JPS59188328A - One strand ground-fault detecting relay - Google Patents
One strand ground-fault detecting relayInfo
- Publication number
- JPS59188328A JPS59188328A JP6250483A JP6250483A JPS59188328A JP S59188328 A JPS59188328 A JP S59188328A JP 6250483 A JP6250483 A JP 6250483A JP 6250483 A JP6250483 A JP 6250483A JP S59188328 A JPS59188328 A JP S59188328A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- phase
- vector
- zero
- relay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は高抵抗接地系電力系統の1線地絡事故を検出
する一線地絡検出継電器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single line ground fault detection relay for detecting a single line ground fault in a high resistance grounding power system.
従来、この種の一線地絡検出継電器としては第1図に示
すものがある。図において、1は相電圧検出用の計器用
変成器(以下PTと略称)、2−1ないし2−6はPT
2次線間電圧導入トランス、6はPT3次零相電圧導入
トランス、4−1ないし4−6、及び5−1ないし5−
4はベクトル合成用抵抗、6は零相過電圧検出要素で入
力信号をPT3次零相電圧導入トランス302次側よシ
得る。7−1ないし7−6、及び8は矩形波変換回路、
9−11いし9−6td、NAND回路、10−1ない
し10−3は位相弁別回路、11−1ないし11−6は
夫々AND回路である。Conventionally, there is one shown in FIG. 1 as this type of single line ground fault detection relay. In the figure, 1 is an instrument transformer (hereinafter abbreviated as PT) for phase voltage detection, and 2-1 to 2-6 are PTs.
A secondary line voltage introduction transformer, 6 is a PT tertiary zero-phase voltage introduction transformer, 4-1 to 4-6, and 5-1 to 5-
4 is a vector synthesis resistor, and 6 is a zero-phase overvoltage detection element that receives an input signal from the secondary side of the PT tertiary zero-phase voltage introducing transformer 30. 7-1 to 7-6 and 8 are rectangular wave conversion circuits;
9-11 to 9-6td are NAND circuits, 10-1 to 10-3 are phase discrimination circuits, and 11-1 to 11-6 are AND circuits, respectively.
次に第1図に示した従来回路の動作について以下に説明
する。第2図は第1図に示す従来継電器の一線地絡検出
特性図で12−1ないし12−6は夫々第1図に示した
AND回路11−1ないし11−6の出力特性であり、
特性12−4は前記第1図の零相過電圧検出要素6の出
力特性を示している。また電圧−VAないし−Vcは基
準電圧で第3図にその基準電圧−VAないし−Vcの導
出原理を示している。すなわち、電圧BAB、EBC,
ECAは各々線間電圧であって前記第1図のPTIの2
次側相電圧をFT2次線間電圧導入トランス2−1ない
し2−3で線間電圧に変換したもので、上記線間電圧に
比例した合成電流を得るためベクトル合成用抵抗4−1
ないし4−6を介して前記合成電流をベクトル合成する
ことKよシ第3図に示す−MAないし−Vcに比例した
電気量を得るように回路構成している。つまシ、基準電
圧−VAに比例した電気量はベクトル合成用抵抗4−1
.4−6により各々線間電圧EAB。Next, the operation of the conventional circuit shown in FIG. 1 will be explained below. FIG. 2 is a single line ground fault detection characteristic diagram of the conventional relay shown in FIG. 1, and 12-1 to 12-6 are the output characteristics of the AND circuits 11-1 to 11-6 shown in FIG. 1, respectively.
Characteristic 12-4 shows the output characteristic of the zero-phase overvoltage detection element 6 shown in FIG. Further, the voltages -VA to -Vc are reference voltages, and FIG. 3 shows the principle for deriving the reference voltages -VA to -Vc. That is, voltages BAB, EBC,
ECA is the line voltage, and is equal to 2 of PTI in FIG.
The next phase voltage is converted to a line voltage by the FT secondary line voltage introduction transformer 2-1 to 2-3, and the vector synthesis resistor 4-1 is used to obtain a composite current proportional to the line voltage.
The circuit is constructed such that the combined currents are vector-combined through K to 4-6 to obtain an amount of electricity proportional to -MA to -Vc shown in FIG. The amount of electricity proportional to the reference voltage -VA is the resistor 4-1 for vector synthesis.
.. 4-6 respectively line voltage EAB.
−ECAをベクトル合成したもので前記基準電圧−VB
、=Vcも同様にして得ることができる。- ECA is vector-synthesized and the reference voltage -VB
, =Vc can also be obtained in the same manner.
次に第2図に示した第1図のAND回路11−1ないし
11−3の出力特性12−1ないし12−3の導出原理
を第1相分について第4図に示す。Next, the principle for deriving the output characteristics 12-1 to 12-3 of the AND circuits 11-1 to 11-3 of FIG. 1 shown in FIG. 2 is shown in FIG. 4 for the first phase.
