JP3510137B2 - Ultrasonic thickness measurement method and device - Google Patents
Ultrasonic thickness measurement method and deviceInfo
- Publication number
- JP3510137B2 JP3510137B2 JP05606399A JP5606399A JP3510137B2 JP 3510137 B2 JP3510137 B2 JP 3510137B2 JP 05606399 A JP05606399 A JP 05606399A JP 5606399 A JP5606399 A JP 5606399A JP 3510137 B2 JP3510137 B2 JP 3510137B2
- Authority
- JP
- Japan
- Prior art keywords
- reflected wave
- time
- ultrasonic
- wave
- wall thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は超音波による肉厚測
定方法とその装置に係り、特に測定対象物の表裏面が塗
装や腐食により粗さ、凹凸を有している鋳鉄及び鋳鋼な
どの肉厚測定方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic wall thickness measuring method and apparatus, and particularly to meat such as cast iron and cast steel in which the front and back surfaces of an object to be measured have roughness and unevenness due to coating and corrosion. The present invention relates to a thickness measuring method and its device.
【0002】[0002]
【従来の技術】測定対象物の表面に固有振動数を持つ超
音波探触子を接触させ、図5に示すように送信波15と
して超音波を発振させて入射すると、測定対象物の裏面
から底面反射波16が受信できる。この原理を利用し底
面反射波16を受信して測定対象物の肉厚値Dを測定す
る場合、肉厚値Dは測定対象物の音速Cと測定対象物内
部を伝播し往復した時間(路程)tから以下の式を用い
て算出される。2. Description of the Related Art When an ultrasonic probe having a natural frequency is brought into contact with the surface of an object to be measured and an ultrasonic wave is oscillated as a transmission wave 15 as shown in FIG. The bottom reflected wave 16 can be received. When the bottom surface reflected wave 16 is received using this principle to measure the wall thickness value D of the measurement object, the wall thickness value D is the sound velocity C of the measurement object and the time it takes to travel back and forth inside the measurement object (path length). ) T is calculated using the following formula.
【0003】
D=C・t/2 …(1)
従来の測定方法においては(1)式の時間tは、超音波
探触子からの送信波15がしきい値18を最初に超えた
時刻を送信波の立上がり時刻T1を送信時刻とし、底面
反射波16がしきい値18を最初に超えた時刻を底面反
射波16の立上がり時刻T2を反射波受信時刻としてこ
れらの時刻T1,T2における時間(間隔)tpを用い
ていた。D = C · t / 2 (1) In the conventional measurement method, the time t in the equation (1) is the time when the transmission wave 15 from the ultrasonic probe first exceeds the threshold value 18. Is the rising time T1 of the transmitted wave as the transmission time, and the rising time T2 of the bottom surface reflected wave 16 is the reflected wave reception time and the time when the bottom surface reflected wave 16 first exceeds the threshold value 18 is the time at these times T1 and T2. (Interval) tp was used.
【0004】なお、しきい値18は、測定者が波形を見
て経験からノイズを除去できるような値に任意に設定し
ていた。また、エコー高さは送信波や反射波の強度であ
る。The threshold 18 has been arbitrarily set to a value that allows a measurer to remove noise based on experience by looking at the waveform. The echo height is the intensity of the transmitted wave or reflected wave.
【0005】[0005]
【発明が解決しようとする課題】超音波による肉厚測定
を行った時に、測定対象物の表裏面が平滑な場合は図5
のロ部を拡大して表わした図6に示すように底面反射波
16を得る(以下、このような底面反射波16の波形を
基本パターンと呼ぶ)。測定対象物の表裏面の粗さや凹
凸による超音波の散乱や測定対象物内部にある多くの微
少な境界面(金属の結晶粒の境界面)からの反射波であ
る林状エコーが生じると、散乱波や林状エコーの影響
(波形の干渉)を受けて底面反射波16の基本パターン
と比較して立上がりの小さい底面反射波17(破線で示
す)を得ることがある。When the thickness of the object to be measured is measured by ultrasonic waves and the front and back surfaces of the object to be measured are smooth, FIG.
6, the bottom surface reflected wave 16 is obtained (hereinafter, such a waveform of the bottom surface reflected wave 16 is referred to as a basic pattern). When ultrasonic waves are scattered due to the roughness or unevenness of the front and back surfaces of the measurement object, and forest echoes that are reflected waves from many minute boundary surfaces (boundary surfaces of metal crystal grains) inside the measurement object occur, A bottom reflected wave 17 (shown by a broken line) having a smaller rise than the basic pattern of the bottom reflected wave 16 may be obtained under the influence of scattered waves or forest echoes (waveform interference).
