JPS59189665A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59189665A
JPS59189665A JP6476283A JP6476283A JPS59189665A JP S59189665 A JPS59189665 A JP S59189665A JP 6476283 A JP6476283 A JP 6476283A JP 6476283 A JP6476283 A JP 6476283A JP S59189665 A JPS59189665 A JP S59189665A
Authority
JP
Japan
Prior art keywords
region
type
electrode
input
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6476283A
Other languages
Japanese (ja)
Other versions
JPS6410101B2 (en
Inventor
Haruji Futami
二見 治司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6476283A priority Critical patent/JPS59189665A/en
Publication of JPS59189665A publication Critical patent/JPS59189665A/en
Publication of JPS6410101B2 publication Critical patent/JPS6410101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a device having an input protecting circuit, by which effects on electric characteristics is small at the time of normal operation and the sufficient limiting effect is obtained when a current is limited, by constituting a resistor for limiting the current by connecting a resistor region formed within a semiconducltor substrate and a resistor region formed on the semiconductor substrate in parallel. CONSTITUTION:P type impurities are ion-implanted from the surface of an N type epitaxial layer 20, and a P type semiconductor region 21, whose layer resistance is relatively high, is formed. Then, an insulating film 22 is formed on the surface. Thereafter, a thin polycrystal silicon film is selectively formed on the silicon oxide film 22. N type impurities are introduced, and a high concentration N type polycrystal silicon thin film region 23 is provided. Then a silicon oxide film 24 as an insulating film is formed on the entire surface. Opening parts 25 are provided in order to provide electrode parts at both ends of the P type impurity region 21 and the high concentration N type polycrystal thin film region 23. An electrode part 26-1 is connected to an input terminal, and another electrode 26-2 is connected to the base of an input transistor. The potential of an electrode part 27 is fixed at a specified potential, and an overcurrent limiting element in an input circuit is formed.

Description

【発明の詳細な説明】 不発明は半導体集積回路装置(以後、ICと呼ぶ) V
C関し、特VC高周波用iCや低雑音特性全要求される
低周波前置増巾ICの入力破壊防止に関するものである
[Detailed description of the invention] The non-invention is a semiconductor integrated circuit device (hereinafter referred to as IC) V
Regarding C, it is concerned with preventing input destruction of especially VC high-frequency ICs and low-frequency preamplifier ICs that require full low-noise characteristics.

高周波用ICや低周波前置増巾xcvcおいては、初段
回路の構成、性能がIC全体の特性全左右することが少
なくない。例えば、増巾回路の雑音特性は、初段州中部
の雑音特性が支配的である。従っテ、初段州中部に用い
られるトランジスタは、高い電流増巾率を有し、かつベ
ース広がり抵抗(rbb’)の低いものが必要とされ、
その具体的な形状として、丸形エミッタ、丸形ベースを
有するトランジスタや、複数個のベース電極を有するマ
ルチベーストランジスタが使用されている0通常、これ
らトランジスタのベース電極部は直接、IC外部の入力
端子VC接続されることが望ましいが、入力端子VC印
加される種々の異常電圧により、  )ランジスタの劣
化あるいは破壊から傑物するための対策が必要であり1
保護用抵抗、ダイオード等が用いられる。
In high-frequency ICs and low-frequency preamplifier xcvcs, the configuration and performance of the first stage circuit often determine the entire characteristics of the IC. For example, the noise characteristics of the amplification circuit are dominated by the noise characteristics in the central part of the first stage. Therefore, the transistor used in the first stage is required to have a high current amplification rate and a low base spread resistance (rbb').
Specifically, transistors with a round emitter and round base, and multi-base transistors with multiple base electrodes are used.Normally, the base electrode of these transistors is directly connected to the input external to the IC. It is desirable to connect the terminal VC, but due to various abnormal voltages applied to the input terminal VC, it is necessary to take measures to prevent deterioration or destruction of the transistor.1
Protective resistors, diodes, etc. are used.

