JPS59193318A - Measurement of melted metal level in continuous casting mold - Google Patents

Measurement of melted metal level in continuous casting mold

Info

Publication number
JPS59193318A
JPS59193318A JP58068196A JP6819683A JPS59193318A JP S59193318 A JPS59193318 A JP S59193318A JP 58068196 A JP58068196 A JP 58068196A JP 6819683 A JP6819683 A JP 6819683A JP S59193318 A JPS59193318 A JP S59193318A
Authority
JP
Japan
Prior art keywords
ultrasonic wave
ultrasonic
reflected
molten metal
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58068196A
Other languages
Japanese (ja)
Inventor
Kane Miyake
三宅 苞
Hajime Takada
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58068196A priority Critical patent/JPS59193318A/en
Publication of JPS59193318A publication Critical patent/JPS59193318A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Continuous Casting (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To measure melted metal level easily and accurately while being little affected by melted metal and attached foreign matter such as slag by making an ultrasonic wave incident entirely into an ultrasonic wave propagation rod immersed into the melted metal to measure the arrival time of the reflected wave. CONSTITUTION:A sensor 4 is composed of an ultrasonic wave propagation rod 5, and an ultrasonic wave probe 9 contacting the upper end face 10 thereof 5 and the lower part of the ultrasonic wave propagation rod 5 is immersed into a melted metal 2. An incident ultrasonic wave 13 from the ultrasonic wave probe 9 is reflected on the boundary 14 of the immersed and non-immersed parts of the ultrasonic wave propagation rod 5 and inputted into the probe as a reflected ultrasonic wave 15. The peak t3 due to the reflection from foreign matter 19 can be removed by setting the threshold properly thereby enabling the detection of the reflected ultrasonic wave 15 from the surface (the boundary 14) of the melted metal 2 without errors. The ultrasonic wave propagation rod 5 is made of fine ceramics employing boron nitride, zirconium or the like excellent in the heat resistance, corrosion resistance and ultrasonic wave propagating property.

Description

【発明の詳細な説明】 この発明は、連続鋳造鋳型内で超音波を用いて熔融金属
レベルを測定する方法に関し、特に、超音波伝播棒の一
方の端部を溶融金属に浸漬した状態で、超音波伝播棒の
内部に超音波を棒波として入射し、これの反射波の到達
時間により熔融金属レベルを測定して、前記測定の精度
を向上させる一般に、連続鋳造装置において熔融金属レ
ヘルの変動を可及的に少なくすることは、連続鋳造装置
により製造される鋳片の品質、特に、表面品質を良好に
保つため、及び熔融金属のオーバーフローによる機器の
損耗を防止するためには極めて重要な課題である。従っ
て、このような品質保持及び省力化の観点から、連続鋳
造装置における自動鋳造技術が種々開発されているが、
熔融金属レヘルを常に一定に保持できるか否かは、熔融
金属レベルの測定精度によって決定される。また、連続
鋳造鋳型内にレベルセンザを設置する容易性も、レヘル
セン号の実用性を評価するうえで重要である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of measuring molten metal level using ultrasound in a continuous casting mold, and in particular, with one end of an ultrasonic propagation rod immersed in molten metal. Ultrasonic waves are introduced into the inside of an ultrasonic propagation rod as a bar wave, and the molten metal level is measured based on the arrival time of the reflected wave to improve the accuracy of the measurement.Generally, in continuous casting equipment, fluctuations in the molten metal level are measured. It is extremely important to keep the quality of slabs manufactured by continuous casting equipment as low as possible, especially to maintain good surface quality, and to prevent equipment wear and tear due to overflow of molten metal. This is a challenge. Therefore, from the viewpoint of maintaining quality and saving labor, various automatic casting technologies for continuous casting equipment have been developed.
Whether or not the molten metal level can always be kept constant is determined by the measurement accuracy of the molten metal level. Furthermore, the ease of installing a level sensor within the continuous casting mold is also important in evaluating the practicality of the Rehersen.