前記特性12−1ないし12−6は第3図で導出した基
準電圧−VA K比例した電気量−KIVAと、第1図
に示すPT103次回路よシ得る零相電圧3vOとを2
13次零相電圧導入トランス6で受は前記零相電圧3V
Oに比例した出力電圧をベクトル合成用抵抗5−1を介
して導出した−に2VOの電気量とベクトル合成して−
に2 VO−KI VAを得る。さらKPT3次零相電
圧導入トランス6の出力よりベクトル合成用抵抗5−4
を介して得る−に2VOの電気量との位相差θが一定値
となるようにして軌跡を描いたのが第4図に示す左右対
称の円弧である。尚前記−に2VOと−KtVAの2つ
のベクトルの位相角θが規定値以上、180°〉θ〉9
0°であるときに第1図の一線地絡検出継電器から動作
出力を得る例を第5図に示した。波形−K 2 V o
は第1図のベクトル合成用抵抗5−4の出力波形で波形
−に2 ’VO−Kt VAは第1図の回路7−1の入
力波形□である。この入力波形−に2VO−KtVAを
各々矩形波変換回路7−1ないし7−6及び8を介して
第5図の矩形波変換回路8及び7−1の出力信号を得る
。上記2つの矩形波変換回路8及び7−1の出力信号を
第1図のN A N D回路9−1に印加することによ
シ矩形波変換回路7−1の出力及び矩形波変換回路8の
出力が共に無いローレベル状態時のみハイレベルの出力
信号を得ることができる。これが第5図NAND回路9
−1の出力波形であり、そのNAND回路9−1の出力
パルス幅は波形−に2VO及び−に2 VO−KtVA
の位相が同位相の場合180°となシ逆位相の場合は零
となる。したがって上記パルス幅、すなわちNAND回
路9−1の出力信号を何かの方法によって検出すること
によシ前記−に2 VO−KIVhの2つの入力の位相
角が規定値以上か否かを判定することができる。第5図
の波形例は位相角θが規定値以下で継電器が不動作の場
合であり前記パルス幅が規定値より太き(NAND回路
9−1の出力信号(H信号)をロック信号としているた
め位相弁別回路10−1の出力がでていない。The characteristics 12-1 to 12-6 are obtained by dividing the reference voltage -VA K proportional to the electrical quantity -KIVA derived in FIG.
The 13th order zero-phase voltage introduction transformer 6 receives the zero-phase voltage 3V.
The output voltage proportional to O is derived through the vector synthesis resistor 5-1, and is vector-combined with the electric quantity of 2VO to -.
to get 2 VO-KI VA. Furthermore, the vector synthesis resistor 5-4 is connected to the output of the KPT 3rd order zero-phase voltage introduction transformer 6.
The symmetrical arc shown in FIG. 4 is a locus drawn such that the phase difference θ between - and the electrical quantity of 2VO obtained through is a constant value. In addition, the phase angle θ of the two vectors 2VO and -KtVA is greater than the specified value, 180°〉θ〉9
FIG. 5 shows an example in which the operating output is obtained from the single line ground fault detection relay shown in FIG. 1 when the angle is 0°. Waveform-K2Vo
is the output waveform of the vector synthesis resistor 5-4 in FIG. 1, and waveform -2'VO-Kt VA is the input waveform □ of the circuit 7-1 in FIG. This input waveform -2VO-KtVA is passed through the rectangular wave converting circuits 7-1 to 7-6 and 8, respectively, to obtain the output signals of the rectangular wave converting circuits 8 and 7-1 shown in FIG. By applying the output signals of the two rectangular wave converting circuits 8 and 7-1 to the N A N D circuit 9-1 in FIG. A high level output signal can be obtained only in a low level state when both outputs are absent. This is the NAND circuit 9 in Figure 5.
-1 output waveform, and the output pulse width of the NAND circuit 9-1 is 2VO on the waveform and 2VO-KtVA on the waveform -1.
When the phases are in the same phase, it is 180°, and when the phases are opposite, it is zero. Therefore, by detecting the above-mentioned pulse width, that is, the output signal of the NAND circuit 9-1, by some method, it is determined whether the phase angle of the two inputs of the above-mentioned -2VO-KIVh is equal to or larger than the specified value. be able to. The waveform example in Fig. 5 is when the phase angle θ is less than the specified value and the relay is inoperative, and the pulse width is thicker than the specified value (the output signal (H signal) of the NAND circuit 9-1 is used as the lock signal). Therefore, the output of the phase discrimination circuit 10-1 is not output.
伺、零相過電圧検出要素6はFT3次零相電圧導入トラ
ンス3の出力信号を受は零相電圧が規定値以上あった場
合に動作するものであり、ストッパー用として位相弁別
回路10−1ないし10−6の出力とAND回路11−
1ないし11−6で使用する。The zero-sequence overvoltage detection element 6 receives the output signal of the FT tertiary zero-sequence voltage introduction transformer 3 and operates when the zero-sequence voltage exceeds a specified value. 10-6 output and AND circuit 11-
1 to 11-6.