【0006】この場合には、底面反射波17がしきい値
18を最初に超えた時刻Tbを立ち上がり時刻として検
出する。しかし、この時刻Tbは本来の立上がり時刻で
はなく、図6で示すように本来の立上がりは時刻Taで
ある。この結果、測定で得た立上がり時刻Tbと本来の
立ち上がり時刻Taの間隔である時間tgの遅れを生じ
るために正確な路程を得ることができない。また、逆に
散乱波や林状エコーの影響を受けて立上がりを早く検出
する底面反射波(図示していない)を生じて正確な路程
を得ることができない場合もある。In this case, the time Tb when the bottom surface reflected wave 17 first exceeds the threshold value 18 is detected as the rising time. However, this time Tb is not the original rising time, and the original rising is the time Ta as shown in FIG. As a result, an accurate road distance cannot be obtained because the time tg, which is the interval between the rising time Tb obtained by the measurement and the original rising time Ta, is delayed. On the contrary, in some cases, a bottom reflected wave (not shown) for early detection of rising may be generated due to the influence of scattered waves or forest echoes, and an accurate path may not be obtained.
【0007】また、従来の測定方法では散乱波や林状エ
コーの影響を受けなくてもしきい値18により底面反射
波の立上がりの検出を行うため、例えば底面反射波16
においては本来の立上がり時刻Taとしきい値18によ
って検出された立上がり時刻Tcではthなる時間のず
れが生じるため正確な路程を得ることができない。Further, in the conventional measuring method, since the rising of the bottom reflected wave is detected by the threshold value 18 without being influenced by the scattered wave or the forest echo, for example, the bottom reflected wave 16
In the above case, the actual rise time Ta and the rise time Tc detected by the threshold value 18 have a time difference of th, and thus an accurate road distance cannot be obtained.
【0008】一方、底面反射波17の最大エコー高さを
示す時刻を用い、その波形から立上がり時刻を算出する
方法もあるが、底面反射波は散乱波や林状エコーの影響
を受けて、基本パターンの様な奇麗な波形とならず、最
大エコー高さを示す時刻がずれてしまうので、最大エコ
ー高さを示す時刻を用いても正確な路程を得ることはで
きなかった。On the other hand, there is also a method of calculating the rising time from the waveform using the time indicating the maximum echo height of the bottom reflected wave 17, but the bottom reflected wave is affected by scattered waves and forest echoes, It is not possible to obtain an accurate path length even if the time at which the maximum echo height is used is used, because the waveform at which the maximum echo height is displayed is deviated without a beautiful waveform such as a pattern.
【0009】従って、これらの理由により従来の測定方
法においては正確な肉厚測定ができないという問題があ
った。Therefore, for these reasons, there is a problem that the conventional measuring method cannot accurately measure the wall thickness.
【0010】それゆえ、本発明の目的は、林状エコーや
散乱波の影響を受けても、正確な肉厚測定ができる超音
波による肉厚測定方法とその装置を提供することにあ
る。Therefore, it is an object of the present invention to provide an ultrasonic wall thickness measuring method and apparatus capable of accurately measuring the wall thickness even under the influence of forest echoes and scattered waves.
【0011】[0011]
【課題を解決するための手段】上記目的を達成する本発
明の特徴とするところは、測定対象物の表面からの超音
波の送信時刻と該測定対象物の裏面からの超音波の反射
波受信時刻を得て、両時刻の間隔から該測定対象物の肉
厚を測定する超音波による肉厚測定方法において、平滑
な表裏面を持つ試験片を用い超音波探触子の反射波立上
がり方向を得ておき、該超音波探触子により測定対象物
における反射波の最大エコー高さを得て、該反射波に対
し上記反射波立上がり方向とは反対の方向に上記最大エ
コー高さを基にしきい値を設定し、このしきい値を最初
に超える反射波の波形における最大値を示す時刻を得
て、この時刻から3/4周期を遡った時刻を反射波受信
時刻とすることにある。To achieve the above object, the present invention is characterized in that the transmission time of ultrasonic waves from the surface of an object to be measured and the reception of reflected waves of ultrasonic waves from the back surface of the object to be measured. In the wall thickness measurement method using ultrasonic waves to obtain the time and measure the wall thickness of the measurement object from the interval between the two times, use a test piece with smooth front and back surfaces to determine the rising direction of the reflected wave of the ultrasonic probe. Obtained in advance, obtain the maximum echo height of the reflected wave in the measurement object by the ultrasonic probe, and based on the maximum echo height in the direction opposite to the reflected wave rising direction with respect to the reflected wave. The threshold value is set, the time at which the maximum value in the waveform of the reflected wave that first exceeds this threshold value is obtained, and the time that is 3/4 cycle back from this time is set as the reflected wave reception time.