ところで、超音波を用いた溶融金属レヘルの測定方法と
して従来から提案されているものに、特開昭56−12
6062号、同52−72256号に記載されたような
ものがある。すなわち、これらは、連続鋳造鋳型又は特
殊伝播体の表面に超音波を表面波として入射し、この表
面波の、熔融金属表面と同一高さ位置からの反射時間を
計測して、熔融金属レヘルを測定するものである。しか
しながら、表面波は、伝播体である弾性体の表面を伝播
して行く弾性波なので、その内部及び表面も含めて棒全
体が伝播体となる棒波に比べて、表面状態の影響を受け
やすいという特徴がある。即ち、表面波は、伝播体表面
の変形部分や、伝播体が浸漬された熔融金属の表面の高
さ位置で、強い反射波が生しることになる。
By the way, a method for measuring molten metal level using ultrasonic waves has been proposed in the past, as disclosed in Japanese Patent Application Laid-open No. 56-12.
There are those described in No. 6062 and No. 52-72256. That is, these methods inject ultrasonic waves as surface waves onto the surface of a continuous casting mold or special propagation body, measure the reflection time of the surface waves from a position at the same height as the molten metal surface, and measure the molten metal level. It is something to be measured. However, since surface waves are elastic waves that propagate on the surface of an elastic body that is a propagator, they are more susceptible to surface conditions than bar waves in which the entire rod, including its interior and surface, is a propagator. There is a characteristic that That is, a strong reflected wave of the surface wave is generated at a deformed portion of the surface of the propagating body or at a height position of the surface of the molten metal in which the propagating body is immersed.

そこで、発明者らが実験したところ、表面波の利用は上
記用途に適していないことがわかった。
The inventors conducted experiments and found that the use of surface waves was not suitable for the above-mentioned applications.

即ち、熔融金属やスラグの一部が、連続鋳造鋳型の内壁
上部に異物として付着することが多々あって、僅かでも
前記異物が付着した場合は、それにより強い反射波が生
じることが認められた。その場合、受信波形には異物部
分における反射波と、溶融金属表面位置における反射波
の、二以上の反射波が表れ、そのうち何れが熔融金属表
面位置からの反射波かを識別することは困難であった。
In other words, it has been found that a portion of molten metal or slag often adheres as foreign matter to the upper part of the inner wall of a continuous casting mold, and if even a small amount of said foreign matter adheres, it has been found that a strong reflected wave is generated. . In that case, two or more reflected waves appear in the received waveform, one reflected from the foreign object and the other reflected from the molten metal surface, and it is difficult to identify which of them is the reflected wave from the molten metal surface. there were.

この発明は、このような従来の不具合を解決するために
なされたものであり、その特徴とするところは、超音波
を棒波として利用することにある。
This invention was made to solve these conventional problems, and its feature lies in the use of ultrasonic waves as bar waves.

棒波においても、これか伝播される超音波伝播棒に前記
異物が付着すると、そこで反射波を生じるが、前記のよ
うに棒全体が伝播体であるので、その反射波の、入射波
に対する相対強度は、表面波の場合より遥かに小さい。
In the case of bar waves as well, if the foreign matter adheres to the ultrasonic propagation rod that is being propagated, a reflected wave will be generated there. However, as mentioned above, since the entire rod is a propagating body, the relative of the reflected wave to the incident wave is The intensity is much smaller than for surface waves.

そこで、棒波を利用すれば、溶融金属表面位置からの反
射波は、付着異物に原因する反射波(ノイズ)と明確に
区別される。さらに、適当な闇値を設定することにより
、付着物からの反射波の入射を避けることができるため
、熔融金属表面位置からの反射波を誤りなく検出するこ
とができる。この発明で用いる超音波伝播棒としては、
棒材の他に板状体を含むものとし、その結果、板状体に
伝播される超音波である板波は、前記棒波の一種をなす
ものである。
Therefore, by using a bar wave, the reflected waves from the molten metal surface position can be clearly distinguished from the reflected waves (noise) caused by attached foreign matter. Furthermore, by setting an appropriate darkness value, it is possible to avoid the incidence of reflected waves from deposits, so that reflected waves from the molten metal surface position can be detected without error. The ultrasonic propagation rod used in this invention includes:
A plate-shaped body is included in addition to the bar material, and as a result, a plate wave, which is an ultrasonic wave propagated to the plate-shaped body, is a type of the above-mentioned bar wave.

