JP2000338092A - Method for ultrasonic inspection - Google Patents

Method for ultrasonic inspection

Info

Publication number
JP2000338092A
JP2000338092A JP11148106A JP14810699A JP2000338092A JP 2000338092 A JP2000338092 A JP 2000338092A JP 11148106 A JP11148106 A JP 11148106A JP 14810699 A JP14810699 A JP 14810699A JP 2000338092 A JP2000338092 A JP 2000338092A
Authority
JP
Japan
Prior art keywords
ultrasonic wave
incident
ultrasonic
wave
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11148106A
Other languages
Japanese (ja)
Other versions
JP4131598B2 (en
Inventor
Akira Tanaka
亮 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14810699A priority Critical patent/JP4131598B2/en
Publication of JP2000338092A publication Critical patent/JP2000338092A/en
Application granted granted Critical
Publication of JP4131598B2 publication Critical patent/JP4131598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method for ultrasonic inspection capable of accurately measuring the length or flaw inspection. SOLUTION: A pulse-like transversal wave 4 having a vibrating direction coincident with a crystal growing direction ([001] direction) of a material 1 to be inspected is incident from one side 3 of a surface 2 to be inspected. In this case, the wave 4 is incident perpendicularly to a surface of the material 1. The wave 4 incident to the material 1 is propagated through the material 1, and arrives at another side 5 of the surface 2. The wave 4 arriving at the side 5 of the surface 2 is reflected at the side 5, propagated toward one side 3 of the incident position, and arrives at the one side 3 incident with the wave 4. Accordingly, a propagating time from when the wave 4 is incident from the one side 3 of the surface 2 to when the wave 4 is arrived at the one side 3 is measured, thereby measuring a thickness (=propagating time ×propagating speed) of the surface 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一方向凝固鋳物又
は単結晶鋳物等の、結晶成長に方向性を有する被検査物
を測長、探傷する超音波検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection method for measuring and flaw-detecting an inspection object having directionality in crystal growth, such as a directionally solidified casting or a single crystal casting.

【0002】[0002]

【従来の技術】従来、鋳造成形品の肉厚測定や、孔食等
の探傷には、パルス反射式の超音波検査方法が用いられ
ている。このパルス反射式の超音波検査方法では、探触
子が発生させるパルス状の縦波超音波を被検査物の表面
から入射させ、その縦波超音波が欠陥部あるいは被検査
物の入射面と反対側の端面といった境界面にて反射さ
れ、反射されて戻ってくる縦波超音波を検知することに
より観測して測長あるいは探傷を行う。
2. Description of the Related Art Conventionally, a pulse reflection type ultrasonic inspection method has been used for measuring the thickness of a cast molded product and detecting flaws such as pitting corrosion. In this pulse reflection type ultrasonic inspection method, a pulse-like longitudinal ultrasonic wave generated by a probe is made incident from the surface of the inspection object, and the longitudinal ultrasonic wave is transmitted to a defect or an incident surface of the inspection object. The length measurement or flaw detection is performed by detecting and detecting longitudinal ultrasonic waves that are reflected at a boundary surface such as an end surface on the opposite side and are reflected back.

【0003】近年、一方向凝固鋳物又は単結晶鋳物とい
った、結晶成長に方向性を有する素材が例えばガスター
ビン等のターボ流体機械の中空翼部材等に採用されつつ
ある。これらの一方向凝固鋳物又は単結晶鋳物による中
空翼部材は、結晶の成長方向が翼高さ方向と一致するよ
うに、鋳型を炉中にて徐々に引き下げ、凝固の進行を制
御しながら製造される。このため、中空翼部材は、鋳型
内に溶湯が充満した不安定な状態で炉中に長時間保持さ
れるので、中空部を形成するための中子が移動し翼部の
肉厚が変動することがある。従って、中空翼部材の品質
管理上、非破壊による肉厚測定や孔食等の探傷を精度よ
く行うことが極めて重要となる。
[0003] In recent years, materials having directionality in crystal growth, such as unidirectionally solidified castings or single crystal castings, are being used for hollow blade members of turbo fluid machines such as gas turbines. The hollow wing members made of these unidirectionally solidified castings or single crystal castings are manufactured while gradually lowering the mold in a furnace so as to control the progress of solidification so that the crystal growth direction matches the blade height direction. You. Therefore, the hollow wing member is held in the furnace in an unstable state in which the molten metal is filled in the mold for a long time, so that the core for forming the hollow portion moves and the thickness of the wing portion fluctuates. Sometimes. Therefore, it is extremely important for quality control of the hollow blade member to accurately perform nondestructive wall thickness measurement and flaw detection such as pitting corrosion.

【0004】[0004]

【発明が解決しようとする課題】本発明は、結晶成長に
方向性を有する被検査物に対して超音波を入射させ、反
射された超音波に基づいて、高精度に測長あるいは探傷
を行うことが可能な超音波検査方法を提供することを課
題としている。
SUMMARY OF THE INVENTION According to the present invention, an ultrasonic wave is made incident on an object having directionality in crystal growth, and length measurement or flaw detection is performed with high accuracy based on the reflected ultrasonic wave. It is an object of the present invention to provide an ultrasonic inspection method capable of performing the method.