【0012】さらに、本発明の他の特徴は、測定対象物
の表面からの超音波の送信時刻と該測定対象物の裏面か
らの超音波の反射波受信時刻を得て、両時刻の間隔から
該測定対象物の肉厚を測定するものにおいて、測定対象
物の表面に超音波を入射し該測定対象物の裏面からの反
射波を受信する超音波探触子の反射波立上がり方向を記
憶しておく手段、該測定対象物における反射波の最大エ
コー高さを基に該反射波に対し上記反射波立上がり方向
と反対の方向にしきい値を設定する手段、該しきい値を
最初に超える反射波の波形の最大値を示す時刻を得て、
この時刻から3/4周期を遡った時刻を該反射波の受信
時刻とする手段を設けたことにある。Further, another feature of the present invention is to obtain an ultrasonic wave transmission time from the front surface of the object to be measured and a reflected wave reception time of the ultrasonic wave from the rear surface of the object to be measured, and calculate from the interval between the both times. In measuring the wall thickness of the measuring object, the rising direction of the reflected wave of the ultrasonic probe that receives the ultrasonic wave on the surface of the measuring object and receives the reflected wave from the back surface of the measuring object is stored. Means for setting, a means for setting a threshold value in a direction opposite to the rising direction of the reflected wave with respect to the reflected wave based on the maximum echo height of the reflected wave in the object to be measured, reflection that first exceeds the threshold value Get the time that shows the maximum value of the waveform of the wave,
There is provided a means for setting the time, which is 3/4 cycle from this time, as the reception time of the reflected wave.
【0013】[0013]
【発明の実施の形態】以下、本発明の一実施形態を図を
用いて説明する。図1は本発明の第一の実施例になる超
音波による肉厚測定装置の構成図である。1は肉厚測定
対象物、2は超音波探触子、3は送信部、4は受信部、
5は計測部、6は演算部、7は記憶部、8は入力部、9
は表示部である。また、10は送信波、11は底面反射
波を示す。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an ultrasonic wall thickness measuring apparatus according to a first embodiment of the present invention. 1 is an object for measuring wall thickness, 2 is an ultrasonic probe, 3 is a transmitter, 4 is a receiver,
5 is a measurement unit, 6 is a calculation unit, 7 is a storage unit, 8 is an input unit, 9
Is a display unit. Further, 10 indicates a transmitted wave and 11 indicates a bottom reflected wave.
【0014】超音波は、送信部3から超音波探触子2に
電圧を加えることによって発生し、測定対象物1の内部
で反射と透過をして伝播する。その後、測定対象物1か
らの底面反射波11は超音波探触子2で受信され、受信
部4で超音波の強度に比例した電圧値に変換される。計
測部5は、底面反射波11の反射時間とその時間に対す
る電圧値を計測する。計測された反射時間と電圧値及び
記憶部7に記憶された底面反射波から、演算部6で路程
を演算し、その路程と入力部8から予じめ記憶部7に記
憶された測定対象物の音速値とから肉厚値を算出し、そ
の結果を表示部9に表示すると共に、記憶部7にも記憶
する。なお入力部8は、測定対象物の音速値の他に材
質,測定回数等を入力する時に必要なものである。The ultrasonic wave is generated by applying a voltage from the transmitting unit 3 to the ultrasonic probe 2, and propagates by being reflected and transmitted inside the measuring object 1. After that, the bottom surface reflected wave 11 from the measuring object 1 is received by the ultrasonic probe 2 and converted into a voltage value proportional to the intensity of the ultrasonic wave by the receiving unit 4. The measuring unit 5 measures the reflection time of the bottom surface reflected wave 11 and the voltage value for that time. From the measured reflection time and voltage value and the bottom surface reflected wave stored in the storage unit 7, the calculation unit 6 calculates the road length, and the measurement target stored in the storage unit 7 in advance from the road length and the input unit 8 The wall thickness value is calculated from the sound velocity value of, and the result is displayed on the display unit 9 and also stored in the storage unit 7. The input unit 8 is necessary for inputting the material, the number of times of measurement, etc., in addition to the sound velocity value of the measurement object.
【0015】次に、上記構成からなる本発明の第一の実
施形態の動作について説明する。図2は、本発明におけ
る肉厚測定方法のフロー図、図3は超音波による測定に
より生じた底面反射波である。図4は、図3で示したイ
部に示す底面反射波の拡大図である。Next, the operation of the first embodiment of the present invention having the above configuration will be described. FIG. 2 is a flow chart of the wall thickness measuring method in the present invention, and FIG. 3 is a bottom surface reflected wave generated by ultrasonic measurement. FIG. 4 is an enlarged view of the bottom surface reflected wave shown in the part A in FIG.