すなわち、この発明にかかる、連続鋳造鋳型内における
熔融金属レベルの測定方法は、連続鋳造鋳型内の溶融金
属に、超音波伝播棒の一方の端部を浸漬した状態で、超
音波伝播棒の他方の端部に超音波を棒波として入射して
、超音波伝播棒の、溶融金属に対する浸漬部と非浸漬部
との境界で生じる反射超音波を検出し、超音波伝播棒内
の伝播時間を計測して、熔融金属レベルを測定すること
を特徴とするものである。
That is, in the method of measuring the level of molten metal in a continuous casting mold according to the present invention, one end of the ultrasonic propagation rod is immersed in the molten metal in the continuous casting mold, and the other end of the ultrasonic propagation rod is immersed in the molten metal in the continuous casting mold. Ultrasonic waves are incident as a bar wave on the end of the ultrasonic propagation rod, and the reflected ultrasonic waves generated at the boundary between the immersed and non-immersed parts of the ultrasonic propagation rod are detected, and the propagation time within the ultrasonic propagation rod is calculated. It is characterized by measuring the molten metal level.

次ぎに、この発明を、図示実施例に基づいて説明する。Next, the present invention will be explained based on illustrated embodiments.

図中1は連続鋳造鋳型であり、この内部に、図示しない
クンディンシュのノズルから、溶融金属2が供給されて
いる。連続鋳造鋳型1の上縁にはブラケット3を固定し
、ブラケット3には、センサー4が取りつ&Jられる。
In the figure, reference numeral 1 denotes a continuous casting mold, into which molten metal 2 is supplied from a Kundinsh nozzle (not shown). A bracket 3 is fixed to the upper edge of the continuous casting mold 1, and a sensor 4 is attached to the bracket 3.

センサー4は、超音波伝播棒5と、超音波伝播棒5の上
端に一体に固定されたフランジ6及びボックス7と、ボ
ックス7内でハネ8により付勢されて超音波伝播棒5上
端面10に接している超音波探触子9とにより構成され
る。超音波伝播棒5の下部は、熔融金属2に浸漬される
。19は、前記伝播棒5表面に付着した異物(熔融金属
やスラグ等)である。
The sensor 4 includes an ultrasonic propagation rod 5, a flange 6 and a box 7 that are integrally fixed to the upper end of the ultrasonic propagation rod 5, and an upper end surface 10 of the ultrasonic propagation rod 5 that is biased by a spring 8 inside the box 7. The ultrasonic probe 9 is in contact with the ultrasonic probe 9. The lower part of the ultrasonic propagation rod 5 is immersed in the molten metal 2. Reference numeral 19 indicates foreign matter (molten metal, slag, etc.) attached to the surface of the propagation rod 5.

超音波伝播棒5は、耐熱性、耐食性、超音波伝播性に優
れた材質からなり、例えば、ポロンナイトライド(窒化
ホウ素・BN)やジルコニア(二酸化ジルコニウム・Z
r0z)等を原料としたファインセラミックスが好適で
あり、その形状は板状でもよい。また、棒体の場合の断
面形状は、円形の他、多角形、楕円形等でもよい。板状
の場合は、板全体が伝播体となるため、これに伝播され
る超音波は、特に板波と呼ばれる。而して、この発明で
いう超音波伝播棒は、板状体を含むものであるから、棒
波としての超音波には、前記板波も含まれることになる
The ultrasonic propagation rod 5 is made of a material with excellent heat resistance, corrosion resistance, and ultrasonic propagation properties, such as poron nitride (boron nitride/BN) or zirconia (zirconium dioxide/Z).
Fine ceramics made from materials such as r0z) are suitable, and the shape may be a plate. Further, in the case of a rod, the cross-sectional shape may be polygonal, elliptical, etc. in addition to circular. In the case of a plate shape, the entire plate serves as a propagating body, so the ultrasonic waves propagated through the plate are particularly called plate waves. Since the ultrasonic propagation rod as used in the present invention includes a plate-shaped body, the ultrasonic wave as a rod wave also includes the plate wave.