また、第6−1図の回路図は高抵抗接地系の例における
1線地絡事故時の等何回路で、16は中性点接地抵抗(
以下NGRと称す)、14は中性点接地リアクトル(以
下NGLと称す)、15はケーブル系送電線の対地静電
容量(以下対地容1と称す)、16は故障点抵抗、EA
は発電機誘起電圧、Zgは背後インビーダンスである。In addition, the circuit diagram in Figure 6-1 shows the circuit at the time of a one-wire ground fault in an example of a high-resistance grounding system, and 16 is the neutral point grounding resistance (
14 is the neutral point grounding reactor (hereinafter referred to as NGL), 15 is the ground capacitance of the cable transmission line (hereinafter referred to as ground capacitance 1), 16 is the fault point resistance, EA
is the generator induced voltage, and Zg is the back impedance.
前記第6−1図を対象座標法における等価回路で置き換
えると第6−2図の如くとなる。更に背後インピーダン
スZgは無視可能なためこれを省略すると第6−3図と
なる。If the above-mentioned Fig. 6-1 is replaced with an equivalent circuit in the object coordinate method, it becomes as shown in Fig. 6-2. Further, since the rear impedance Zg is negligible, if this is omitted, the result is shown in Fig. 6-3.
又、同地点における2線地絡事故を表わすと第7−1図
となる。これを第6図と同様にして対象座標法における
等価回路で置き変えると第7−2図の如くなり、更に簡
略化すれば第7−3図のように表わすことができる。こ
こで前述の第6−3図と第7−3図の零相電圧VOを比
較すると明らかにそのvOの大きさ及び位相に差異があ
シ前記、零相電圧■0のベクトルは故障点抵抗16の大
きさRFによって左右されることがわかる。前記の様子
を第8図及び第9図に示す。まず、第8図は人相1線地
絡事故時の零相電圧−Voのベクトル軌跡であり第6−
3図の故障点抵抗3RFを零から無限大の太きさまで変
化させた場合であり、第9図はBc相の同地点2線地絡
事故時の零相電圧−Voのベークトル軌跡で、第7−3
図の故障点抵抗RFを零から無限大まで変化させた場合
を表わしている。したがって継電器の動作範囲としては
第10図に示す様に1線地絡事故時の零相電圧−VOの
軌跡17−1、又は17−2を検出できるように特性1
2−1のようにすることが必要である。一方、同地点2
線地絡事故時の零相電圧−V。Figure 7-1 shows a two-wire ground fault accident at the same location. If this is replaced with an equivalent circuit in the symmetric coordinate method in the same manner as in FIG. 6, it will become as shown in FIG. 7-2, and if further simplified, it can be expressed as in FIG. 7-3. Here, if we compare the zero-sequence voltage VO in Figure 6-3 and Figure 7-3, it is clear that there is a difference in the magnitude and phase of vO. It can be seen that the magnitude of 16 is influenced by RF. The above situation is shown in FIGS. 8 and 9. First, Fig. 8 shows the vector locus of the zero-sequence voltage -Vo at the time of a one-wire ground fault accident, and Fig. 6-
This is the case where the failure point resistance 3RF in Figure 3 is changed from zero to infinity, and Figure 9 is the Bektor locus of the zero-phase voltage -Vo at the same point two-wire ground fault of the Bc phase, and the 7-3
The figure shows the case where the failure point resistance RF is changed from zero to infinity. Therefore, as shown in Fig. 10, the operating range of the relay is set so that the characteristic 1
It is necessary to do as shown in 2-1. On the other hand, the same point 2
Zero-sequence voltage -V at the time of line ground fault.
ベクトル軌跡は第9図の如くであるためこれを誤検出し
ないようにしなければならない。しかし、継電器の特性
は第2図に示すように各相の基準電圧VA、VB、’V
cに対して円弧となるよう罠なっているため、例えば、
Bc相の2線地絡事故であれば継電器のB相又はC相の
特性範囲内に零相電圧−VOのベクトルが入ってくる可
能性があることであり、この性能限界が1線地絡検出継
電器としての性能の良否を決定してしまうことになる。Since the vector trajectory is as shown in FIG. 9, it is necessary to avoid erroneously detecting this. However, the characteristics of the relay are as shown in Figure 2, with reference voltages VA, VB, 'V of each phase.
Since the trap is set to form an arc with respect to c, for example,
In the case of a two-wire ground fault in the Bc phase, there is a possibility that the vector of zero-sequence voltage -VO will enter the characteristic range of the B or C phase of the relay, and this performance limit is a one-wire ground fault. This will determine the quality of the performance of the detection relay.
この様子を第11図に示す。第11図はBc相の2線地
絡事故の場合であり電圧三角形はEA、 EB。This situation is shown in FIG. Figure 11 shows the case of a two-wire ground fault in the Bc phase, and the voltage triangles are EA and EB.
BcとなりB、C相の線間電圧が低下する。基準電圧V
A、VB、VCは線間電圧よりベクトル合成して得たも
のであるから電圧三角形の重心点零よシ三角形の頂点に
向いた位相となシ大きさもそれに比例したものとなる。Bc, and the line voltage of the B and C phases decreases. Reference voltage V
Since A, VB, and VC are obtained by vector synthesis from line voltages, the phases and magnitudes of the voltages from the center of gravity point zero of the voltage triangle to the apex of the triangle are also proportional to that.