【0016】本発明における超音波による肉厚測定方法
においては、まず、表裏面が平滑で内部減衰率が小さい
試験片に対して超音波による入射を行った時に発生する
図5に示すような底面反射波16,測定対象物の材質に
おける音速C,超音波の周波数,しきい値係数α,底面
反射波の立上がり方向など、肉厚値を算出する際に必要
なデータを入力部8より入力し記憶部7(図1)に記憶
させておく(図2のステップ(S)1)。In the method of measuring wall thickness by ultrasonic waves according to the present invention, first, a bottom surface as shown in FIG. 5 which is generated when ultrasonic waves are incident on a test piece whose front and back surfaces are smooth and which has a small internal attenuation factor. Input the data necessary for calculating the wall thickness value such as the reflected wave 16, the sound velocity C in the material of the measurement object, the frequency of the ultrasonic wave, the threshold coefficient α, the rising direction of the bottom reflected wave from the input unit 8. It is stored in the storage unit 7 (FIG. 1) (step (S) 1 in FIG. 2).
【0017】底面反射波の立上がり方向は、超音波探触
子2の固有の特性である。即ち、表示部9に示される図
4のような底面反射波11は、超音波探触子2を交換す
ると、その波形の立上がり方向が反転していることがあ
る。そこで、使用しようとしている超音波探触子2にお
ける底面反射波の波形の立上がり方向を、波形が奇麗に
表れる試験片で測定しておいて、後述するしきい値の設
定に用いることとする。The rising direction of the bottom reflected wave is a characteristic peculiar to the ultrasonic probe 2. That is, when the ultrasonic probe 2 is replaced, the bottom surface reflected wave 11 shown in FIG. 4 on the display unit 9 may have its waveform rising direction inverted. Therefore, the rising direction of the waveform of the bottom surface reflected wave in the ultrasonic probe 2 to be used is measured with a test piece in which the waveform appears neatly and used for setting the threshold value described later.
【0018】しきい係数αは、図6に示す該試験片の底
面反射波の最大エコー高さをEp1,底面反射波の立上
がりから3/4周期目のエコー高さをEtとすると底面
反射波と下式(式(2))に示す実験により確立した実
験式により求められる。なお、このしきい値係数αの設
定の考え方は後述する。The threshold coefficient α is the bottom reflected wave when the maximum echo height of the bottom reflected wave of the test piece shown in FIG. 6 is Ep1, and the echo height at the 3 / 4th cycle from the rising of the bottom reflected wave is Et. And the empirical formula established by the experiment shown in the following formula (Formula (2)). The concept of setting the threshold coefficient α will be described later.
【0019】
α=(Et/Ep1)−0.1 …(2)
S2で超音波探触子2を測定対象物1の測定位置へ移動
し、S3で超音波探触子2により測定対象物1に対して
超音波を入射し、S4で超音波を入射することにより得
られる送信波10と図3に示すような底面反射波11を
記憶部7に取り込む。S5で図4に示すように取り込ん
だ底面反射波11からエコー高さのピーク値(最大エコ
ー高さ)Epを検出し、S6において、予めS1で記憶
させておいたしきい値係数α、底面反射波の立上がり方
向等を記憶部7から呼び出す。S7で、ピーク値(最大
エコー高さ)Epと入力部8より入力したしきい値係数
αからしきい値E1が下式の演算により求められる。な
お、S6以降は、図1の演算部6で実行される。Α = (Et / Ep1) −0.1 (2) The ultrasonic probe 2 is moved to the measurement position of the measuring object 1 in S2, and the measuring object is measured by the ultrasonic probe 2 in S3. The ultrasonic wave is incident on the first ultrasonic wave 1, and the transmission wave 10 obtained by the ultrasonic wave on S4 and the bottom surface reflected wave 11 as shown in FIG. In S5, the peak value (maximum echo height) Ep of the echo height is detected from the bottom reflected wave 11 captured as shown in FIG. 4, and in S6, the threshold coefficient α and the bottom reflection previously stored in S1 are stored. The wave rising direction and the like are called from the storage unit 7. In step S7, the threshold value E1 is calculated from the peak value (maximum echo height) Ep and the threshold coefficient α input from the input unit 8 by the following equation. In addition, after S6, the calculation unit 6 of FIG.