11は超音波発生受信機であり、電線12によりセンサ
ー4の超音波探触子9に接続されていて、超音波探触子
9から超音波伝播棒5に向けて超音波を発射させる。1
3は、発射されて超音波伝播棒5内に入射され伝播され
た入射超音波であり、これが、超音波伝播棒5の、熔融
金属2に対する浸漬部5aと非浸漬部5bとの境界14
で反射されて、反射超音波15となり、超音波探触子9
に入力される。超音波は、それが伝播される物体(ここ
では超音波伝播棒5)に、その物体とは超音波伝達速度
の異なる物体(ここでは熔融金属2)が接触していると
きには、その接触部(ここでは境界14の部分)で反射
する性質があるからである。異物19での反射超音波2
0も、超音波探触子9に入力される。境界工4で反射さ
れなかった入射超音波は、そのまま直進して、超音波伝
播棒5の下端17に到達して、ここで反射し、反射超音
波18として超音波探触子9に入力される。
Reference numeral 11 denotes an ultrasonic generator/receiver, which is connected to the ultrasonic probe 9 of the sensor 4 through an electric wire 12, and causes the ultrasonic probe 9 to emit ultrasonic waves toward the ultrasonic propagation rod 5. 1
Reference numeral 3 denotes an incident ultrasonic wave that is emitted, enters the ultrasonic propagation rod 5, and propagates.
The reflected ultrasonic wave 15 is reflected by the ultrasonic probe 9.
is input. When an object (here, the ultrasonic propagation rod 5) to which the ultrasonic waves are propagated is in contact with an object (here, the molten metal 2) that has a different ultrasonic transmission speed than that object, the contact portion (here, the molten metal 2) This is because there is a property of reflection at the boundary 14). Ultrasound reflected by foreign object 19 2
0 is also input to the ultrasound probe 9. The incident ultrasonic waves that are not reflected by the boundary work 4 continue straight, reach the lower end 17 of the ultrasonic propagation rod 5, are reflected there, and are input to the ultrasonic probe 9 as reflected ultrasonic waves 18. Ru.

第3図は、CR,Tディスプレイの表示部16であり、
これに表示された波形が前記超音波探触子9に反射入力
された反射超音波の受信波形である。
FIG. 3 shows the display section 16 of the CR,T display.
The waveform displayed here is the received waveform of the reflected ultrasonic wave reflected and input to the ultrasonic probe 9.

ここで、最初のピーク(to)が上端面10からの反射
波である。また、上端面10と超音波伝播棒5下端17
との距離を伝播速度(Vp)で除し、これを2倍した値
が、(t2)と(t O)との時間に一致することから
、(t2)が下端17からの反射波であることがわかる
。また、闇値を適当に設定することにより、異物19か
らの反射によるピーク(t3)を除去することができる
。従って、その間の(tl)が、測定目的とする溶融金
属2の面(境界14)からの反射超音波15を誤りなく
検出することができる。ff17ち、熔融金属レベル(
上端面10と境界14との距離)は、(tl)と(t 
O)との間の時間に伝播速度(Vp)を乗じたものを2
で除して求めることができる。
Here, the first peak (to) is the reflected wave from the upper end surface 10. In addition, the upper end surface 10 and the lower end 17 of the ultrasonic propagation rod 5
The value obtained by dividing the distance by the propagation velocity (Vp) and doubling this value matches the time between (t2) and (tO), so (t2) is the reflected wave from the lower end 17. I understand that. Further, by appropriately setting the darkness value, the peak (t3) due to reflection from the foreign object 19 can be removed. Therefore, the reflected ultrasonic wave 15 from the surface (boundary 14) of the molten metal 2 to be measured can be detected without error at (tl) between them. ff17 Chi, molten metal level (
The distance between the upper end surface 10 and the boundary 14) is (tl) and (t
O) multiplied by the propagation velocity (Vp) is 2
It can be found by dividing by.