したがって継電器の特性12−1.12−2.12−3
も第11図の如く基準電圧VA、VB、VCに対する円
弧となりB相の特性12−2とC相の特性12−3は線
間電圧Encの大きさに応じ互いに接近してくることに
なる。Therefore, relay characteristics 12-1.12-2.12-3
As shown in FIG. 11, the B-phase characteristic 12-2 and the C-phase characteristic 12-3 approach each other in accordance with the magnitude of the line voltage Enc.
したがって上記線間電圧Encが一定以下となれば特性
12−2と12−3は重なってしまい2線地絡事故でも
動作することになるので、従来はこの対策として第1図
では図示していないが、線間電圧が一定値以下でロック
する方法あるいは2相が動作した場合は出力信号を出さ
ないように回路に工夫をこらしている。Therefore, if the above-mentioned line voltage Enc falls below a certain level, characteristics 12-2 and 12-3 will overlap and the operation will occur even in the case of a two-wire ground fault.Conventionally, as a countermeasure for this, it is not shown in Fig. 1. However, the circuit has been devised so that it locks when the line voltage is below a certain value or does not output an output signal when two phases are activated.
このように従来の一線地絡検出継電器の第1の欠点は第
10図で既述のように、1線地絡事故時の零相電圧−V
oベクトルを確実に検出できるよう圧するためには円弧
を相当大きくとらなければならず、第11図の特性12
−2と12−6が重畳する限界の線間電圧EBCを相当
大きくすることであシ、換言すれば線間電圧低下検出ロ
ック値を高くすることで、前記ロック要素に頼らない範
囲が狭くなることである。次に従来の一線地絡検出継電
器の第2の欠点は例えばB相至近端C相遠方端のような
異地点2線地絡事故の場合でこの時には零相電圧−vO
の位相が大きく変化することになり、この様子を第11
図のベクトルOFで示している。つまり、前記の線間電
圧低下検出ロック要素が応動しない程度に線間電圧が残
ったケースであれば全面的に本来の位相特性12−2及
び12−6で判別しなければならないが、この場合には
継電器の特性12−2及び12−6の動作範囲が広いの
で異地点2線地絡事故に対しては大変具合が悪い。As mentioned above, the first drawback of the conventional one-wire ground fault detection relay is that the zero-sequence voltage -V during a one-wire ground fault fault is
In order to detect the o vector reliably, the circular arc must be made quite large, and characteristic 12 in Figure 11.
-2 and 12-6 can be superimposed by significantly increasing the line voltage EBC, or in other words, by increasing the line voltage drop detection lock value, the range that does not depend on the lock element can be narrowed. That's true. Next, the second drawback of the conventional one-wire ground fault detection relay is that in the case of a two-wire ground fault at different points, such as the near end of phase B and the far end of phase C, in this case, the zero-sequence voltage -vO
The phase of
It is indicated by vector OF in the figure. In other words, if the line voltage remains to such an extent that the line voltage drop detection lock element does not respond, the determination must be made entirely based on the original phase characteristics 12-2 and 12-6, but in this case Since the operating range of relay characteristics 12-2 and 12-6 is wide, it is very difficult to handle two-wire ground faults at different points.
上述のように従来の1線地絡検出継電器はその動作範囲
が第2図に示す中心点零を通る円弧となり、その円弧の
大きさは1線地絡事故時のVOベクトル軌跡よシは充分
大きくする必要があシ、そのため異地点2線地絡事故で
誤動作を起す性能上の限界が低下するという大きな欠点
があった。As mentioned above, the operating range of the conventional one-wire ground fault detection relay is an arc passing through the center point zero shown in Figure 2, and the size of the arc is much larger than the VO vector locus in the case of a one-wire ground fault. This has the major drawback of lowering the performance limit for causing malfunctions due to two-wire ground faults at different locations.
本発明は上記の欠点を除去するためになされたもので、
−線地絡事故時の零相電圧のベクトルに対し最小必要限
の円弧特性を容易にし、二線地絡事故の応動しにくい高
性能な地絡検出特性を有する一線地絡検出継電器を提供
することを目的とする。The present invention has been made to eliminate the above-mentioned drawbacks.
- To provide a single-line ground fault detection relay that facilitates the minimum necessary circular arc characteristic for the vector of zero-sequence voltage at the time of a line-ground fault, and has high-performance ground fault detection characteristics that make it difficult to react to a two-line ground fault. The purpose is to
以下、本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.
図中第1図と同一の部分は同一の符号をもって図示した
第12図において、4−1ないし4−12及び5−1な
いし5−6はベクトル合成用抵抗、8−1ないし8−6
は矩形波変換回路である。In FIG. 12, parts that are the same as those in FIG.
is a square wave conversion circuit.