【0005】[0005]

【課題を解決するための手段】本発明者らは、高精度な
測定を可能とする超音波検査方法について鋭意研究を行
った結果、以下のような事実を新たに見出した。一方向
凝固鋳物又は単結晶鋳物等の被検査物は結晶方位による
異方性を有し、結晶の成長方向を[001]方向とした
場合、結晶の成長方向に垂直な平面である(001)面
上での結晶方位は結晶粒子毎に異なる。従って、縦波超
音波を被検査物の表面から入射させた場合、超音波によ
る結晶粒子の振動方向は、超音波の進行方向と平行とな
り、(001)面上での結晶異方性の影響を大きく受け
ることになる。一方、縦波超音波の伝播速度はヤング率
の大きさに応じて変化するが、例えば、ガスタービンの
動翼に使用されるNi基超合金のヤング率は、図6に示
されるような、結晶方位依存性を示す。従って、このよ
うなヤング率の結晶方位依存性に起因して縦波超音波を
入射させる方向に応じて伝播速度が変化し、測定値に含
まれる誤差が大きくなってしまう。上述したNi基超合
金の場合、ヤング率の変化量から推定すれば、超音波の
伝播速度が平均値±15%程度も変化してしまうことに
なり、従来の超音波検査方法では、結晶成長に方向性を
有する被検査物に対して高精度に測長、探傷を行うこと
は困難であることが見出された。
Means for Solving the Problems The present inventors have conducted intensive studies on an ultrasonic inspection method capable of performing highly accurate measurement, and as a result, have newly found the following facts. An object to be inspected such as a one-way solidification casting or a single crystal casting has anisotropy depending on the crystal orientation, and is a plane perpendicular to the crystal growth direction when the crystal growth direction is the [001] direction (001). The crystal orientation on the plane differs for each crystal grain. Therefore, when the longitudinal ultrasonic wave is incident from the surface of the inspection object, the vibration direction of the crystal particles by the ultrasonic wave becomes parallel to the traveling direction of the ultrasonic wave, and the influence of the crystal anisotropy on the (001) plane. Will be greatly affected. On the other hand, the propagation velocity of longitudinal ultrasonic waves changes according to the magnitude of the Young's modulus. For example, the Young's modulus of a Ni-based superalloy used for a moving blade of a gas turbine is as shown in FIG. This shows the crystal orientation dependence. Therefore, due to such crystal orientation dependence of the Young's modulus, the propagation velocity changes according to the direction in which the longitudinal ultrasonic wave is incident, and the error included in the measured value increases. In the case of the above-described Ni-based superalloy, the propagation speed of the ultrasonic wave changes by an average value of about ± 15% when estimated from the amount of change in the Young's modulus. It has been found that it is difficult to perform length measurement and flaw detection with high accuracy on an inspection object having a directivity.

【0006】かかる研究結果を踏まえ、請求項1に記載
の本発明による超音波検査方法は、結晶成長に方向性を
有する被検査物に対して超音波を入射させ、被検査物内
で反射された超音波に基づいて、超音波が反射された位
置までの距離を測定する超音波検査方法であって、被検
査物に対して、被検査物の結晶成長方向と一致する振動
方向をもった横波超音波を入射させることを特徴として
いる。
[0006] Based on the above research results, the ultrasonic inspection method according to the present invention according to the first aspect of the present invention applies ultrasonic waves to an object having directionality in crystal growth, and reflects the ultrasonic waves inside the object. An ultrasonic inspection method for measuring a distance to a position where the ultrasonic wave is reflected, based on the ultrasonic wave, wherein the object has a vibration direction that coincides with a crystal growth direction of the object. It is characterized in that a transverse ultrasonic wave is incident.

【0007】上述の請求項1に記載の超音波検査方法に
よれば、結晶成長方向と一致する振動方向を有する横波
超音波を被検査物に入射させると、結晶粒子は結晶成長
方向に振動し、結晶成長方向に垂直な面における結晶異
方性の影響を受けることなく、横波超音波は入射方向へ
進行する。従って、横波超音波を入射させる方向に拘わ
らず横波超音波は略一定の音速にて伝播することにな
り、伝播速度の変動による測長誤差の発生が極めて効果
的に抑制される。
According to the ultrasonic inspection method of the first aspect, when a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction is incident on the inspection object, the crystal particles vibrate in the crystal growth direction. The shear wave travels in the incident direction without being affected by the crystal anisotropy in a plane perpendicular to the crystal growth direction. Therefore, regardless of the direction in which the shear wave ultrasonic wave is incident, the shear wave ultrasonic wave propagates at a substantially constant sound speed, and the occurrence of a length measurement error due to a change in the propagation speed is extremely effectively suppressed.

【0008】また、被検査物は、ターボ形流体機械の翼
部材であり、結晶成長方向と一致する振動方向をもった
横波超音波を、翼部材の表面に対して垂直に入射させる
ことが好ましい。このように、ターボ形流体機械の翼部
材に対して表面に対して垂直に横波超音波を入射させる
ことで、翼部の肉厚を正確に測定することが可能とな
る。
The object to be inspected is a blade member of a turbo-type fluid machine, and it is preferable that a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction is perpendicularly incident on the surface of the blade member. . In this way, by injecting a transverse ultrasonic wave into the wing member of the turbo type fluid machine perpendicularly to the surface, it is possible to accurately measure the thickness of the wing portion.