【0020】
E1=α・Ep …(3)
S8で、底面反射波16(図6)の立上がり方向と逆符
号方向つまり、この場合は負方向にしきい値E1を設定
する。S9で、しきい値E1と底面反射波11の最初の
交点uを検出する。S10で、波形判定のための時間軸
上の任意の時間(ゲート)として交点uを時刻の起点と
して1周期分のゲート14を時間軸上に設定して、S1
1でゲート14間のエコー高さのピーク値Esとその時
刻Tvを検出する。E1 = α · Ep (3) At S8, the threshold value E1 is set in the direction opposite to the rising direction of the bottom surface reflected wave 16 (FIG. 6), that is, in the negative direction in this case. In S9, the first intersection point u between the threshold value E1 and the bottom surface reflected wave 11 is detected. In S10, the gate 14 for one cycle is set on the time axis with the intersection u as the starting point of time as an arbitrary time (gate) on the time axis for waveform determination.
At 1, the peak value Es of the echo height between the gates 14 and its time Tv are detected.
【0021】S12で、底面反射波11のピーク値Es
となる時刻Tvから底面反射波11の周波数を基に3/
4周期迄の時間tmを遡った時刻を底面反射波11の立
上がり時刻(反射波受信時刻)Tsとする。At S12, the peak value Es of the bottom reflected wave 11 is obtained.
From the time Tv at which 3 /
The time point traced back to the time tm up to four cycles is defined as the rising time point (reflected wave reception time point) Ts of the bottom surface reflected wave 11.
【0022】S13で、図5に示すように送信波(図示
していない)のしきい値から立上がり時刻T1を求め
る。S14で、S13で得た送信波の立上がり時刻T1
を送信時刻とし、S12で得た底面反射波の立上がり時
刻Tsを反射波受信時刻として、超音波の測定対象物に
おける時間(路程)tを算出する。In S13, the rising time T1 is obtained from the threshold value of the transmission wave (not shown) as shown in FIG. At S14, the rising time T1 of the transmission wave obtained at S13
Is the transmission time, and the rising time Ts of the bottom surface reflected wave obtained in S12 is the reflected wave reception time, and the time (road length) t of the ultrasonic measurement object is calculated.
【0023】S15で前述の式(1)より時間t,音速
Cより肉厚Dを算出する。S16で測定続行であればS
3に戻って測定位置を移動して測定を行う。In step S15, the wall thickness D is calculated from the time t and the sound velocity C from the above equation (1). If measurement is continued in S16, S
Returning to step 3, the measurement position is moved and measurement is performed.
【0024】さて、本発明者らの実験によれば、図4に
おいて、エコー高さのピーク値(最大エコー高さ)Ep
を示す波形は得やすいものの、散乱波の影響を受けて、
ピーク値Epを示す時刻は異なったところに表れ、また
林状エコーの影響を受けて反射波の立上がりは小さくな
る。しかしながら、反射波の立上がりから1/2周期目
と1周期目の間の波形は散乱波や林状エコーの影響を受
けず、その波形がピーク値Esを示す時刻Tvは極めて
揃っていることを見出した。Now, according to the experiments by the present inventors, in FIG. 4, the peak value of the echo height (maximum echo height) Ep
Although it is easy to obtain a waveform that shows,
The times at which the peak value Ep is displayed appear at different places, and the rise of the reflected wave becomes small under the influence of the forest echo. However, the waveforms between the ½th cycle and the first cycle from the rise of the reflected wave are not affected by the scattered wave and the forest echo, and the time Tv at which the waveform shows the peak value Es is extremely uniform. I found it.
【0025】そこで、この時刻Tvを持つ波形の入手を
最大エコー高さEpからしきい値E1を得てゲート14
を設定すると、波形から容易にピーク値Esの波形を得
て、時刻Tvを得ることができた。Therefore, in order to obtain the waveform having the time Tv, the threshold value E1 is obtained from the maximum echo height Ep to obtain the gate 14
By setting, the waveform of the peak value Es can be easily obtained from the waveform and the time Tv can be obtained.
【0026】ここで、前述の式(2)の決めた考え方で
あるが、式(2)により得たしきい値係数αは式(3)
より得られるしきい値E1が
0<E1<Es …(4)
の値をとり、ピーク値Esの波形を容易に得やすいこと
による。The threshold coefficient α obtained by the equation (2) is the equation (3), which is the idea determined by the equation (2).
This is because the threshold value E1 obtained from this takes a value of 0 <E1 <Es (4), and the waveform of the peak value Es can be easily obtained.