次に本発明の動作について説明する。第13図は本発明
の継電器の特性を説明するためのもので第1相分のみを
示す。図において特性17−1.17−2は前記第8図
で既述の1線地絡事故時の零相電圧−■0の軌跡であり
、特性12−4は第12図の零相過電圧検出要素乙の出
力特性で従来と同一である。また特性19−1は本発明
の継電器の特性図であり、零相電圧−vOの軌跡を完全
に包囲する構成とするため完全1線地絡事故時の−V
oベクトルに対し、逆位相方向に零点より−KaVAだ
け逆位相オフセット電圧を与え、特性17−1及び17
−2の円弧の中心点と同心円でベクトル−に3VAに接
するようにしている。伺、特性19−1と特性17−1
の中心点は必ずしも同一でなくてもよく、ベクトル−K
aVAのオフセット電圧を大きく取れば円弧が大きくな
るので、適当に中心点を移動することにより軌跡17−
1及び17−2と協調をとればよい。ベクトルKtVA
。Next, the operation of the present invention will be explained. FIG. 13 is for explaining the characteristics of the relay of the present invention and shows only the first phase. In the figure, characteristics 17-1 and 17-2 are the locus of zero-sequence voltage -■0 at the time of the one-line ground fault fault described in Fig. 8, and characteristic 12-4 is the zero-sequence overvoltage detection in Fig. 12. The output characteristics of element B are the same as before. Characteristic 19-1 is a characteristic diagram of the relay of the present invention, in which the structure completely surrounds the locus of the zero-sequence voltage -VO, so that -V during a complete one-line ground fault
For the o vector, apply an anti-phase offset voltage of −KaVA from the zero point in the anti-phase direction, and obtain characteristics 17-1 and 17.
A concentric circle with the center point of the arc of -2 is made to touch the vector - at 3VA. Inquiry, characteristic 19-1 and characteristic 17-1
The center points of the vector −K do not necessarily have to be the same.
If the offset voltage of aVA is increased, the arc becomes larger, so by appropriately moving the center point, the trajectory 17-
1 and 17-2. Vector KtVA
.
KIVB 、 KxVCの導出法は従来と同様で前記第
3図に示す。次に特性19−1の導出原理を第14図に
示す。基準電圧KIVAと零相電圧−K 2 V oを
ベクトル合成して得るーKz Vo −KI VAは従
来と同様にベクトル合成用抵抗4−1.4−6及び5−
1を介して導出し、又基準電圧VAよりオフセット電圧
−に3VAを導出しこれを零相電圧−に2vOとベクト
ル合成して−に2 Vo + Ka VAを得る方法は
ベクトル合成用抵抗4−8.4−11.5−4を介して
電流合成すればよい。ベクトル合成用抵抗4−8.4−
111)出力1ri−KaVA ノオ7セット電圧であ
り基準電圧KIVAを導出するベクトル合成用抵抗4−
1.4−6とは逆極性咎なるように接続している。この
ようにして導出した2ツノ電気jjjr−に2VO−K
IVA ト−に2VO+ K3VOの位相角θとを一定
値になるようにして基準ベクトルKtVAとオフセット
電圧ベクトル−に3VAの各頂点に接する円を描けば第
14図の特性19−1を得ることができる。継電器の動
作範囲は特性19−1より内側であり位相角θが一定値
180゜〉θ〉90°以上であれば動作するように位相
角θを測定すればよい。位相角θの測定方法は従来と同
じように電気量−に2 VO−Kt VAとに2VO+
に3VAを各々矩形波変換回路7−1.8−1でパルス
変換しその2つのパルス幅の重なり時間、または途切れ
時間を測定することにより簡単に検出することができる
。伺、動作出力は従来と同様に特性19−1と零相過電
圧検出要素乙の特性12−4とのANDによるものであ
る。The method for deriving KIVB and KxVC is the same as the conventional method and is shown in FIG. 3 above. Next, the principle for deriving characteristic 19-1 is shown in FIG. Obtained by vector synthesis of the reference voltage KIVA and the zero-phase voltage -K2Vo -KzVo -KIVA is obtained by vector synthesis of the vector synthesis resistors 4-1, 4-6 and 5- as in the conventional case.
1, and derive 3VA as an offset voltage - from the reference voltage VA, and vector synthesize this with 2VO as a zero-sequence voltage - to obtain -2 Vo + Ka VA. The current may be combined via 8.4-11.5-4. Vector synthesis resistor 4-8.4-
111) Output 1ri-KaVA is the set voltage and vector synthesis resistor 4- is used to derive the reference voltage KIVA.
1. It is connected so that the polarity is opposite to that of 4-6. 2VO-K to the 2 horn electricity jjjr- derived in this way
If the phase angle θ of 2VO + K3VO is set to a constant value on IVA, and a circle touching each vertex of 3VA is drawn on the reference vector KtVA and the offset voltage vector -, characteristic 19-1 in Fig. 14 can be obtained. can. The operating range of the relay is inside characteristic 19-1, and the phase angle θ may be measured so that the relay will operate if the phase angle θ is a constant value of 180°>θ>90° or more. The method for measuring the phase angle θ is the same as before: 2 VO-Kt for the electric quantity, 2 VO+ for the VA, and the same as before.