【0009】請求項3に記載の本発明による超音波検査
方法は、結晶成長に方向性を有する被検査物に対して超
音波を入射させ、被検査物内で反射された超音波に基づ
いて、被検査物を探傷する超音波検査方法であって、被
検査物に対して、被検査物の結晶成長方向と一致する振
動方向を有する横波超音波を入射させることを特徴とし
ている。
According to a third aspect of the present invention, there is provided an ultrasonic inspection method according to the present invention, in which an ultrasonic wave is made incident on a test object having directionality in crystal growth, and based on the ultrasonic wave reflected in the test object. An ultrasonic inspection method for flaw-detecting an object to be inspected, characterized in that a transverse ultrasonic wave having a vibration direction coinciding with a crystal growth direction of the object to be inspected is incident on the object to be inspected.

【0010】上述の請求項3に記載の超音波検査方法に
よれば、結晶成長方向と一致する振動方向を有する横波
超音波を被検査物に入射させると、結晶粒子は結晶成長
方向に振動し、結晶成長方向に垂直な面における結晶異
方性の影響を受けることなく、横波超音波は入射方向へ
進行する。従って、横波超音波を入射させる方向に拘わ
らず横波超音波は略一定の音速にて伝播することになる
ので、欠陥部の位置等の探傷結果に伝播速度の変動に起
因する誤差が含まれてしまうことが極めて効果的に抑制
される。
According to the ultrasonic inspection method of the third aspect, when a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction is incident on the inspection object, the crystal particles vibrate in the crystal growth direction. The shear wave travels in the incident direction without being affected by the crystal anisotropy in a plane perpendicular to the crystal growth direction. Therefore, regardless of the direction in which the shear wave ultrasonic wave is incident, the shear wave ultrasonic wave propagates at a substantially constant sound speed, so that a flaw detection result such as the position of a defect includes an error due to a fluctuation in the propagation speed. Is extremely effectively suppressed.

【0011】また、結晶成長方向と一致する振動方向を
もった横波超音波を発生させる超音波探触子と、凸面を
有する遅延部材とを用い、凸面を被検査物に当接させる
と共に、遅延部材を介して、被検査物に横波超音波を入
射させることが好ましい。この場合には、被検査物の表
面が凹面形状を有する場合においても、所望の方向に対
して正確に横波超音波を入射させることが可能となる。
Further, an ultrasonic probe for generating a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction and a delay member having a convex surface are used. It is preferable that the shear wave ultrasonic wave is incident on the inspection object via the member. In this case, even when the surface of the object to be inspected has a concave shape, it becomes possible to accurately input the transverse ultrasonic waves in a desired direction.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。なお、図面の説明において同一の要素に
は同一の符号を付しており、重複する説明は省略する。
Embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0013】(第1実施形態)図1は本発明による超音
波検査方法の第1実施形態を説明するための概念図であ
り、図2(a)及び図2(b)は、本発明による超音波
検査方法の第1実施形態で用いられる超音波探触子を示
すものであり、図2(a)は超音波探触子の縦断面図、
図2(b)は超音波探触子の横断面図である。
(First Embodiment) FIG. 1 is a conceptual diagram for explaining a first embodiment of an ultrasonic inspection method according to the present invention, and FIGS. 2 (a) and 2 (b) are diagrams according to the present invention. FIG. 2A shows an ultrasonic probe used in the first embodiment of the ultrasonic inspection method, and FIG. 2A is a longitudinal sectional view of the ultrasonic probe,
FIG. 2B is a cross-sectional view of the ultrasonic probe.

【0014】まず、図1を参照しながら、一方向凝固鋳
物からなる被検査物1の肉厚を測定する方法の概要を説
明する。同図に示されるように、被検査物1は柱状に形
成され、[001]方向(図中、Z軸方向)の一方向に
結晶が成長するものであり、結晶の成長方向と垂直な
(001)面が被検査面2となる。被検査物1に対して
は、被検査面2の一側3から、被検査物1の結晶成長方
向([001]方向)と一致する振動方向を有するパル
ス状の横波超音波4を入射する。この際、横波超音波4
を、被検査物1の表面に対して垂直に入射させる。被検
査物1に入射したパルス状の横波超音波4は、被検査物
1内を伝播し、被検査面2の他側5に到達する。被検査
面2の他側5に到達したパルス状の横波超音波4はこの
他側5にて反射し、横波超音波4を入射させた一側3に
向けて伝播し、入射位置である一側3に到達する。従っ
て、パルス状の横波超音波4を被検査面2の一側3から
入射させてから、他側5にて反射された横波超音波4が
一側3に到達するまでの伝播時間を計測することで、被
検査面2における肉厚(=伝播時間×伝播速度)を測定
することができる。ここで、伝播速度は横波音速として
予め設定されている。
First, an outline of a method for measuring the thickness of an inspection object 1 made of a directionally solidified casting will be described with reference to FIG. As shown in the figure, the inspection object 1 is formed in a columnar shape, and a crystal grows in one direction of the [001] direction (Z-axis direction in the figure), and is perpendicular to the crystal growth direction ( The (001) surface is the inspection surface 2. A pulsed transverse ultrasonic wave 4 having a vibration direction coinciding with the crystal growth direction ([001] direction) of the test object 1 is incident on the test object 1 from one side 3 of the test surface 2. . At this time, shear wave ultrasonic wave 4
Is perpendicularly incident on the surface of the inspection object 1. The pulsed transverse ultrasonic wave 4 incident on the inspection object 1 propagates in the inspection object 1 and reaches the other side 5 of the inspection surface 2. The pulsed transverse ultrasonic wave 4 arriving at the other side 5 of the surface 2 to be inspected is reflected at the other side 5 and propagates toward the one side 3 on which the transverse ultrasonic wave 4 is incident. Reach side 3. Therefore, the propagation time from when the pulsed transverse ultrasonic wave 4 is incident from one side 3 of the surface 2 to be inspected to when the transverse ultrasonic wave 4 reflected on the other side 5 reaches the one side 3 is measured. Thus, the thickness (= propagation time × propagation speed) on the inspection surface 2 can be measured. Here, the propagation speed is set in advance as a transverse sound speed.