例えば、第1図に示すような回路構成の入力段において
は、トランジスタ6のベースに接続された入力端子5が
電源端子1と短絡した場合、あるいは端子5 IC正の
静電パルスが印加された場合、入力端子5から入カドラ
ンジスタロのベース・エミッタ間全通る電流経路7を介
して過大電流が流れ、トランジスタ60ベース・エミッ
タ間接合の劣化、破壊音生ずる。尚、第1図において、
2は電流源として働ら(PNP)ランジスタ、3は負荷
抵抗、そして4は次段へ接続される初段の出力端子であ
り、この出力端子は集積回路内に構成されている。
For example, in the input stage with the circuit configuration shown in Fig. 1, if the input terminal 5 connected to the base of the transistor 6 is short-circuited with the power supply terminal 1, or if a positive electrostatic pulse is applied to the terminal 5 IC. In this case, an excessive current flows from the input terminal 5 through the entire current path 7 between the base and emitter of the input quadrant transistor, causing deterioration of the base-emitter junction of the transistor 60 and generation of destructive noise. In addition, in Figure 1,
2 is a (PNP) transistor that serves as a current source, 3 is a load resistor, and 4 is an output terminal of the first stage connected to the next stage, and this output terminal is configured within the integrated circuit.

従って、このような場合、保護ダイオード8゜保護抵抗
9全第2図のように配置して、入力端子5の電位全フラ
ングし、かつ電流径路7?介する流入電流の制限を行な
う、抵抗9はトランジスタlのベースと入力端子5との
間に接続され、ダイオード8は入力端子5−電源端子1
間に接続される。
Therefore, in such a case, the protective diode 8° and the protective resistor 9 are arranged as shown in FIG. A resistor 9 is connected between the base of the transistor l and the input terminal 5, and a diode 8 is connected between the input terminal 5 and the power supply terminal 1.
connected between.

同様VC,第3図のような回路構成では、トランジスタ
11のベースに接続された入力端子15のグランド電位
への短絡や負の静電パルスVこより、トランジスタ11
0ベース・コレクタ間を介する電流径路16を通じて過
大電流が流れる。第3図において、12はIC内の次段
用出力端子、13は負荷抵抗、そして14は電流源とし
て働ら(NPNトランジスタ全それぞれ示す。このため
、第4図に示す如く、保護ダイオード18.保護抵抗1
7を接続して第2図と同じように保護している。
Similarly, in the circuit configuration of VC, as shown in FIG.
An excessive current flows through the current path 16 between the zero base and the collector. In FIG. 3, 12 is an output terminal for the next stage in the IC, 13 is a load resistor, and 14 is a current source (all NPN transistors are shown). Therefore, as shown in FIG. 4, protection diodes 18. Protection resistance 1
7 is connected and protected in the same way as in Figure 2.

しかしながら、第2図2第4図の回路VCおいては、保
護抵抗9.17は、初段トランジスタ6゜14のベース
抵抗となり、この結果、雑音特性を悪化させる。よって
、電気的特性の面からはできるかぎり低抵抗であること
が望ましく、逆VC電流制限の効果からは、できるかぎ
り高抵抗であることが好ましい。
However, in the circuit VC of FIG. 2 and FIG. 4, the protective resistor 9.17 becomes the base resistance of the first stage transistor 6.14, and as a result, the noise characteristics deteriorate. Therefore, in terms of electrical characteristics, it is desirable that the resistance be as low as possible, and in terms of the effect of limiting the reverse VC current, it is desirable that the resistance be as high as possible.

このようrC1従来の方法Vこおいては、保護抵抗の抵
抗値の設計が電気的特性、入力回路保護効果の両面に満
足するように行なわなければならないという欠点を有し
、電気的特性全優先すると保護効果は充分でなかった。
As described above, the rC1 conventional method V has the disadvantage that the resistance value of the protective resistor must be designed to satisfy both the electrical characteristics and the input circuit protection effect, and the electrical characteristics have to be prioritized. The protective effect was not sufficient.