This can be easily detected by converting 3VA into pulses using the rectangular wave conversion circuit 7-1, 8-1 and measuring the overlapping time or interruption time of the two pulse widths. The operating output is obtained by ANDing the characteristic 19-1 and the characteristic 12-4 of the zero-sequence overvoltage detection element B, as in the conventional case.
なお、上記実施例では第14図に示す如く、オフセット
電圧−に3VAを基準電圧KIVAに対し、180°と
したが、これを例えば遅れ90°にするなどオフセット
電圧位相を適当に変えることにより特性の基準電圧をK
IIVALOCに変え円弧19−1の傾きを変化させる
ことができる。これは電力系統の零相回路がインダクテ
イプL性かキャノ(シテイブC性かにより1線地絡事故
時の零相電圧−vOのベクトルが基準電圧より進むか又
は遅れるかに変化するため継電器の動作範囲もこれに合
せ進み側を広くするか又は逆にするかを決めることがあ
り、このような場合は第15図に示すような適用例があ
る。In the above embodiment, as shown in FIG. 14, the offset voltage -3VA was set at 180° with respect to the reference voltage KIVA, but the characteristics can be changed by appropriately changing the offset voltage phase, for example by setting a delay of 90°. The reference voltage of K
By changing to IIVALOC, the slope of the arc 19-1 can be changed. This is because the vector of zero-sequence voltage -vO at the time of a one-wire ground fault changes to lead or lag the reference voltage depending on whether the zero-phase circuit in the power system is inducting L or cano (C), which causes the relay to operate. Depending on this, it may be decided whether the range should be widened or reversed. In such a case, there is an example of application as shown in FIG. 15.
以上のように、本発明によれば1線地絡事故時の零相電
圧−■0のベクトルに対する最小必要限の円弧特性をベ
ク)/し合成用抵抗を追加することにより容易に得るこ
とができ、2線地絡事故時に応動しにくい地絡検出特性
が確実に得られる効果がある。As described above, according to the present invention, the minimum required arc characteristic for the zero-sequence voltage -■0 vector at the time of a one-line ground fault can be easily obtained by adding a resistor for synthesis. This has the effect of reliably providing ground fault detection characteristics that are difficult to respond to in the event of a two-wire ground fault.
第1図は従来の一線地絡検出継電器のプロック回路図、
第2図は第1図の検出特性図、第3図ないし第11図は
従来例及び本発明を説明するだめの補足説明図、第12
図は本発明の一実施例を示す一線地絡検出継電器の原理
回路図、第13図は本発明による零相位相特性図、第1
4図と第15図は第12図の回路説明図である。
1・・・計器用変成器、 2−1ないし2−6・・・
PT2次線間電圧導入トランス、 6・・・PT3次
零相電圧導入)・ランス、 4−1ないし4−12.5
−1ないし5−6・・・ベクトル合成用抵抗、 6−
・・零相過電圧検出要素、 7−1ないし7−3.8
−1ないし8−6・・・矩形波変換回路、 9−1ない
し9−6・・・NANDAND回路10−1ないし10
−6・・・位相弁別回路、 11−1ないし11−6
・・・AND回路。
なお、図中同一符号は同−又は相当部分を示す。
代理人 大 岩 増 雄
第 2 図
第 4 図
第 5 図
第6−4 図
第6−2 図
第 6−3 図
Q
弔 7−f 図
A
蔓7−3図
ヱ
第6 図
第 9 回
一蚤EA
第 IO圓
第 ii 図
A
第 72 図
躬 13 図
第14@
第 15 図
手続補正書(自発)
−″ 壬宮殿
表示 特願昭58−62504号名称
一線地絡検出継電器
る者
どの関係 特許出願人
千 東京都千代田区丸の内二丁目2番3号r、
(601)三菱電機株式会社代表者片山仁八部
人
1 東京都千代田区丸の内二丁目2番3号5、補
正の対象
明細書の特許請求の範囲の欄
6、補正の内容
別紙の通り特許請求の範囲を補正する。
7、 添付書類の目録
補正後の特許請求の範囲を記載した書面 1連星 上
補正後の特許請求の範囲
(1)交流送電系統の相電圧を検出する計器用変成器の
2次線間電圧導入トランスの線間電圧な相電圧検出用ベ
クトル合成抵抗によりベクトル合成して導出した相電圧
と、前記相電圧と同位相で基準電圧検出用ベクトル合成
抵抗によって導出した基準電圧と、前記変成器の3仄巻
線エリ導出しfc変成器3仄電圧とをベクトル合成して
得た第1の電気量と、前記基準電圧とは逆位相で前記基
準電圧に比例したオフセット電圧及び零相電圧とをベク
トル合成して得た第2の電気量と、前記第1の電気量と
第2の電気量との位相差を検出するNAND回路と、前
記送電系の一線地終故障時に前記零相電圧のベクトル軌
跡の原点エリ前記オフセット電圧の方向に前記オフセッ
ト電圧分比例して平行移動し円弧特性が得らnる工うに
した第1要素と、前記零相電圧の大きさに比例しfc電
気量を検出するようにした第2要素とを備え、前記第1
要素と第2要素とが共に動作し瓦時に継電器の出力信号
を出すようにしたことを特徴とする一線地絡検出継電器
。
(2)前記逆位相オフセット電圧を所定量移相した電圧
と零相電圧とをベクトル合成して得た第1の電気量と、
前記零相電圧と前記基準電圧とをベクトル合成して得た
第2の電気量との位相差な検出するようにした第1要素
及び前記第2要素の出力信号とが共に動作した時に継電
器の出力信号を出す工うにしたことを特徴とする特許請
求の範囲第1項記載の一線地絡検出継電器。Figure 1 is a block circuit diagram of a conventional single line ground fault detection relay.