【0015】パルス状の横波超音波4を発生させる超音
波探触子10は、図2(a)及び図2(b)に示される
ように、筐体11と、筐体11内に支持されるYカット
振動子13と、被検査物1に当接させる凸状遅延部材1
4とを有する。超音波探触子10は、接続ケーブル15
を介して超音波測定器20に接続されていると共に、超
音波を出射する面とは反対側の面に振動低減部材12が
設けられている。超音波測定器20は、超音波探触子1
0からパルス状の横波超音波4を出射させてから、反射
された横波超音波が超音波探触子10に入射するまでの
時間に基づいて、被検査物1の肉厚等を算出し、算出結
果を表示する。
As shown in FIGS. 2A and 2B, an ultrasonic probe 10 for generating a pulsed transverse ultrasonic wave 4 is supported by a housing 11 and the housing 11. Y-cut vibrator 13 and convex delay member 1 to be brought into contact with inspection object 1
And 4. The ultrasonic probe 10 includes a connection cable 15
The vibration reducing member 12 is provided on the surface opposite to the surface from which the ultrasonic wave is emitted while being connected to the ultrasonic measuring device 20 via the. The ultrasonic measuring device 20 includes the ultrasonic probe 1
From the time when the pulsed shear wave ultrasonic wave 4 is emitted from 0 to the time when the reflected shear wave ultrasonic wave enters the ultrasonic probe 10, the thickness and the like of the inspection object 1 are calculated based on the time from Display the calculation result.

【0016】Yカット振動子13は、図2(b)に示さ
れる矢印方向に振動し、被検査物1の測定面に対して平
行なせん断振動を付与し、被検査物1に対して横波超音
波を入射させる。このせん断振動の方向を被検査物1の
結晶成長方向([001]方向)と一致させることで、
被検査物1の結晶成長方向([001]方向)と一致す
る振動方向をもった横波超音波を入射することが可能と
なる。振動低減部材12及び凸状遅延部材14はアクリ
ル樹脂等からなり、振動低減部材12のYカット振動子
13に当接させる面は平坦に形成されており、凸状遅延
部材14の被検査物1に当接させる面は、所定の曲率を
有する凸(略かまぼこ形状)に形成されている。
The Y-cut vibrator 13 oscillates in the direction of the arrow shown in FIG. 2 (b), applies a shear vibration parallel to the measurement surface of the test object 1, and applies a transverse wave to the test object 1. Ultrasonic waves are incident. By making the direction of the shear vibration coincide with the crystal growth direction ([001] direction) of the inspection object 1,
A transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction ([001] direction) of the test object 1 can be incident. The vibration reducing member 12 and the convex delay member 14 are made of an acrylic resin or the like, and the surface of the vibration reducing member 12 that is in contact with the Y-cut vibrator 13 is formed flat. Is formed in a convex shape (substantially semi-cylindrical shape) having a predetermined curvature.

【0017】図3に、一方向凝固鋳物からなり、ターボ
流体機械に適用される中空翼部材の一例として、ガスタ
ービンの動翼30の肉厚を測定する手順を示す。この場
合、超音波探触子10を動翼30の腹面31に当接させ
ている。超音波探触子10の筐体11の背面には、Yカ
ット振動子13の振動方向を示す矢印マーク16が付さ
れており、この矢印マーク16の向きと動翼30の結晶
成長方向とを一致させた状態で、凸状遅延部材14を動
翼30の腹面31に対して垂直な方向から当接させる。
この状態で、超音波探触子10からパルス状の横波超音
波4を入射させる。超音波測定器20は、パルス状の横
波超音波4を出射させてから反射されたパルス状の横波
超音波が超音波探触子10に入射するまでの時間を計測
し、この計測した時間に基づいて動翼30の肉厚を算出
する。
FIG. 3 shows a procedure for measuring the wall thickness of a moving blade 30 of a gas turbine as an example of a hollow blade member made of a directionally solidified casting and applied to a turbo fluid machine. In this case, the ultrasonic probe 10 is in contact with the abdominal surface 31 of the moving blade 30. An arrow mark 16 indicating the vibration direction of the Y-cut transducer 13 is provided on the back surface of the housing 11 of the ultrasonic probe 10, and the direction of the arrow mark 16 and the crystal growth direction of the rotor blade 30 are determined. In the aligned state, the convex delay member 14 is brought into contact with the abdominal surface 31 of the rotor blade 30 from a direction perpendicular thereto.
In this state, a pulse-like transverse ultrasonic wave 4 is incident from the ultrasonic probe 10. The ultrasonic measuring device 20 measures the time from the emission of the pulsed transverse ultrasonic wave 4 until the reflected pulsed transverse ultrasonic wave enters the ultrasonic probe 10. The thickness of the moving blade 30 is calculated based on the calculated value.