前記実施例は、超音波探触子9に入力された反射超音波
15を、超音波発生受信機11のCRTディスプレイの
表示部16から読み取る方法を採用しているが、超音波
発生受信機・11を電子計算機に接続して、溶融金属レ
ベルの自動計測をすることができることは勿論である。
The above embodiment adopts a method of reading the reflected ultrasound 15 input to the ultrasound probe 9 from the display section 16 of the CRT display of the ultrasound generator/receiver 11. 11 can of course be connected to an electronic computer to automatically measure the molten metal level.

なお、前記超音波発生受信機11には、入力された反射
超音波を一定の信号に変換するための公知の電気回路が
内蔵されている。
The ultrasonic generator/receiver 11 has a built-in known electric circuit for converting input reflected ultrasonic waves into a constant signal.

以上説明したように、この発明によれば、超音波伝播棒
の一方の端部を溶融金属に浸漬した状態で、超音波伝播
棒の全体に、その他端から超音波を棒波として入射し、
これの反射波の到達時間により熔融金属レヘルを測定す
ることとした。かくして、超音波を伝播させる物として
、連続鋳造鋳型とは別体をなす超音波伝播棒を用い、し
かもその全体に超音波を伝播させるため、超音波の指向
性がよく、且つ溶融金属やスラグ等の付着異物の影響は
殆ど受けない。従って、熔融金属に対する浸漬部と非浸
漬部との境界からの反射超音波を明確に検出することが
できるため、溶融金属レベルを容易且つ正確に測定する
ことができる。また、この発明に用いる測定器具は小型
、軽量にできるため、鋳型への取付けが簡単で、しかも
鋳造作業の邪魔になることもない。さらに、超音波伝播
棒の長さを適宜選択することにより、熔融金属レベルの
測定幅を大にして、連続鋳造開始初期の溶融金属レベル
上昇の観測や、時折発生する溶融金属のオーバーフロー
を事前に検出してこれを防止することもできる効果があ
る。
As explained above, according to the present invention, one end of the ultrasonic propagation rod is immersed in molten metal, and the ultrasonic wave is incident on the entire ultrasonic propagation rod from the other end as a bar wave,
We decided to measure the molten metal level based on the arrival time of this reflected wave. In this way, an ultrasonic propagation rod that is separate from the continuous casting mold is used to propagate the ultrasonic waves, and since the ultrasonic waves are propagated throughout the rod, the directivity of the ultrasonic waves is good. It is hardly affected by attached foreign matter such as. Therefore, it is possible to clearly detect the reflected ultrasonic waves from the boundary between the immersed part and the non-immersed part of the molten metal, so that the molten metal level can be easily and accurately measured. Further, since the measuring instrument used in the present invention can be made small and lightweight, it can be easily attached to the mold and does not interfere with the casting operation. Furthermore, by appropriately selecting the length of the ultrasonic propagation rod, the measurement width of the molten metal level can be increased, allowing for the observation of an increase in the molten metal level at the beginning of continuous casting, and the prevention of occasional overflow of molten metal. It also has the effect of being able to detect and prevent this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す斜視図、第2図は
、第1図の超音波伝播棒と超音波探触子とを示す断面図
、第3図は、第1図に示す超音波発生受信機におけるC
RTディスプレイの表示部に表れた波形を示す説明図で
ある。 1・・・連続鋳造鋳型、2・・・熔融金属、4・・・セ
ンサー、5・・・超音波伝播棒、9・・・超音波探触子
、13・・・入射超音波、14・・・境界、15.18
・・・反射超音波。 特許出願人 川崎製鉄株式会社 代理人 弁理士 森  哲也 代理人 弁理士 内藤 嘉昭 代理人 弁理士 清水  正 代理人 弁理士 提出 佑是
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a sectional view showing the ultrasound propagation rod and ultrasound probe shown in FIG. 1, and FIG. C in the ultrasonic generation receiver shown
FIG. 3 is an explanatory diagram showing a waveform appearing on the display section of the RT display. DESCRIPTION OF SYMBOLS 1... Continuous casting mold, 2... Molten metal, 4... Sensor, 5... Ultrasonic propagation rod, 9... Ultrasonic probe, 13... Incident ultrasonic wave, 14... ...Boundary, 15.18
...Reflected ultrasound. Patent Applicant Kawasaki Steel Co., Ltd. Agent Patent Attorney Tetsuya Mori Agent Patent Attorney Yoshiaki Naito Agent Patent Attorney Shimizu Authorized Agent Patent Attorney Submitted by Yuze

