2 and supplying the heat to the metal 5;
and a heat exchange means 11 which is connected to the heat radiating section 4 in the heat utilization device 3 and recovers the heat generated when the metal 5 absorbs hydrogen.

このシステムを利用して太陽熱等の熱を蓄積し、回収し
て利用するには、外部熱源2の熱を熱交換手段10を介
しである温度圧力条件の下で金属保持容器1内の金属5
に供給すると、金属5は水素を脱蔵し、脱蔵され几水素
ガスは、配管8を経て水素ガス槽7に貯蔵される!この
水素脱蔵運転が完了すると、水素ガス配管8に設けた止
弁12を閉鎖する。
In order to accumulate and recover heat such as solar heat using this system, the heat from the external heat source 2 is transferred to the metal 5 in the metal holding container 1 under certain temperature and pressure conditions through the heat exchange means 10.
The metal 5 devolatilizes hydrogen, and the devolatilized phosphorous gas is stored in the hydrogen gas tank 7 via the pipe 8! When this hydrogen desorption operation is completed, the stop valve 12 provided in the hydrogen gas pipe 8 is closed.

水素吸蔵放熱運転時には、上記止弁12を開放すると、
水素ガス槽7に貯蔵された水素ガスは圧力差で、配管8
、を経て熱交換部6に供給され、金属5は水素を吸蔵し
て発熱する。その熱は熱交換手段11の内部を流れる熱
媒体流体により回収され、熱利用装置3内の放熱部4よ
り熱利用装置3に放熱される。
During hydrogen storage heat dissipation operation, when the stop valve 12 is opened,
The hydrogen gas stored in the hydrogen gas tank 7 is transferred to the pipe 8 due to the pressure difference.
The metal 5 absorbs hydrogen and generates heat. The heat is recovered by the heat medium fluid flowing inside the heat exchange means 11, and is radiated to the heat utilization device 3 from the heat radiating section 4 in the heat utilization device 3.

さて、上述の水素吸蔵運転時の発生熱は最初の間は金属
5自身及び保持容器1を加熱するのに費′されるので金
属5の放熱特性は第2図に示す如く、水素ガスの供給開
始時点0から時間τ偽造の間は放熱温度が漸次上昇し、
1時間経過後放熱源度は目標値山で定常的に放熱される
ことになり、特性曲線にはOからち時間迄の間の過渡特
性域と、τ〇−以後水素吸蔵が飽和に達する迄の定常特
性域とが生ずる。
Now, the heat generated during the above-mentioned hydrogen storage operation is initially used to heat the metal 5 itself and the holding container 1, so the heat dissipation characteristics of the metal 5 are as shown in FIG. From the starting point 0 to the time τ fake, the heat dissipation temperature gradually increases,
After 1 hour, the heat radiation source level reaches the target value peak and the heat is steadily radiated, and the characteristic curve has a transient characteristic region from 0 to time and a period from τ〇- until hydrogen absorption reaches saturation. A steady characteristic region of .

熱利用の面からは過渡特性の部分が極力短かく、できる
だけ安定した熱を長時間得ることが要求される。そのた
め、従来種々の考案がなされており、例えば金属保持容
器に対して熱容量が小さく、熱伝達率の小さい構造が要
求されていたが、この容器は熱交換器、圧力容器として
の機能を有するため、熱容量、熱伝導率の低減には自ら
限度があった。
From the perspective of heat utilization, it is necessary to keep the transient characteristics as short as possible and to obtain heat as stable as possible for as long as possible. For this reason, various ideas have been made in the past. For example, metal holding containers were required to have a structure with low heat capacity and low heat transfer coefficient, but since this container functions as a heat exchanger and a pressure vessel, However, there were limits to the reduction of heat capacity and thermal conductivity.

本発明は、金属水素化物を利用した熱利用システムの従
来の水素吸蔵放熱運転方法の上述の欠点を解消した定常
特性域を長くして、有限な金属の発熱量゛を極力安定し
た温度で長時間利用することのできる運転方法を提供す
ることを目的とする。
The present invention eliminates the above-mentioned drawbacks of the conventional hydrogen storage and heat dissipation operation method for heat utilization systems using metal hydrides, and lengthens the steady-state characteristic range to extend the limited calorific value of metals at as stable a temperature as possible. The purpose is to provide a driving method that allows time to be utilized.

この目的は、本発明にしたがい、水素吸蔵放熱運転初期
の水素吸蔵に伴う発生熱量のみで定常放熱状態に達する
迄の間の過渡特性領域を他の熱源からの熱量で補うこと
によって達成される。
This objective is achieved according to the present invention by supplementing the transient characteristic region until a steady heat radiation state is reached with only the amount of heat generated due to hydrogen storage at the initial stage of hydrogen storage and heat radiation operation, with the amount of heat from other heat sources.

以下、本発明を実施例を示す図面にもとすいて詳細に説
明すや。
Hereinafter, the present invention will be explained in detail with reference to the drawings showing embodiments.

第3図は、前記の第1図に示す従来の熱利用システムを
本発明の運転方法の実施に適する如く改良した装置の実
施例を示すものである。この装置では第1図に示す従来
の装置に次の手段が追加されているほかは従来の装置と
同様である。金属水素化物保持容器1には、太陽熱、風
力等による外部熱源2及び熱利用装置3内の放熱部4と
夫々接続された熱交換手段10.11のほかに、燃料又
は電力等による補助熱源13と接続された熱交換手段1
4が設けられている。
FIG. 3 shows an embodiment of an apparatus in which the conventional heat utilization system shown in FIG. 1 is improved to be suitable for carrying out the operating method of the present invention. This apparatus is the same as the conventional apparatus shown in FIG. 1 except that the following means are added. The metal hydride holding container 1 includes an auxiliary heat source 13 such as fuel or electric power in addition to heat exchange means 10 and 11 connected to an external heat source 2 such as solar heat or wind power and a heat radiating section 4 in the heat utilization device 3. heat exchange means 1 connected to
4 are provided.