【0018】図4(a)は、上述した手順により一方向
凝固鋳物からなる動翼30の肉厚の測定値と動翼30の
切断片の肉厚実測値と比較した結果を示す。図4(a)
に示されるように、実測値に対する誤差量は全測定範囲
で±0.2mm以下になることから、動翼30の結晶成
長方向と一致する振動方向をもった横波超音波を用いて
肉厚を測定すれば、極めて高精度な測定が行えることが
確認できる。一方、縦波超音波を用いた場合には、図4
(b)に示されるように、実測値に対する誤差量は全測
定範囲で実測値の±10%程度にもなる。また、図4
(a)及び図4(b)から、縦波超音波を用いた場合に
は、肉厚が厚くなるに従って、測定誤差が増加する傾向
にあるのに対して、横波超音波を用いた場合は、肉厚に
拘わらず、誤差の少ない安定した測定が行えることも確
認できる。
FIG. 4A shows a result of comparing the measured value of the wall thickness of the moving blade 30 made of the one-way solidified casting with the actually measured wall thickness of the cut piece of the moving blade 30 by the above-described procedure. FIG. 4 (a)
As shown in the figure, since the error amount with respect to the actually measured value is ± 0.2 mm or less in the entire measurement range, the wall thickness is increased by using a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction of the moving blade 30. By measuring, it can be confirmed that extremely high-precision measurement can be performed. On the other hand, when longitudinal ultrasonic waves are used, FIG.
As shown in (b), the error amount with respect to the actually measured value is about ± 10% of the actually measured value in the entire measurement range. FIG.
From FIG. 4A and FIG. 4B, when the longitudinal wave ultrasonic wave is used, the measurement error tends to increase as the thickness increases, whereas when the transverse wave ultrasonic wave is used, It can also be confirmed that stable measurement with little error can be performed regardless of the thickness.

【0019】このように、被検査物1(動翼30)内を
伝播するパルス状の横波超音波4の振動方向を、被検査
物1の結晶成長方向([001]方向)と一致させるこ
とにより、被検査物1の結晶粒子は結晶成長方向に振動
し、パルス状の横波超音波4は、結晶成長方向に垂直な
平面での結晶異方性に影響を受けることなく、被検査物
1(動翼30)内を伝播する。従って、横波超音波4を
入射させる方向に拘わらずパルス状の横波超音波4は略
一定の音速にて伝播することになり、伝播速度の変動に
よる測長誤差の発生が抑制される。この結果、極めて高
精度な測長を行うことが可能となる。
As described above, the oscillation direction of the pulsed transverse ultrasonic wave 4 propagating in the inspection object 1 (the moving blade 30) is made to coincide with the crystal growth direction ([001] direction) of the inspection object 1. As a result, the crystal grains of the test object 1 vibrate in the crystal growth direction, and the pulsed transverse ultrasonic waves 4 are not affected by the crystal anisotropy in a plane perpendicular to the crystal growth direction. (The moving blade 30). Therefore, regardless of the direction in which the transverse ultrasonic wave 4 is incident, the pulse-like transverse ultrasonic wave 4 propagates at a substantially constant sound velocity, and the occurrence of a length measurement error due to fluctuations in the propagation velocity is suppressed. As a result, extremely accurate length measurement can be performed.

【0020】また、Yカット振動子13の振動方向と、
動翼30の結晶成長方向とを一致させた状態で、凸状遅
延部材14を動翼30の腹面31に対して垂直な方向か
ら当接させれば、動翼30の腹面31に対して垂直に横
波超音波を入射させて動翼30の肉厚を正確に測定する
ことが可能となる。
Further, the vibration direction of the Y-cut vibrator 13
If the convex delay member 14 is brought into contact with a direction perpendicular to the abdominal surface 31 of the moving blade 30 in a state where the crystal growth direction of the moving blade 30 is made to coincide with the direction of crystal growth, It is possible to accurately measure the wall thickness of the moving blade 30 by applying a transverse ultrasonic wave to the moving blade 30.

【0021】また、凸状遅延部材14の動翼30に当接
させる面は、所定の曲率を有する凸(略かまぼこ形状)
に形成されているので、動翼30の腹面31のように被
検査物の表面が凹面形状を有する場合であっても、所望
の方向に対して正確に横波超音波を入射させることが可
能となる。
The surface of the convex delay member 14 which comes into contact with the moving blade 30 is a convex (approximately semi-cylindrical) having a predetermined curvature.
Therefore, even when the surface of the object to be inspected has a concave shape, such as the abdominal surface 31 of the rotor blade 30, it is possible to make the transverse ultrasonic waves accurately incident in a desired direction. Become.

【0022】(第2実施形態)図5は、本発明による超
音波検査方法の第2実施形態を説明するための概念図で
ある。
(Second Embodiment) FIG. 5 is a conceptual diagram for explaining a second embodiment of the ultrasonic inspection method according to the present invention.