FIG. 2 is a detection characteristic diagram of FIG. 1, FIGS. 3 to 11 are supplementary explanatory diagrams for explaining the conventional example and the present invention, and FIG.
The figure is a principle circuit diagram of a one-line ground fault detection relay showing an embodiment of the present invention, FIG. 13 is a zero-phase phase characteristic diagram according to the present invention, and FIG.
4 and 15 are explanatory diagrams of the circuit shown in FIG. 12. 1...Instrument transformer, 2-1 to 2-6...
PT secondary line voltage introduction transformer, 6...PT tertiary zero-phase voltage introduction) lance, 4-1 to 4-12.5
-1 to 5-6...Resistance for vector synthesis, 6-
...Zero-sequence overvoltage detection element, 7-1 to 7-3.8
-1 to 8-6...Square wave conversion circuit, 9-1 to 9-6...NAND AND circuit 10-1 to 10
-6...Phase discrimination circuit, 11-1 to 11-6
...AND circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masu Oiwa Figure 2 Figure 4 Figure 5 Figure 6-4 Figure 6-2 Figure 6-3 Figure Q Condolence 7-f Figure A Tsuri 7-3 Figure 6 Figure 9 Part 1 Flea EA No. IO En No. ii Fig. A No. 72 Fig. 13 Fig. 14 @ No. 15 Written amendment to the drawing procedure (voluntary) -'' Mi Palace display Patent application No. 1983-62504 Name Relationship between the person and owner of the single line ground fault detection relay Patent Applicant Sen, 2-2-3 Marunouchi, Chiyoda-ku, Tokyo;
(601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama Hitoshi 1 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo, Claims column 6 of the specification subject to amendment, Contents of amendment Claims as per attached sheet Correct the range of. 7. Document stating the scope of claims after the amendment to the list of attached documents 1 binary star Claims after the above amendment (1) Secondary line voltage of an instrument transformer that detects the phase voltage of an AC power transmission system The line-to-line voltage of the introduced transformer is the phase voltage derived by vector synthesis using the vector synthesis resistor for detecting the phase voltage, the reference voltage derived by the vector synthesis resistor for detecting the reference voltage in the same phase as the phase voltage, and the reference voltage of the transformer. A first quantity of electricity obtained by vector synthesis of the three-way winding area and the fc transformer three-way voltage, and an offset voltage and zero-sequence voltage that are in opposite phase to the reference voltage and proportional to the reference voltage. A NAND circuit that detects a second electrical quantity obtained by vector synthesis, a phase difference between the first electrical quantity and the second electrical quantity, and a NAND circuit that detects the phase difference between the first electrical quantity and the second electrical quantity, and The origin of the vector locus is a first element which is designed to move in parallel in the direction of the offset voltage in proportion to the offset voltage to obtain a circular arc characteristic, and a first element which is designed to obtain an arc characteristic by moving in parallel in the direction of the offset voltage in proportion to the offset voltage. a second element configured to detect the first element;
A single-line ground fault detection relay characterized in that the element and the second element operate together to output a relay output signal when the tile is broken. (2) a first quantity of electricity obtained by vector synthesis of a voltage obtained by shifting the phase of the anti-phase offset voltage by a predetermined amount and a zero-phase voltage;
The phase difference between the zero-sequence voltage and the second electrical quantity obtained by vector synthesis of the zero-sequence voltage and the reference voltage is detected.When the output signals of the first element and the second element operate together, the relay is activated. A single line ground fault detection relay according to claim 1, characterized in that the relay is adapted to output an output signal.