以上の如く構成された熱利用システムの水素吸蔵放熱運
転は次の如く行なわれる。
The hydrogen storage and heat dissipation operation of the heat utilization system configured as described above is performed as follows.

水素吸蔵放熱運転の初期においては、水素吸蔵に伴う発
生熱量の相当部分は金属水素化物自身及びその保持容器
の加熱に費やされて放熱特性に過渡域が生ずることは第
2図で説明した通りである。
As explained in Figure 2, at the beginning of hydrogen storage and heat release operation, a considerable portion of the heat generated due to hydrogen storage is spent heating the metal hydride itself and its holding container, resulting in a transient region in heat release characteristics. It is.

、さて、本発明の運転方法においては、この過渡期(第
2図に示すO−ち。の間)に目標放熱温度T、で放熱す
るのに不足する熱量を別の熱源から供給して補うように
する。
, Now, in the operating method of the present invention, during this transition period (between O and C shown in Figure 2), the amount of heat insufficient to radiate heat at the target heat radiation temperature T is compensated for by supplying it from another heat source. Do it like this.

外部熱源2及び補助熱源13からの熱量補給は、目標放
熱温度T1に達する迄続けられ、その結果、放熱温度特
性は第2図中に鎖線で示す如く、運転開始後急速に定常
状態の温度に達し、システムを目標温度T、で長時間安
定して運転させることができ、システムの熱効率の向上
に顕著な効果が得られる。
The heat supply from the external heat source 2 and the auxiliary heat source 13 continues until the target heat radiation temperature T1 is reached, and as a result, the heat radiation temperature characteristics rapidly reach the steady state temperature after the start of operation, as shown by the chain line in Figure 2. The system can be operated stably for a long time at the target temperature T, which has a significant effect on improving the thermal efficiency of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来考案されている金属水素化物を用いた熱利
用システムの一例を示す図式図、第2図は従来及び本発
明の運転方法によるシステムの放熱特性を比較して示す
曲線図、第3図は本発明の方法を実施するためのシステ
ムの一例を示す図式%式%
FIG. 1 is a schematic diagram showing an example of a conventionally devised heat utilization system using a metal hydride, FIG. Figure 3 is a diagram showing an example of a system for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 金属水素化物を容器に保持し、゛該金属に水素を吸蔵さ
せてその際発生する熱を熱利用装置に放熱させて利用す
るシステムの運転方法において、水素吸蔵放熱運転初期
の過渡特性領域を他の熱源からの熱量で補って早く、定
常放熱状態を得て、それ以後、金属水素化物の吸蔵反応
を利用することによって安定した熱の取出しを行うこと
を特徴とする運転方法。
In the operating method of a system in which a metal hydride is held in a container, hydrogen is absorbed into the metal, and the heat generated at that time is radiated to a heat utilization device. An operating method characterized by quickly obtaining a steady heat radiation state by supplementing the amount of heat from a heat source, and then stably extracting heat by utilizing an absorption reaction of metal hydride.
JP56162775A 1981-10-14 1981-10-14 Operation of heating system using metal hydride Pending JPS5864490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162775A JPS5864490A (en) 1981-10-14 1981-10-14 Operation of heating system using metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162775A JPS5864490A (en) 1981-10-14 1981-10-14 Operation of heating system using metal hydride

Publications (1)

Publication Number Publication Date
JPS5864490A true JPS5864490A (en) 1983-04-16

Family

ID=15760980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162775A Pending JPS5864490A (en) 1981-10-14 1981-10-14 Operation of heating system using metal hydride

Country Status (1)

Country Link
JP (1) JPS5864490A (en)

Similar Documents

Publication Publication Date Title
US4044819A (en) Hydride heat pump
JPS6248160B2 (en)
WO2003041188A3 (en) Chemical hydride hydrogen generation system and fuel cell stack incorporating a common heat transfer circuit
US6862330B2 (en) Systems and methods of producing hydrogen using a nuclear reactor
JP2002124280A (en) Fuel cell power-generating system
US3504494A (en) Intermittent power source
US20230272981A1 (en) Thermochemical energy storage device
CN114843549A (en) Solid hydrogen storage device and fuel cell integrated power supply system and use method thereof
CN113530626B (en) Fuel cell waste heat power generation system based on organic Rankine cycle
CN102287923B (en) Solar heat-electricity-gas three-supply system and method
JPS5864490A (en) Operation of heating system using metal hydride
JP2971239B2 (en) Hydrogen-oxygen combustion steam turbine engine
CN111600512A (en) Nuclear reactor power supply system with energy gradient utilization function
US6141966A (en) Power generating device employing hydrogen absorbing alloy and low heat
JP2009054474A (en) Hydrogen supply device and fuel cell vehicle
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
CN220856622U (en) Magnesium-based solid state high temperature hydrogen supply system for solid oxide fuel cell
JPH0227387B2 (en)
JPS6046901A (en) Method for releasing stored hydrogen gas
JPS62131101A (en) Steam generator
CN216307966U (en) Waste heat recycling system of generator set
EP1329416A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
CN221171790U (en) Magnesium-based solid-state hydrogen absorption and desorption system with two-stage phase-change heat storage unit
JPS61258907A (en) Power system
US6298665B1 (en) Power generating device employing hydrogen absorbing alloys and low heat