【0023】図4を参照しながら、一方向凝固鋳物から
なる被検査物41の内部に存在する微小な孔食等の欠陥
部50を探傷する方法について説明する。被検査物41
は、第1実施形態と同様に、柱状に形成され、[00
1]方向(図中、Z軸方向)の一方向に結晶が成長する
ものであり、結晶の成長方向と垂直な(001)面が被
検査面42となる。被検査物41に対しては、被検査面
42の一側43から、被検査物41の結晶成長方向
([001]方向)と一致する振動方向をもったパルス
状の横波超音波44を入射させる。この際、横波超音波
44を被検査物41の表面に対して垂直に入射させる。
被検査物41に入射したパルス状の横波超音波44は、
被検査物41内を伝播する。図5に示されるように、被
検査物41内に欠陥部50が存在すると、欠陥部50と
の境界面にてパルス状の横波超音波44は反射し、横波
超音波44を入射させた一側43に向けて伝播し、入射
位置である一側43に到達する。従って、パルス状の横
波超音波44を被検査面42の一側43から入射させて
から、欠陥部50にて反射されて一側43に到達するま
での伝播時間を計測することで、被検査面42における
欠陥部50の有無、及び、欠陥部50までの距離(=伝
播時間×伝播速度)を測定することができる。ここで、
伝播速度は横波音速として予め設定されている。
With reference to FIG. 4, a method of detecting a flaw 50 such as a minute pit in the inspection object 41 made of a unidirectionally solidified casting will be described. Inspection object 41
Is formed in a columnar shape as in the first embodiment, and [00]
The crystal grows in one direction (Z-axis direction in the drawing), and the (001) plane perpendicular to the crystal growth direction is the inspection surface 42. A pulse-like transverse ultrasonic wave 44 having a vibration direction coinciding with the crystal growth direction ([001] direction) of the test object 41 is incident on the test object 41 from one side 43 of the test surface 42. Let it. At this time, the shear wave ultrasonic wave 44 is perpendicularly incident on the surface of the inspection object 41.
The pulsed transverse ultrasonic wave 44 incident on the inspection object 41 is
The light propagates inside the inspection object 41. As shown in FIG. 5, when the defect 50 exists in the inspection object 41, the pulse-like transverse ultrasonic wave 44 is reflected at the boundary surface with the defect 50, and the transverse ultrasonic wave 44 is incident. The light propagates toward the side 43 and reaches one side 43 which is the incident position. Therefore, by measuring the propagation time from the time when the pulsed ultrasonic wave 44 is incident from one side 43 of the surface 42 to be inspected to the time when the ultrasonic wave 44 is reflected by the defect portion 50 and reaches the one side 43, the inspection is performed. The presence or absence of the defect 50 on the surface 42 and the distance to the defect 50 (= propagation time × propagation speed) can be measured. here,
The propagation speed is set in advance as a transverse sound speed.

【0024】このように、被検査物41内を伝播するパ
ルス状の横波超音波44の振動方向は、被検査物41の
結晶成長方向([001]方向)と一致させるとによ
り、被検査物41の結晶粒子は結晶成長方向に振動し、
パルス状の横波超音波44は、結晶成長方向に垂直な平
面での結晶異方性に影響を受けることなく、被検査物4
1内を伝播する。従って、横波超音波44を入射させる
方向に拘わらずパルス状の横波超音波44は略一定の音
速にて伝播することになり、欠陥部50の有無あるいは
欠陥部50までの距離等の探傷結果に伝播速度の変動に
よる誤差が含まれてしまうことが抑制される。この結
果、極めて高精度な探傷を行うことが可能となる。
As described above, the vibration direction of the pulsed transverse ultrasonic wave 44 propagating in the inspection object 41 is made to coincide with the crystal growth direction ([001] direction) of the inspection object 41, so that the inspection object The crystal grains of 41 vibrate in the crystal growth direction,
The pulsed shear wave ultrasonic wave 44 is not affected by the crystal anisotropy in a plane perpendicular to the crystal growth direction, and
Propagating within 1. Therefore, regardless of the direction in which the shear wave ultrasonic wave 44 is incident, the pulse-like shear wave ultrasonic wave 44 propagates at a substantially constant sound speed, and the flaw detection result such as the presence or absence of the defect 50 or the distance to the defect 50 is not obtained. It is suppressed that an error due to the fluctuation of the propagation speed is included. As a result, extremely high-precision flaw detection can be performed.

【0025】なお、第1及び第2実施形態においては、
一方向凝固鋳物からなる被検査物1,41を測長あるい
は探傷する例を示したが、被検査物としてはこれらに限
られることなく、例えば単結晶鋳物からなるものでもよ
く、結晶成長方向に方向性を有するものであれば、各種
素材を被検査物とすることができる。
In the first and second embodiments,
Although an example of measuring or inspecting the inspection objects 1 and 41 made of a unidirectionally solidified casting has been described, the inspection object is not limited to these, and may be, for example, a single crystal casting, and may be in the crystal growth direction. Various materials can be used as inspection objects as long as they have directionality.

【0026】また、第1実施形態に含まれる超音波探触
子10の凸状遅延部材14の形状は、上述したものに限
られることなく、被検査物に当接させる面が所定の曲率
を有する球面形状としてもよい。
Further, the shape of the convex delay member 14 of the ultrasonic probe 10 included in the first embodiment is not limited to the above-described one, and the surface to be brought into contact with the inspection object has a predetermined curvature. It may have a spherical shape.

【0027】[0027]

【発明の効果】以上、詳細に説明したとおり、請求項1
に記載の本発明によれば、結晶成長方向と一致する振動
方向を有する横波超音波を被検査物に入射させることに
より、結晶粒子は結晶成長方向に振動し、結晶成長方向
に垂直な平面での結晶異方性に影響を受けることなく、
横波超音波は入射方向へ進行する。従って、横波超音波
は略一定の音速にて伝播することになり、伝播速度変動
による測長誤差の発生が抑制され、高精度な測長を行う
ことが可能となる。
As described in detail above, claim 1 is as follows.
According to the present invention described in the above, by applying a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction to the inspection object, the crystal particles vibrate in the crystal growth direction, and in a plane perpendicular to the crystal growth direction. Without being affected by the crystal anisotropy of
The shear wave ultrasonic waves travel in the incident direction. Therefore, the shear wave propagates at a substantially constant sound speed, and the occurrence of a length measurement error due to a fluctuation in the propagation speed is suppressed, so that highly accurate length measurement can be performed.