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造鋳型内の熔融金属に、超音波伝播棒の一方の端
部を浸漬した状態で、超音波伝播棒の他方の端部に超音
波を棒波として入射して、超音波伝播棒の、熔融金属に
対する浸漬部と非浸漬部との境界で生じる反射超音波を
検出し、超音波伝播棒内の伝播時間を計測して、熔融金
属レベルを測定することを特徴とする連続鋳造鋳型内に
おける溶融金属レベルの測定方法。
With one end of the ultrasonic propagation rod immersed in the molten metal in the continuous casting mold, ultrasonic waves are incident on the other end of the ultrasonic propagation rod as a bar wave, and the ultrasonic propagation rod is In a continuous casting mold, the molten metal level is measured by detecting the reflected ultrasonic waves generated at the boundary between the immersed part and the non-immersed part of the molten metal, and measuring the propagation time in the ultrasonic propagation rod. How to measure molten metal level.
JP58068196A 1983-04-18 1983-04-18 Measurement of melted metal level in continuous casting mold Pending JPS59193318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068196A JPS59193318A (en) 1983-04-18 1983-04-18 Measurement of melted metal level in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068196A JPS59193318A (en) 1983-04-18 1983-04-18 Measurement of melted metal level in continuous casting mold

Publications (1)

Publication Number Publication Date
JPS59193318A true JPS59193318A (en) 1984-11-01

Family

ID=13366790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068196A Pending JPS59193318A (en) 1983-04-18 1983-04-18 Measurement of melted metal level in continuous casting mold

Country Status (1)

Country Link
JP (1) JPS59193318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2657960A1 (en) * 1990-02-05 1991-08-09 Westinghouse Electric Corp METHOD FOR ULTRASONIC MEASUREMENT OF THE THICKNESS AND CHARACTERISTICS OF A ZIRCONIUM SHIRT COEXTRUDED WITH A ZIRCONIUM TUBE.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2657960A1 (en) * 1990-02-05 1991-08-09 Westinghouse Electric Corp METHOD FOR ULTRASONIC MEASUREMENT OF THE THICKNESS AND CHARACTERISTICS OF A ZIRCONIUM SHIRT COEXTRUDED WITH A ZIRCONIUM TUBE.

Similar Documents

Publication Publication Date Title
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2005010159A (en) Method and device for measuring thickness of component having external coating by using impedance matching delay line
JPS59193318A (en) Measurement of melted metal level in continuous casting mold
JP4564183B2 (en) Ultrasonic flaw detection method
US5929338A (en) Thickness measurement of in-ground culverts
RU2714868C1 (en) Method of detecting pitting corrosion
JP2005070017A (en) Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP3510137B2 (en) Ultrasonic thickness measurement method and device
FR2426246A1 (en) ULTRASONIC MEASUREMENT INSTRUMENT
JP5268686B2 (en) Measuring apparatus and measuring method by electromagnetic ultrasonic method
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JPS61155855A (en) Ultrasonic flaw inspector
JP2000338092A (en) Method for ultrasonic inspection
JP3587555B2 (en) Wave guide rod for ultrasonic flaw detection
JPH07229705A (en) Quench hardened layer depth measuring method
JPH03167418A (en) Clad-thickness measuring apparatus
KR19990048190A (en) Apparatus and method for simultaneously measuring the thickness and ultrasonic velocity of a solid material
JP3615942B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2000310522A (en) Method for measuring thickness of double-layered metallic body
JPS58150856A (en) Measurement of impurity in metal material
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP2000180146A (en) Ultrasonic wave thickness measuring device
JP2005010139A (en) Residual thickness measuring method and device for furnace refractory using elastic wave
JPH10253340A (en) Method for measuring scale thickness on inside surface of tube
RU2225082C1 (en) Acoustic unit of ultrasonic measuring device