【0027】即ち、反射波の立上がり時刻そのものは分
らないので、試験片で得ておいた超音波探触子2固有の
立上がり方向(特性)を基に、その反対方向にしきい値
E1設定する。このしきい値E1を超える最初の波形を
反射波の立上がりから1/2周期目と1周期目の波形、
つまり、前述した散乱波や林状エコーの影響を受けずピ
ーク値Esの時刻Tvが揃っている波形とすることがで
きる。That is, since the rising time of the reflected wave itself is not known, the threshold value E1 is set in the opposite direction based on the rising direction (characteristic) peculiar to the ultrasonic probe 2 obtained in the test piece. The first waveform exceeding this threshold value E1 is the waveform of the 1/2 cycle and the 1st cycle from the rise of the reflected wave,
That is, it is possible to obtain a waveform in which the time Tv of the peak value Es is uniform without being affected by the scattered wave or the forest echo described above.
【0028】超音波探触子としては、表示部9に映され
る反射波が比較的長く持続される高感度型のものと、早
目に減衰してしまう高分解能型があって、測定対象物1
における超音波の吸収度合に応じて、使い分けられてい
るが、上記いづれの型の超音波探触子であっても、それ
らは、底面反射波の立上がり状況では同様な傾向を示
す。よって、本発明に従って、このしきい値E1を用い
てピーク値Esを持つ波形を得て底面反射波の立上がり
時刻Tsを求め、肉厚Dを算出することができる。As the ultrasonic probe, there are a high-sensitivity type in which the reflected wave reflected on the display unit 9 lasts for a relatively long time and a high-resolution type in which the reflected wave is attenuated early. Thing 1
Depending on the degree of absorption of ultrasonic waves in, the ultrasonic probes of any of the above types show the same tendency in the rising condition of the bottom surface reflected wave. Therefore, according to the present invention, it is possible to obtain the waveform having the peak value Es by using the threshold value E1 to obtain the rising time Ts of the bottom surface reflected wave and to calculate the wall thickness D.
【0029】また、超音波探触子2の固有の発振周波数
に基づいて時刻Tvから3/4周期を遡れば、反射波の
立上がり時刻Tsを反射波受信時刻として容易に入手す
ることができる訳である。Further, if the 3/4 cycle is traced back from the time Tv based on the oscillation frequency peculiar to the ultrasonic probe 2, the rising time Ts of the reflected wave can be easily obtained as the reflected wave receiving time. Is.
【0030】高分解能型の超音波探触子を用い、散乱波
や林状エコーが発生しやすい表裏面の粗い測定対象物の
肉厚を測定した結果、ノギスでの肉厚測定平均値(30
回)が19.99mmであり、従来方法により測定した
肉厚測定平均値(30回)は17.32mmであった
が、本発明方法により測定した肉厚測定平均値(30
回)は19.76mmで、ノギスによる測定時を目安と
した場合、従来方法と比較してより一層誤差の少ない結
果を得た。A high resolution ultrasonic probe was used to measure the wall thickness of the object to be measured with rough front and back surfaces where scattered waves and forest echoes are likely to occur.
The number of times was 19.99 mm, and the average value of wall thickness measurement (30 times) measured by the conventional method was 17.32 mm, but the average value of wall thickness measurement (30 times) measured by the method of the present invention was 30.
The number of turns is 19.76 mm, and when the time of measurement with a caliper is used as a guide, a result with even smaller error was obtained compared to the conventional method.
【0031】[0031]
【0032】さらに、上記の実施形態では送信波と1回
目(一次)における測定対象物の底面反射波を利用して
路程を求めているが、送信波と2回目(2次)以降及び
反射波同士たとえば1回目(一次)と2回目(二次)に
おける測定対象物の底面反射波を利用して路程を求めて
もよい。Further, in the above embodiment, the path length is obtained using the transmitted wave and the bottom reflected wave of the measurement object at the first time (first order). For example, the path length may be obtained by utilizing the bottom surface reflected waves of the measurement object between the first time (first order) and the second time (secondary).
【0033】なお、上記実施形態で示した機器構成部の
送信部3,受信部4,計測部5の部分を超音波探触子2
と合体させたものを用い、演算部6と記憶部7の部分を
パソコン本体、入力部8をキーボード、表示部9をディ
スプレイとしてもよい。It should be noted that the ultrasonic probe 2 is replaced by the transmitter 3, receiver 4, and measuring section 5 of the device configuration section shown in the above embodiment.
The computer unit may be used as the calculation unit 6 and the storage unit 7, the input unit 8 may be a keyboard, and the display unit 9 may be a display.
【0034】[0034]
【発明の効果】以上説明したように、本発明によれば、
超音波による肉厚測定において林状エコーや散乱波の影
響を受けても、正確な肉厚測定ができる。As described above, according to the present invention,
Accurate wall thickness measurement is possible even when affected by forest echo and scattered waves in wall thickness measurement by ultrasonic waves.