【0028】また、請求項3に記載の本発明によれば、
結晶成長方向と一致する振動方向を有する横波超音波を
被検査物に入射させると、結晶粒子は結晶成長方向に振
動し、結晶成長方向に垂直な平面での結晶異方性に影響
を受けることなく、横波超音波は入射方向へ進行する。
従って、横波超音波は略一定の音速にて伝播することに
なり、欠陥部の位置等の探傷結果への伝播速度変動によ
る誤差の含有が抑制され、高精度な探傷を行うことが可
能となる。
According to the third aspect of the present invention,
When a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction is applied to the object to be inspected, the crystal grains vibrate in the crystal growth direction and are affected by the crystal anisotropy in a plane perpendicular to the crystal growth direction. Instead, the shear wave travels in the incident direction.
Therefore, the shear wave ultrasonic wave propagates at a substantially constant sound velocity, and errors due to fluctuations in propagation speed in a flaw detection result such as the position of a defective portion are suppressed, and high-precision flaw detection can be performed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波検査方法の第1実施形態を
説明するための概念図である。
FIG. 1 is a conceptual diagram for describing a first embodiment of an ultrasonic inspection method according to the present invention.

【図2】本発明による超音波検査方法の第1実施形態に
用いられる超音波探触子を示し、(a)は超音波探触子
の縦断面図、(b)は超音波探触子の横断面図である。
FIG. 2 shows an ultrasonic probe used in a first embodiment of the ultrasonic inspection method according to the present invention, wherein (a) is a longitudinal sectional view of the ultrasonic probe, and (b) is an ultrasonic probe. FIG.

【図3】本発明による超音波検査方法の第1実施形態
を、中空翼部材の肉厚測定に適用した例を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing an example in which the first embodiment of the ultrasonic inspection method according to the present invention is applied to measurement of the thickness of a hollow wing member.

【図4】(a)は一方向凝固鋳物からなる中空翼部材に
横波超音波を入射した場合の測定結果を示す図表、
(b)は一方向凝固鋳物からなる中空翼部材に縦波超音
波を入射した場合の測定結果を示す図表である。
FIG. 4A is a table showing measurement results when a transverse ultrasonic wave is incident on a hollow blade member made of a unidirectionally solidified casting,
(B) is a table showing measurement results when longitudinal ultrasonic waves are incident on a hollow blade member made of a unidirectionally solidified casting.

【図5】本発明による超音波検査方法の第2実施形態を
説明するための概念図である。
FIG. 5 is a conceptual diagram illustrating a second embodiment of the ultrasonic inspection method according to the present invention.

【図6】Ni基超合金における、結晶方位とヤング率と
の関係を示す図表である。
FIG. 6 is a table showing a relationship between a crystal orientation and a Young's modulus in a Ni-based superalloy.

【符号の説明】[Explanation of symbols]

1,41…被検査物、2,42…被検査面、4…横波超
音波、10…超音波探触子、11…筐体、12…振動低
減部材、13…Yカット振動子、14…凸状遅延部材、
15…接続ケーブル、16…矢印マーク、20…超音波
測定器、30…動翼、31…腹面、50…欠陥部。
1, 41: inspected object, 2, 42: inspected surface, 4: transverse ultrasonic wave, 10: ultrasonic probe, 11: housing, 12: vibration reducing member, 13: Y-cut vibrator, 14 ... Convex delay member,
Reference numeral 15: connection cable, 16: arrow mark, 20: ultrasonic measuring instrument, 30: blade, 31: abdominal surface, 50: defective part.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F068 AA28 AA48 BB08 BB21 CC00 CC04 FF03 FF12 FF14 FF16 FF25 GG01 HH02 KK01 KK13 LL02 LL22 2G047 AA07 AC05 BA03 BC02 BC07 BC18 CB01 CB02 EA10 GB22 GF06 GF17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F068 AA28 AA48 BB08 BB21 CC00 CC04 FF03 FF12 FF14 FF16 FF25 GG01 HH02 KK01 KK13 LL02 LL22 2G047 AA07 AC05 BA03 BC02 BC07 BC18 CB01 CB02 EA17 GB22 GF06 GF10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結晶成長に方向性を有する被検査物に対
して超音波を入射させ、前記被検査物内で反射された超
音波に基づいて、前記超音波が反射された位置までの距
離を測定する超音波検査方法であって、 前記被検査物に対して、前記被検査物の結晶成長方向と
一致する振動方向をもった横波超音波を入射させること
を特徴とする超音波検査方法。
An ultrasonic wave is incident on an object having directionality in crystal growth, and a distance to a position where the ultrasonic wave is reflected is determined based on the ultrasonic wave reflected in the object. An ultrasonic inspection method, comprising: applying a transverse ultrasonic wave having a vibration direction coinciding with a crystal growth direction of the inspection object to the inspection object. .
【請求項2】 前記被検査物は、ターボ形流体機械の翼
部材であり、 前記結晶成長方向と一致する振動方向をもった横波超音
波を、前記翼部材の表面に対して垂直に入射させること
を特徴とする請求項1に記載の超音波検査方法。
2. The object to be inspected is a wing member of a turbo-type fluid machine, and a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction is perpendicularly incident on a surface of the wing member. The ultrasonic inspection method according to claim 1, wherein:
【請求項3】 結晶成長に方向性を有する被検査物に対
して超音波を入射させ、前記被検査物内で反射された超
音波に基づいて、前記被検査物を探傷する超音波検査方
法であって、 前記被検査物に対して、前記被検査物の結晶成長方向と
一致する振動方向を有する横波超音波を入射させること
を特徴とする超音波検査方法。
3. An ultrasonic inspection method for irradiating an ultrasonic wave to an inspection object having directionality in crystal growth, and detecting the inspection object based on the ultrasonic wave reflected in the inspection object. An ultrasonic inspection method, wherein a transverse ultrasonic wave having a vibration direction coinciding with a crystal growth direction of the inspection object is incident on the inspection object.
【請求項4】 前記結晶成長方向と一致する振動方向を
もった横波超音波を発生させる超音波探触子と、凸面を
有する遅延部材とを用い、 前記凸面を前記被検査物に当接させると共に、前記遅延
部材を介して、前記被検査物に横波超音波を入射させる
ことを特徴とする請求項1〜3のいずれか一項に記載の
超音波検査方法。
4. An ultrasonic probe for generating a transverse ultrasonic wave having a vibration direction coinciding with the crystal growth direction, and a delay member having a convex surface, wherein the convex surface is brought into contact with the inspection object. The ultrasonic inspection method according to any one of claims 1 to 3, wherein a transverse ultrasonic wave is made incident on the inspection object via the delay member.
JP14810699A 1999-05-27 1999-05-27 Ultrasonic inspection method Expired - Lifetime JP4131598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14810699A JP4131598B2 (en) 1999-05-27 1999-05-27 Ultrasonic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14810699A JP4131598B2 (en) 1999-05-27 1999-05-27 Ultrasonic inspection method