Claims (2)
2次線間電圧導入トランスの線間電圧を相電圧検出用ベ
クトル合成抵抗によシベクトル合成して導出した相電圧
と、前記相電圧と同位相で基準電圧検出用ベクトル合成
抵抗によって導出した基準電圧と、前記変成器の2次巻
線よシ導出した変成器3次電圧とをベクトル合成して得
た第1の電気量と、前記基準電圧とは逆位相で前記基準
電圧に比例したオフセット電圧及び葺合零相電圧とをベ
クトル合成して得た第2の電気量と、前記第1の電気量
と第2の電気量との位相差を検出するNAND回路と、
前記送電系の一線地絡故障時に前記零相電圧のベクトル
軌跡の原点より前記オフセット電圧の方向に前記オフセ
ット電圧公比例して平行移動し円弧特性が得られるよう
にした第1要素と、前記零相電圧の大きさに比例した電
気量を検出するようにした第2要素とを備え、前記第1
要素と第2要素とが共に動作した時に継電器の出力信号
を出すようにしたことを特徴とする一線地絡検出継電器
。(1) The phase voltage derived by vector combining the line voltage of the secondary line voltage introduction transformer of the instrument transformer that detects the phase voltage of the AC power transmission system using the vector combination resistor for phase voltage detection, and the phase voltage derived from the phase voltage. a first quantity of electricity obtained by vector synthesis of a reference voltage derived by a vector composite resistor for detecting a reference voltage in the same phase as the voltage and a transformer tertiary voltage derived from a secondary winding of the transformer; , a second quantity of electricity obtained by vector synthesis of an offset voltage and a zero-sequence voltage that are in opposite phase to the reference voltage and proportional to the reference voltage, and the first quantity of electricity and the second quantity of electricity. a NAND circuit that detects the phase difference between the
a first element configured to move in parallel from the origin of the vector locus of the zero-phase voltage in the direction of the offset voltage in proportion to the offset voltage when a line ground fault occurs in the power transmission system, and to obtain a circular arc characteristic; a second element configured to detect an amount of electricity proportional to the magnitude of the phase voltage;
A single-line ground fault detection relay characterized in that a relay output signal is output when an element and a second element operate together.
圧を所定量移相した第1の電気量と、前記零相電圧と前
記相電圧とをベクトル合成して得た第2の電気量との位
相差を検出するようにした第1要素及び前記第2要素の
出力信号とが共に動作した時に継電器の出力信号を出す
ようにしたことを特徴とする特許請求の範囲第1項記載
の一線地絡検出継電器。(2) A first quantity of electricity obtained by shifting the phase of the anti-phase offset voltage applied to the phase voltage by a predetermined amount, and a second quantity of electricity obtained by vector synthesis of the zero-sequence voltage and the phase voltage. 1. The straight line according to claim 1, wherein an output signal of a relay is output when the output signals of the first element configured to detect a phase difference and the output signal of the second element operate together. Fault detection relay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6250483A JPS59188328A (en) | 1983-04-08 | 1983-04-08 | One strand ground-fault detecting relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6250483A JPS59188328A (en) | 1983-04-08 | 1983-04-08 | One strand ground-fault detecting relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59188328A true JPS59188328A (en) | 1984-10-25 |
JPH0517771B2 JPH0517771B2 (en) | 1993-03-10 |
Family
ID=13202063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6250483A Granted JPS59188328A (en) | 1983-04-08 | 1983-04-08 | One strand ground-fault detecting relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59188328A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55114130A (en) * | 1979-02-22 | 1980-09-03 | Mitsubishi Electric Corp | Oneeline grounddfault detecting relay unit |
JPS5780230A (en) * | 1980-11-06 | 1982-05-19 | Tokyo Shibaura Electric Co | Protection relay |
-
1983
- 1983-04-08 JP JP6250483A patent/JPS59188328A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55114130A (en) * | 1979-02-22 | 1980-09-03 | Mitsubishi Electric Corp | Oneeline grounddfault detecting relay unit |
JPS5780230A (en) * | 1980-11-06 | 1982-05-19 | Tokyo Shibaura Electric Co | Protection relay |
Also Published As
Publication number | Publication date |
---|---|
JPH0517771B2 (en) | 1993-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6442010B1 (en) | Differential protective relay for electrical buses with improved immunity to saturation of current transformers | |
Kezunovic et al. | Design, modeling and evaluation of protective relays for power systems | |
Eissa et al. | A novel digital distance relaying technique for transmission line protection | |
JPS59188328A (en) | One strand ground-fault detecting relay | |
Nengling et al. | Wavelet-based ground fault protection scheme for generator stator winding | |
JPS6019492Y2 (en) | ground fault distance relay | |
JP2596671B2 (en) | Digital ground fault overvoltage relay for high voltage distribution lines. | |
JPS5843402Y2 (en) | Hogokeiden Sochi | |
JP2723286B2 (en) | Ground fault detector | |
So et al. | An implementation of current differential relay and directional comparison relay using EMTP MODELS | |
JPH0235539B2 (en) | ITSUSENCHIRAKUKENSHUTSUKEIDENKI | |
JP2577364B2 (en) | 1-line ground fault detection relay system | |
WO2024057442A1 (en) | Transformer protection relay and transformer protection method | |
JP2600682B2 (en) | Ground fault protection relay | |
JPH0378426A (en) | Line-to-ground fault detector | |
JP2607483B2 (en) | Ground fault directional relay | |
JP3503274B2 (en) | Fault location method for two parallel transmission and distribution lines | |
Pottonen et al. | Selecting protective relays with digital test methods | |
JPS59175330A (en) | One line ground-fault detecting relay | |
JPH01288779A (en) | Locating system of faulty section of power cable line | |
JPS6026413A (en) | Ground-fault protecting relaying method and relay | |
JPH03270633A (en) | Ground relay device | |
JPS6266168A (en) | Method and device for testing ground directional relay | |
JPS58144521A (en) | Protecting relay unit | |
JPS59185113A (en) | Distance relay system |