不発明の目的は、通電動作時においては電気的特性への
影響が少なく1反面、電流制限時VCは十分な制限効果
?得られる入力保護回路全もった半導体装置ケ提供する
ことVCある。
The purpose of the invention is to have little effect on electrical characteristics during current-carrying operation, but on the other hand, does VC have a sufficient limiting effect during current limiting? VC provides a semiconductor device with all the input protection circuits available.

本発明(は、電流制限用の抵抗を半導体基板内に形成さ
れた抵抗領域と半導体基板上VC形成された抵抗領域と
を並列接続して構成し、かつ基板の抵抗領域の抵抗値を
入力端子VC応じて変化させること全特徴とする。
In the present invention, a current limiting resistor is constructed by connecting in parallel a resistance region formed in a semiconductor substrate and a resistance region formed as a VC on the semiconductor substrate, and the resistance value of the resistance region of the substrate is input to an input terminal. All features are to be changed according to VC.

以下1図面を参照して不発明の実施例を詳細に説明する
Hereinafter, embodiments of the invention will be described in detail with reference to one drawing.

本発明の一実施例を示す平面図および断面図を第5図(
a)および(b) vcそれぞれ示す。第5図で示され
た半導体装置は次のように形成される。
A plan view and a sectional view showing one embodiment of the present invention are shown in FIG.
a) and (b) vc are shown respectively. The semiconductor device shown in FIG. 5 is formed as follows.

まず、比抵抗1〜3Ω−cm程度のP型基板19上に使
用目的に応じた適当な比抵抗(05〜4Ω−cm程度)
全有するN型エピタキシャル層20を形成する。次に、
N型エピタキシャル層2oの表面よりP型不純物例えば
ボロンを拡散あるいはイすン注入することVCより、層
抵抗の比較的高い(例えば3にΩ/口程度)P型半導体
領域21を形成し、その表面および前記N型エピタキシ
ャル層200表面に絶縁被膜例えば熱酸化してシリコン
酸化膜22を形成する。しかる後に、多結晶シリコン薄
膜會シリコン酸化膜22上に選択的に形成し。
First, a suitable resistivity (about 05 to 4 Ω-cm) according to the purpose of use is placed on the P-type substrate 19 with a specific resistance of about 1 to 3 Ω-cm.
An N-type epitaxial layer 20 is formed over the entire structure. next,
By diffusing or implanting a P-type impurity, such as boron, from the surface of the N-type epitaxial layer 2o, a P-type semiconductor region 21 having a relatively high layer resistance (for example, about 3Ω/hole) is formed by VC. An insulating film such as a silicon oxide film 22 is formed on the surface and the surface of the N-type epitaxial layer 200 by thermal oxidation. Thereafter, a polycrystalline silicon thin film is selectively formed on the silicon oxide film 22.

N型不純物例えばリン全導入して高濃度N型多結晶シリ
コン薄膜領域23を設ける。次に、本装置の表面全体に
絶縁被膜としてのシリコン酸化膜24を例えばCVD法
などにより形成し、P型不純物領域21および高濃度N
型多結晶シリコン薄膜領域23の両端に電極部を設ける
ためVC開口部25全設ける。次に、開口部25および
高濃度N型多結晶シリコン薄膜24@上の絶縁被膜24
上に低抵抗物質例えばアルミニウムを選択的に形成して
電極部26−1.26−2および27を得る。尚、第5
図(a) VCUシリコン収111S膜22および24
は図示していない。また、エピタキシャル#2ovcB
トランジスタや抵抗等の他の素子も形成されるものであ
る。
A high concentration N-type polycrystalline silicon thin film region 23 is provided by completely introducing an N-type impurity, for example, phosphorus. Next, a silicon oxide film 24 as an insulating film is formed on the entire surface of the device by, for example, the CVD method, and the P-type impurity region 21 and high concentration N
In order to provide electrode portions at both ends of the polycrystalline silicon thin film region 23, all VC openings 25 are provided. Next, the insulating coating 24 on the opening 25 and the high concentration N-type polycrystalline silicon thin film 24@
A low resistance material such as aluminum is selectively formed thereon to obtain electrode portions 26-1, 26-2 and 27. Furthermore, the fifth
Figure (a) VCU silicon 111S films 22 and 24
is not shown. Also, epitaxial #2ovcB
Other elements such as transistors and resistors are also formed.