Publications (2)

Publication Number Publication Date
JP2000338092A true JP2000338092A (en) 2000-12-08
JP4131598B2 JP4131598B2 (en) 2008-08-13

Family

ID=15445390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14810699A Expired - Lifetime JP4131598B2 (en) 1999-05-27 1999-05-27 Ultrasonic inspection method

Country Status (1)

Country Link
JP (1) JP4131598B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686648B1 (en) * 2010-09-02 2011-05-25 株式会社日立製作所 Ultrasonic inspection method
JP2012053026A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053027A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
CN102830173A (en) * 2012-08-29 2012-12-19 北京工业大学 Shaft structure surface acoustic wave non-contact wave velocity extraction method
RU2532141C1 (en) * 2013-07-23 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of non-destructive test of long-term operated metal of operated elements of heat power equipment
DE102014205420A1 (en) * 2014-03-24 2015-09-24 Siemens Aktiengesellschaft Method and system for determining the wall thickness of a component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686648B1 (en) * 2010-09-02 2011-05-25 株式会社日立製作所 Ultrasonic inspection method
EP2426490A2 (en) 2010-09-02 2012-03-07 Hitachi Ltd. Ultrasonic testing method
JP2012052963A (en) * 2010-09-02 2012-03-15 Hitachi Ltd Ultrasonic inspection method
US9046469B2 (en) 2010-09-02 2015-06-02 Mitsubishi Hitachi Power Systems, Ltd. Ultrasonic testing method
JP2012053026A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053027A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
CN102830173A (en) * 2012-08-29 2012-12-19 北京工业大学 Shaft structure surface acoustic wave non-contact wave velocity extraction method
RU2532141C1 (en) * 2013-07-23 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of non-destructive test of long-term operated metal of operated elements of heat power equipment
DE102014205420A1 (en) * 2014-03-24 2015-09-24 Siemens Aktiengesellschaft Method and system for determining the wall thickness of a component

Also Published As

Publication number Publication date
JP4131598B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US20070118330A1 (en) Dual wall turbine blade ultrasonic wall thickness measurement technique
Bonamy et al. Interaction of shear waves and propagating cracks
JP4686648B1 (en) Ultrasonic inspection method
KR20220004184A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
US9494453B2 (en) Ultrasonic sensor for high temperature and manufacturing method thereof
JP4131598B2 (en) Ultrasonic inspection method
JP6082023B2 (en) Method for measuring elastic properties using ultrasound
JP2003004710A (en) Method for inspecting padded pipe
JP6674263B2 (en) Deformation detection device
JP2005010159A (en) Method and device for measuring thickness of component having external coating by using impedance matching delay line
JP2002213936A (en) Method and device for non-contact measurement of thickness of material
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
JP4982603B2 (en) Ultrasonic inspection method
US6829940B2 (en) Method and apparatus for measuring surface wave traveling time
JP6393639B2 (en) Ultrasonic thickness measurement method and apparatus, and defect position detection method
JP2000221076A (en) Ultrasonic sound velocity measuring method
JP4982604B2 (en) Ultrasonic inspection method
JPH03279856A (en) Ultrasonic material testing device
JPH0640097B2 (en) Method and apparatus for measuring liquid sound velocity and viscosity by surface wave
MOHD Development of Polygonal Buffer Rods for Ultrasonic Pulse-Echo Measurements with High Signal-to-Noise Ratio
US20180003536A1 (en) Method for manufacturing a sound transducer for a field device of automation technology
JPH05288728A (en) Measuring apparatus for ultrasonic wave sound speed
JP2001004608A (en) Sensitivity calibrating method for ultrasonic flaw detection test
JPH05500862A (en) Structure for measuring properties of foil materials
JP2000180146A (en) Ultrasonic wave thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term