【図1】本発明の一実施例になる超音波による肉厚測定
装置の構成図である。FIG. 1 is a configuration diagram of an ultrasonic wall thickness measuring apparatus according to an embodiment of the present invention.
【図2】本発明における第一の実施形態を示したフロー
図である。FIG. 2 is a flowchart showing a first embodiment of the present invention.
【図3】超音波による測定により生じた底面反射波を示
す図である。FIG. 3 is a diagram showing bottom surface reflected waves generated by ultrasonic measurement.
【図4】図3に示したイ部に示す底面反射波の拡大図で
ある。FIG. 4 is an enlarged view of a bottom surface reflected wave shown in a part shown in FIG.
【図5】超音波による測定により生じた送信波と底面反
射波を示す図である。FIG. 5 is a diagram showing a transmitted wave and a bottom surface reflected wave generated by ultrasonic measurement.
【図6】図5に示したロ部に示す底面反射波の拡大図で
ある。FIG. 6 is an enlarged view of a bottom surface reflected wave shown in a portion B shown in FIG.
1…測定対象物 2…超音波探触子 3…送信部 4…受信部 5…計測部 6…演算部 7…記憶部 8…入力部 9…表示部 11,16,17…底面反射波 14…ゲート 15…送信波 18…しきい値 1 ... Object to be measured 2 ... Ultrasonic probe 3 ... Transmitter 4 ... Receiver 5 ... Measuring unit 6 ... Calculation unit 7 ... Storage 8 ... Input section 9 ... Display 11, 16, 17 ... Bottom reflected wave 14 ... Gate 15 ... transmitted wave 18 ... Threshold
フロントページの続き (72)発明者 冨永 徹也 茨城県土浦市神立東二丁目28番4号 日 立テクノエンジニアリング株式会社 土 浦事業所内 (72)発明者 山口 敏之 茨城県土浦市神立東二丁目28番4号 日 立テクノエンジニアリング株式会社 土 浦事業所内 (56)参考文献 特開 平10−132927(JP,A) 特開 平2−134511(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 17/00 - 17/08 G01N 29/00 - 29/28 G01S 1/72 - 1/82 G01S 3/80 - 3/86 G01S 5/18 - 5/30 G01S 7/52 - 7/64 G01S 15/00 - 15/96 Front Page Continuation (72) Inventor Tetsuya Tominaga 2-28-4 Shinto Higashi, Tsuchiura-shi, Ibaraki Hirate Techno Engineering Co., Ltd. Tsuchiura Works (72) Toshiyuki Yamaguchi 2-28 Shinto Higashi, Tsuchiura, Ibaraki Prefecture No. 4 Nitrate Techno Engineering Co., Ltd. Tsuchiura Works (56) References JP 10-132927 (JP, A) JP 2-134511 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01B 17/00-17/08 G01N 29/00-29/28 G01S 1/72-1/82 G01S 3/80-3/86 G01S 5/18-5/30 G01S 7/52- 7/64 G01S 15/00-15/96
Claims (3)
と該測定対象物の裏面からの超音波の反射波受信時刻を
得て、両時刻の間隔から該測定対象物の肉厚を測定する
超音波による肉厚測定方法において、 平滑な表裏面を持つ試験片を用い超音波探触子の反射波
立上がり方向を得ておき、該超音波探触子により測定対
象物における反射波の最大エコー高さを得て、該反射波
に対し上記反射波立上がり方向とは反対の方向に上記最
大エコー高さを基にしきい値を設定し、このしきい値を
最初に超える反射波の波形における最大値を示す時刻を
得て、この時刻から3/4周期を遡った時刻を反射波受
信時刻とすることを特徴とする超音波による肉厚測定方
法。1. Obtaining the transmission time of ultrasonic waves from the front surface of an object to be measured and the reception time of reflected waves of ultrasonic waves from the back surface of the object to be measured, the wall thickness of the object to be measured is calculated from the interval between both times. In the thickness measurement method using ultrasonic waves to be measured, the rising direction of the reflected wave of the ultrasonic probe is obtained using a test piece with smooth front and back surfaces, and the reflected wave of the reflected wave on the measurement object is measured by the ultrasonic probe. The maximum echo height is obtained, a threshold value is set based on the maximum echo height in the direction opposite to the reflected wave rising direction with respect to the reflected wave, and the waveform of the reflected wave that first exceeds this threshold value. In the method of measuring wall thickness by ultrasonic wave, the time at which the maximum value is obtained is obtained, and the time that is 3/4 cycle back from this time is set as the reflected wave reception time.