この様な構造Vこおいて、電極部26−1’(r第1図
乃至第4図で示した入力端子5.15VC,もう一方の
電極26−2に人力トランジスタ2,11のベースにそ
れぞれ接続し、さらに電極部27を特定の電位に固定し
て入力回路における過電流制限素子とする。この場合、
電極部27は電源電圧より低い電位に設定されることが
必要である。しタカっテ、電極27は入力トランジスタ
のベースに接続されている電極26−2に接続して、第
6図の如き構造とすることも可能である。
In such a structure V, the input terminal 5.15VC shown in FIGS. In addition, the electrode portion 27 is fixed at a specific potential to serve as an overcurrent limiting element in the input circuit.In this case,
The electrode portion 27 needs to be set at a potential lower than the power supply voltage. Alternatively, the electrode 27 may be connected to the electrode 26-2 connected to the base of the input transistor to form a structure as shown in FIG. 6.

かかる構造および接続関係の過電流制限素子を有する半
碑体釦ICおいて、いま、通常動作時全仮定すると、入
力端子に接続された電極26−1に加えられる信号は比
較的微弱であり、ベース端子側の電極26−2との電位
差はそれほど高くない。したがって、電極27とその直
下の尚濃度〜型多結晶シリコン薄膜領域23との電界は
弱く・多結晶シリコン薄膜領域23とその上部の絶縁被
膜24との界面より多結晶シリコン薄膜領域23側に広
がる空乏層は無視てきうるものである。よって、この時
の電極26−1および26−2両端の抵抗は、P型半導
体領域21と高濃度N型多結晶シリコン薄膜領域23と
の合成抵抗分であって十分低い抵抗値が得られる。っま
シ、初段トランジスタのベース抵抗増加分は、無視でき
る程度である。
In a half-shaped button IC having an overcurrent limiting element having such a structure and connection relationship, assuming that during normal operation, the signal applied to the electrode 26-1 connected to the input terminal is relatively weak; The potential difference with the electrode 26-2 on the base terminal side is not so high. Therefore, the electric field between the electrode 27 and the polycrystalline silicon thin film region 23 directly below it is weak and spreads toward the polycrystalline silicon thin film region 23 from the interface between the polycrystalline silicon thin film region 23 and the insulating film 24 above it. The depletion layer can be ignored. Therefore, the resistance across the electrodes 26-1 and 26-2 at this time is the combined resistance of the P-type semiconductor region 21 and the heavily doped N-type polycrystalline silicon thin film region 23, and a sufficiently low resistance value can be obtained. However, the increase in base resistance of the first stage transistor is negligible.

しかしながら、入力端子側になんらかの異常状態によジ
高い電位が印加された場合、入力端子側電極26−1は
それVC追従して電位が上昇し始める。一方、初段トラ
ンジスタ側電極26−2はほぼトランジスタのベース電
位に固定されている。
However, if a higher potential is applied to the input terminal side due to some abnormal condition, the input terminal side electrode 26-1 follows the VC and the potential begins to rise. On the other hand, the first-stage transistor side electrode 26-2 is fixed approximately at the base potential of the transistor.

したがって、第5図、第6図の双方において、電極27
と直下の多結晶シリコン薄膜領域23との電界が上昇し
、それVCつれ多結晶シリコン薄膜領域23内部に空乏
層が広が9両端間の抵抗が増加し始め、P型半導体領域
21との合成抵抗も同時に増加する。そして、多結晶シ
リコン薄膜領域23の高電位01ll’(電極26−1
 )で、空乏層が多結晶シリコン薄膜領域23底部まで
達すると、その抵抗は無限大となり、P型半導体領域2
1の抵抗1[自。
Therefore, in both FIGS. 5 and 6, the electrode 27
The electric field between VC and the polycrystalline silicon thin film region 23 directly below rises, and as the electric field increases, a depletion layer spreads inside the polycrystalline silicon thin film region 23 and the resistance between both ends of the VC begins to increase, resulting in synthesis with the P-type semiconductor region 21. Resistance also increases at the same time. Then, the high potential 01ll' of the polycrystalline silicon thin film region 23 (electrode 26-1
), when the depletion layer reaches the bottom of the polycrystalline silicon thin film region 23, its resistance becomes infinite and the P-type semiconductor region 2
1 resistance 1 [self.

にまで達する・つまり、電極26−1側に異常電圧が印
加されると、それVC応じて抵抗値が増加する。
In other words, when an abnormal voltage is applied to the electrode 26-1 side, the resistance value increases in accordance with VC.

このように、通常時VCは十分低く、異状電圧印加時V
Cは十分高い抵抗値をそれぞれ有Tる過大電流制限用素
子を実現できる。
In this way, VC at normal times is sufficiently low, and when abnormal voltage is applied, V
C can realize an overcurrent limiting element having a sufficiently high resistance value.

さらに、N型エピタキシャル領域20?:電源電圧ニハ
イアスすることにより、N型エピタキシャル領域2(l
陰極側、P型半導体領域21を陽極側とそれぞれとする
ダイオード構造が得られるので第2図、第4−図で示し
たダイオード8.18も構成される。つまジ、本発明の
半導体装置を入力端子と初段トランジスタのベース間に
接続するだけで、通常動作時には電気的特性VC悪影響
?与えない、効果の大きい入力回路保護装置が得られる
Furthermore, N type epitaxial region 20? : By lowering the power supply voltage, the N-type epitaxial region 2 (l
Since a diode structure is obtained in which the cathode side and the P-type semiconductor region 21 are the anode side, the diode 8.18 shown in FIGS. 2 and 4 is also constructed. Finally, if the semiconductor device of the present invention is simply connected between the input terminal and the base of the first stage transistor, will the electrical characteristics VC be adversely affected during normal operation? A highly effective input circuit protection device that does not cause damage to the input circuit can be obtained.

P型半導体領域21は高抵抗であることが望ましいが、
層抵抗上あ壕り高抵抗領域が得られない場合は、i;3
7図に示すように、領域21を蛇行して形成アれば必要
とする抵抗値を得ることが容易である。
Although it is desirable that the P-type semiconductor region 21 has high resistance,
If a high resistance region cannot be obtained in the layer resistance, i; 3
As shown in FIG. 7, if the region 21 is formed in a meandering manner, it is easy to obtain the required resistance value.

本発明で示されfc電流制限抵抗はトランジスタと同一
絶縁領域内VC形成することも可能である。
The fc current limiting resistor shown in the present invention can also be formed in the same insulation region as the transistor.

丁なわち、第8図に示すようVC,領域21は抵抗領域
となると共vcNPN)ランジスタのベース領域となり
、エミッタ領域30がその中に形成されている。領域2
0は高濃度絶縁P 領域29VCよって他から絶縁され
、又、基板19との境界部には埋込み領域28が形成さ
れている。領域20 VCはコレクタコンタクト領域3
3が形成すれ、これからコレクタ電極32が導出されて
いる。エミッタ′1極31がエミッタ領域30VC形成
されている。
That is, as shown in FIG. 8, the VC region 21 becomes a resistance region and a base region of a transistor (vcNPN), and an emitter region 30 is formed therein. Area 2
0 is insulated from others by a heavily doped insulating P2 region 29VC, and a buried region 28 is formed at the boundary with the substrate 19. Region 20 VC is collector contact region 3
3 is formed, from which a collector electrode 32 is led out. An emitter '1 pole 31 is formed in an emitter region 30VC.

上述した実施例では、入力端子に高電圧が印加された場
合について述べたが、入力端子に負の電圧が印加された
時の初段トランジスタ保護のためVCは、高濃度N型多
結晶シリコン薄膜領域23を高濃度P型多結晶シリコン
薄膜領域とし、電極27紮初段トランジスタのベース電
位あるbは電源電圧vCすることにより、同等の効果が
得られる。また、P型半導体領域21’zN型半導体領
域と1−ることVCよって保護ダイオードの効果をもた
せることも可能である。
In the above embodiment, the case where a high voltage is applied to the input terminal has been described, but in order to protect the first stage transistor when a negative voltage is applied to the input terminal, VC is a high concentration N-type polycrystalline silicon thin film region. The same effect can be obtained by using 23 as a heavily doped P-type polycrystalline silicon thin film region, and setting the electrode 27 and the base potential b of the first stage transistor to the power supply voltage vC. Further, it is also possible to provide the effect of a protection diode by using the P-type semiconductor region 21'zN-type semiconductor region and VC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は代表的な増巾回路初段部を示す回路図、第2図
は第1図の回路に初段トランジスタ保護用素子全追加し
た回路図、第3図は、代表的な他の増巾回路初段部全示
す回路図、第4図は第3図の回@VC初段トランジスタ
保護用素子を追加した回路図、第5図(a)、 (b)
はそれぞれ本発明の一実施例の平面図および断面図、第
6図は不発明の第2の実施例を示す断面図、第7図は本
発明の第3の実施例を示す断面図、第8図は本発明の第
4の実施例?示ア断面図である。 1.10は電源端子、2.14は電流源として働ら(P
NP)ランジスタ、3.13は負荷抵抗、4.12は出
力端子、5.15は入力端子、6゜11は初段増巾用N
PN)ランジスタ、7.16は入力端子より流入する過
大電流経路、8.18は保護ダイオード、9.17は保
護抵抗、19はP型基板、20はN型エピタキシャル層
、21はP型牛尋体領域、22はシリコン酸1ヒ膜、2
3は尚濃度N型多結晶シリコン薄膜領域、24は酸化膜
、25に電極形成用開口部、26−1.26−2は電極
部、27は電極部、28は高濃度埋入みN 層、29は
高濃度絶縁P 層、30はエミッタ領域、31はエミッ
タ電極、32はコレクタ電第2図 第す図 /q 第7区
Figure 1 is a circuit diagram showing the first stage of a typical amplifier circuit, Figure 2 is a circuit diagram in which all first stage transistor protection elements are added to the circuit in Figure 1, and Figure 3 is a circuit diagram of another typical amplifier circuit. A circuit diagram showing the entire first stage of the circuit. Figure 4 is a circuit diagram of the circuit in Figure 3 with the addition of a VC first stage transistor protection element. Figures 5 (a) and (b)
6 is a sectional view showing a second embodiment of the invention, FIG. 7 is a sectional view showing a third embodiment of the invention, and FIG. Is Figure 8 the fourth embodiment of the present invention? FIG. 1.10 is a power supply terminal, 2.14 is a current source (P
NP) transistor, 3.13 is load resistance, 4.12 is output terminal, 5.15 is input terminal, 6゜11 is N for first stage expansion
PN) transistor, 7.16 is an excessive current path flowing from the input terminal, 8.18 is a protection diode, 9.17 is a protection resistor, 19 is a P-type substrate, 20 is an N-type epitaxial layer, 21 is a P-type cowhide body region, 22 is silicon acid 1 arsenic film, 2
3 is a still-concentrated N-type polycrystalline silicon thin film region, 24 is an oxide film, 25 is an opening for forming an electrode, 26-1, 26-2 is an electrode section, 27 is an electrode section, and 28 is a high-concentration buried N layer. , 29 is a high concentration insulating P layer, 30 is an emitter region, 31 is an emitter electrode, 32 is a collector electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基体内に形成された第1の半導体領域と前記領域
上に絶縁層を介して形成された第2の半導体領域とが並
列に接続され、該第2の半導体領域に対し制御電極層が
設けられていることを特徴と一76半導体装置。
A first semiconductor region formed within a semiconductor substrate and a second semiconductor region formed on the region via an insulating layer are connected in parallel, and a control electrode layer is provided for the second semiconductor region. 176 semiconductor devices.
JP6476283A 1983-04-13 1983-04-13 Semiconductor device Granted JPS59189665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6476283A JPS59189665A (en) 1983-04-13 1983-04-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6476283A JPS59189665A (en) 1983-04-13 1983-04-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59189665A true JPS59189665A (en) 1984-10-27
JPS6410101B2 JPS6410101B2 (en) 1989-02-21

Family

ID=13267515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6476283A Granted JPS59189665A (en) 1983-04-13 1983-04-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59189665A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313371A (en) * 1986-07-03 1988-01-20 Rohm Co Ltd Semiconductor device
FR2634076A1 (en) * 1988-07-11 1990-01-12 Samsung Electronics Co Ltd Input detection device making it possible to improve the delay time of the input stage in semiconductor devices
JP2011054775A (en) * 2009-09-02 2011-03-17 Dainippon Printing Co Ltd Organic transistor, circuit element, and manufacturing method of those

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285125A (en) * 1989-04-27 1990-11-22 Sanwa Shutter Corp Balcony with double swinging doors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313371A (en) * 1986-07-03 1988-01-20 Rohm Co Ltd Semiconductor device
FR2634076A1 (en) * 1988-07-11 1990-01-12 Samsung Electronics Co Ltd Input detection device making it possible to improve the delay time of the input stage in semiconductor devices
JP2011054775A (en) * 2009-09-02 2011-03-17 Dainippon Printing Co Ltd Organic transistor, circuit element, and manufacturing method of those

Also Published As

Publication number Publication date
JPS6410101B2 (en) 1989-02-21

Similar Documents

Publication Publication Date Title
US6590273B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US4100561A (en) Protective circuit for MOS devices
KR20000064944A (en) Power semiconductor device with temperature sensor circuit
US4543593A (en) Semiconductor protective device
US20020079555A1 (en) Semiconductor integrated circuit device and manufacturing method thereof
US4656491A (en) Protection circuit utilizing distributed transistors and resistors
US4103181A (en) Monolithic integrated transistor and protective circuit therefor
US3230429A (en) Integrated transistor, diode and resistance semiconductor network
JP3008900B2 (en) Semiconductor device
JPS59189665A (en) Semiconductor device
JPH09139468A (en) Semiconductor integrated circuit device
US5578862A (en) Semiconductor integrated circuit with layer for isolating elements in substrate
JP2003060059A (en) Protective circuit and protective element
JPH08306872A (en) Mos input protective circuit
JPS6211787B2 (en)
JP2743814B2 (en) Semiconductor device
JPH0318336B2 (en)
JPH03184369A (en) Semiconductor device
JP2901275B2 (en) Semiconductor integrated circuit device
EP0607474A1 (en) Semiconductor integrated circuit with layer for isolating elements in substrate
JPH0629466A (en) Semiconductor integrated circuit
JP3084474B2 (en) Composite semiconductor element and circuit device using the same
JPS6364358A (en) Cmos semiconductor device
JPH01186664A (en) Input circuit
JPH0738054A (en) Semiconductor device