と該測定対象物の裏面からの超音波の反射波受信時刻を
得て、両時刻の間隔から該測定対象物の肉厚を測定する
ものにおいて、 測定対象物の表面に超音波を入射し該測定対象物の裏面
からの反射波を受信する超音波探触子の反射波立上がり
方向を記憶しておく手段、該測定対象物における反射波
の最大エコー高さを基に該反射波に対し上記反射波立上
がり方向と反対の方向にしきい値を設定する手段、該し
きい値を最初に超える反射波の波形の最大値を示す時刻
を得て、この時刻から3/4周期を遡った時刻を該反射
波の受信時刻とする手段を設けたことを特徴とする超音
波による肉厚測定装置。2. An ultrasonic wave transmission time from the front surface of the measurement object and a reflected wave reception time of the ultrasonic wave from the back surface of the measurement object are obtained, and the wall thickness of the measurement object is calculated from the interval between the both times. In the measurement, a means for storing the rising direction of the reflected wave of the ultrasonic probe that receives ultrasonic waves from the back surface of the measurement object and that receives ultrasonic waves on the surface of the measurement object, the measurement object Means for setting a threshold value in the direction opposite to the rising direction of the reflected wave with respect to the reflected wave based on the maximum echo height of the reflected wave, and showing the maximum value of the waveform of the reflected wave that first exceeds the threshold value An ultrasonic wall thickness measuring device comprising means for obtaining a time and setting a time obtained by tracing back a 3/4 cycle from this time as a reception time of the reflected wave.
波探触子の反射波立上がり方向は、平滑な表裏面を持つ
試験片を用いて得たものであることを特徴とする超音波
による肉厚測定装置。3. The ultrasonic wave according to claim 2, wherein the rising direction of the reflected wave of the ultrasonic probe is obtained by using a test piece having smooth front and back surfaces. Wall thickness measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05606399A JP3510137B2 (en) | 1999-03-03 | 1999-03-03 | Ultrasonic thickness measurement method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05606399A JP3510137B2 (en) | 1999-03-03 | 1999-03-03 | Ultrasonic thickness measurement method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000249534A JP2000249534A (en) | 2000-09-14 |
JP3510137B2 true JP3510137B2 (en) | 2004-03-22 |
Family
ID=13016636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05606399A Expired - Fee Related JP3510137B2 (en) | 1999-03-03 | 1999-03-03 | Ultrasonic thickness measurement method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3510137B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5904154B2 (en) * | 2013-04-02 | 2016-04-13 | Jfeスチール株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
JP7056146B2 (en) * | 2017-12-27 | 2022-04-19 | セイコーエプソン株式会社 | Ultrasonic measuring device and measuring method |
WO2021176630A1 (en) * | 2020-03-05 | 2021-09-10 | オリンパス株式会社 | Ultrasonic measurement device |
-
1999
- 1999-03-03 JP JP05606399A patent/JP3510137B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000249534A (en) | 2000-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090235748A1 (en) | Acoustic method and system of measuring material loss from a solid structure, uses thereof and a software product | |
US7240554B2 (en) | Method and device for sizing a crack in a workpiece using the ultrasonic pulse-echo technique | |
JPS6156450B2 (en) | ||
JP3510137B2 (en) | Ultrasonic thickness measurement method and device | |
JP3421412B2 (en) | Pipe thinning measurement method and equipment | |
JP2001343365A (en) | Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet | |
RU2231753C1 (en) | Procedure measuring thickness of article with use of ultrasonic pulses | |
US5929338A (en) | Thickness measurement of in-ground culverts | |
Gajdacsi et al. | High accuracy wall thickness loss monitoring | |
JP2697508B2 (en) | Ultrasonic thickness measurement method of furnace wall | |
RU2714868C1 (en) | Method of detecting pitting corrosion | |
JP2007309794A (en) | Apparatus and method for measuring plate thickness | |
JPH03191297A (en) | Method and device for measuring kinetic characteristics | |
JPS61215908A (en) | Piping inspecting instrument | |
JP3821035B2 (en) | Material thickness measurement method | |
JP2006250595A (en) | Ultrasonic measuring method and device | |
JP3632084B2 (en) | Ultrasonic thickness measurement method | |
Gushchina et al. | Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy | |
RU2195635C1 (en) | Method of measurement of level of liquid and loose media | |
JP2001004353A (en) | Method for measuring diameter of reinforcing bar ultrasonically | |
JPH03167418A (en) | Clad-thickness measuring apparatus | |
JPH068728B2 (en) | Measuring method of ultrasonic wave propagation distance | |
JPH09288022A (en) | Axial stress measuring instrument for bolt | |
JPH0365608A (en) | Method and apparatus for measuring thickness of scale in piping | |
RU1820233C (en) | Method for determination of acoustic resistance in transient layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3510137 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |