JPH0517771B2 - - Google Patents

Info

Publication number
JPH0517771B2
JPH0517771B2 JP58062504A JP6250483A JPH0517771B2 JP H0517771 B2 JPH0517771 B2 JP H0517771B2 JP 58062504 A JP58062504 A JP 58062504A JP 6250483 A JP6250483 A JP 6250483A JP H0517771 B2 JPH0517771 B2 JP H0517771B2
Authority
JP
Japan
Prior art keywords
voltage
phase
zero
vector
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58062504A
Other languages
Japanese (ja)
Other versions
JPS59188328A (en
Inventor
Nobuo Eda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6250483A priority Critical patent/JPS59188328A/en
Publication of JPS59188328A publication Critical patent/JPS59188328A/en
Publication of JPH0517771B2 publication Critical patent/JPH0517771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は高抵抗接地系電力系統の1線地絡事
故を検出する一線地絡検出継電器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single line ground fault detection relay for detecting a single line ground fault in a high resistance grounding power system.

従来、この種の一線地絡検出継電器としては第
1図に示すものがある。図において、1は相電圧
検出用の計器用変成器(以下PTと略称)、2−1
ないし2−3はPT2次線間電圧導入トランス、3
はPT3次零相電圧導入トランス、4−1ないし4
−6、及び5−1ないし5−4はベクトル合成用
抵抗、6は零相過電圧検出要素で入力信号をPT3
次零相電圧導入トランス3の2次側より得る。7
−1ないし7−3、及び8は矩形波変換回路、9
−1ないし9−3はNAND回路、10−1ない
し10−3は位相弁別回路、11−1ないし11
−3は夫々AND回路である。
Conventionally, there is one shown in FIG. 1 as this type of single line ground fault detection relay. In the figure, 1 is a voltage transformer for phase voltage detection (hereinafter abbreviated as PT), 2-1
or 2-3 is the PT secondary line voltage introduction transformer, 3
is PT 3rd order zero-phase voltage introduction transformer, 4-1 or 4
-6 and 5-1 to 5-4 are vector synthesis resistors, and 6 is a zero-phase overvoltage detection element that connects the input signal to PT3.
The next zero-phase voltage is obtained from the secondary side of the transformer 3. 7
-1 to 7-3 and 8 are rectangular wave conversion circuits, 9
-1 to 9-3 are NAND circuits, 10-1 to 10-3 are phase discrimination circuits, 11-1 to 11
-3 are AND circuits.

次に第1図に示した従来回路の動作について以
下に説明する。第2図は第1図に示す従来継電器
の一線地絡検出特性図で12−1ないし12−3
は夫々第1図に示したAND回路11−1ないし
11−3の出力特性であり、特性12−4は前記
第1図の零相過電圧検出要素6の出力特性を示し
ている。また電圧−VAないし−VCは基準電圧で
第3図にその基準電圧−VAないし−VCの導出原
理を示している。すなわち、電圧EAB、EBC、ECA
は各々線間電圧であつて前記第1図のPT1の2
次側相電圧をPT2次線間電圧導入トランス2−1
ないし2−3で線間電圧に変換したもので、上記
線間電圧に比例した合成電流を得るためベクトル
合成用抵抗4−1ないし4−6を介して前記合成
電流をベクトル合成することにより第3図に示す
−VAないし−VCに比例した電気量を得るように
回路構成している。つまり、基準電圧−VAに比
例した電気量はベクトル合成用抵抗4−1,4−
6により各々線間電圧EAB、−ECAをベクトル合成
したもので前記基準電圧−VB、−VCも同様にして
得ることができる。次に第2図に示した第1図の
AND回路11−1ないし11−3の出力特性1
2−1ないし12−3の導出原理を第1相分につ
いて第4図に示す。前記特性12−1ないし12
−3は第3図で導出した基準電圧−VAに比例し
た電気量−K1VAと、第1図に示すPT1の3次回
路より得る零相電圧3V0とをPT3次零相電圧導入
トランス3で受け前記零相電圧3V0に比例した出
力電圧をベクトル合成用抵抗5−1を介して導出
した−K2V0の電気量とベクトル合成して−K2V0
−K1VAを得る。さらにPT3次零相電圧導入トラ
ンス3の出力よりベクトル合成用抵抗5−4を介
して得る−K2V0の電気量との位相差θが一定値
となるようにして軌跡を描いたのが第4図に示す
左右対称の円弧である。尚前記−K2V0−K1VA
−K2V0の2つのベクトルの位相角θが規定値以
上、180°>θ>90°であるときに第1図の一線地
絡検出継電器から動作出力を得る例を第5図に示
した。波形−K2V0は第1図のベクトル合成用抵
抗5−4の出力波形で波形−K2V0−K1VAは第1
図の回路7−1の入力波形である。この入力波形
−K2V0−K1VAを各々矩形波変換回路7−1ない
し7−3及び8を介して第5図の矩形波変換回路
8及び7−1の出力信号を得る。上記2つの矩形
波変換回路8及び7−1の出力信号を第1図の
NAND回路9−1に印加することにより矩形波
変換回路7−1の出力及び矩形波変換回路8の出
力が共に無いローレベル状態時のみハイレベルの
出力信号を得ることができる。これが第5図
NAND回路9−1の出力波形であり、その
NAND回路9−1の出力パルス幅は波形−K2V0
及び−K2V0−K1VAの位相が同位相の場合180°と
なり逆位相の場合は零となる。したがつて上記パ
ルス幅、すなわちNAND回路9−1の出力信号
を何かの方法によつて検出することにより前記−
K2V0−K1VAと−K2V0の2つの入力の位相角が
規定値以上か否かを判定することができる。第5
図の波形例は位相角θが規定値以下で継電器が不
動作の場合であり前記パルス幅が規定値より大き
くNAND回路9−1の出力信号(H信号)をロ
ツク信号としているため位相弁別回路10−1の
出力がでていない。尚、零相過電圧検出要素6は
PT3次零相電圧導入トランス3の出力信号を受け
零相電圧が規定値以上あつた場合に動作するもの
であり、ストツパー用として位相弁別回路10−
1ないし10−3の出力とAND回路11−1な
いし11−3で使用する。
Next, the operation of the conventional circuit shown in FIG. 1 will be explained below. Figure 2 is a single-line ground fault detection characteristic diagram of the conventional relay shown in Figure 1, and is 12-1 to 12-3.
are the output characteristics of the AND circuits 11-1 to 11-3 shown in FIG. 1, respectively, and characteristic 12-4 is the output characteristic of the zero-sequence overvoltage detection element 6 shown in FIG. Further, the voltages -V A to -V C are reference voltages, and FIG. 3 shows the principle of deriving the reference voltages -V A to -V C. That is, the voltages E AB , E BC , E CA
are line voltages, respectively, and PT1 and 2 in FIG.
PT secondary line voltage introduction transformer 2-1
to 2-3, which are converted into line voltages, and are vector-synthesized by vector-synthesizing the composite currents via vector-synthesizing resistors 4-1 to 4-6 to obtain a composite current proportional to the line-to-line voltage. The circuit is configured to obtain an amount of electricity proportional to -V A to -V C shown in Figure 3. In other words, the amount of electricity proportional to the reference voltage -V A is the vector synthesis resistor 4-1, 4-
6, the line voltages E AB and -E CA are vector-synthesized, respectively, and the reference voltages -V B and -V C can be obtained in the same way. Next, the figure 1 shown in figure 2
Output characteristics 1 of AND circuits 11-1 to 11-3
The derivation principle of 2-1 to 12-3 is shown in FIG. 4 for the first phase. The characteristics 12-1 to 12
-3 is the electrical quantity -K 1 V A proportional to the reference voltage -V A derived in Fig. 3, and the zero-sequence voltage 3V 0 obtained from the tertiary circuit of PT1 shown in Fig. 1 as the PT third-order zero-sequence voltage. The output voltage proportional to the zero-phase voltage 3V 0 received by the introduction transformer 3 is vector-synthesized with the electrical quantity of -K 2 V 0 derived through the vector synthesis resistor 5-1 to obtain -K 2 V 0.
−K 1 V A is obtained. Furthermore, the trajectory was drawn so that the phase difference θ with the electrical quantity of −K 2 V 0 obtained from the output of the PT tertiary zero-phase voltage introduction transformer 3 through the vector synthesis resistor 5-4 was a constant value. This is a symmetrical circular arc shown in FIG. Furthermore, when the phase angle θ of the two vectors -K 2 V 0 -K 1 V A and -K 2 V 0 is greater than the specified value, and 180°>θ>90°, the single-line ground fault in Figure 1 is detected. An example of obtaining operational output from a relay is shown in FIG. The waveform -K 2 V 0 is the output waveform of the vector synthesis resistor 5-4 in Figure 1, and the waveform -K 2 V 0 -K 1 V A is the first
This is the input waveform of the circuit 7-1 in the figure. This input waveform -K 2 V 0 -K 1 V A is passed through the rectangular wave converting circuits 7-1 to 7-3 and 8, respectively, to obtain the output signals of the rectangular wave converting circuits 8 and 7-1 shown in FIG. The output signals of the two rectangular wave conversion circuits 8 and 7-1 shown in FIG.
By applying the voltage to the NAND circuit 9-1, a high-level output signal can be obtained only when the output of the rectangular wave conversion circuit 7-1 and the output of the rectangular wave conversion circuit 8 are low level. This is figure 5
This is the output waveform of the NAND circuit 9-1, and its
The output pulse width of the NAND circuit 9-1 is the waveform −K 2 V 0
When the phases of -K 2 V 0 -K 1 V A are in the same phase, it is 180°, and when they are in opposite phases, it is zero. Therefore, by detecting the above-mentioned pulse width, that is, the output signal of the NAND circuit 9-1 by some method, the above-mentioned -
It can be determined whether the phase angles of the two inputs, K 2 V 0 -K 1 V A and -K 2 V 0 , are equal to or greater than a specified value. Fifth
The waveform example in the figure is for a case where the phase angle θ is less than the specified value and the relay is inoperative, and the pulse width is larger than the specified value and the output signal (H signal) of the NAND circuit 9-1 is used as the lock signal, so the phase discrimination circuit There is no output of 10-1. In addition, the zero-phase overvoltage detection element 6 is
It operates when the output signal of the PT tertiary zero-phase voltage introduction transformer 3 is received and the zero-phase voltage exceeds a specified value, and the phase discrimination circuit 10- is used as a stopper.
1 to 10-3 and the AND circuits 11-1 to 11-3.

また、第6−1図の回路図は高抵抗接地系の例
における1線地絡事故時の等価回路で、13は中
性点接地抵抗(以下NGRと称す)、14は中性点
接地リアクトル(以下NGLと称す)、15はケー
ブル系送電線の対地静電容量(以下対地容量と称
す)、16は故障点抵抗、EAは発電機誘起電圧、
Zgは背後インピーダンスである。前記第6−1図
を対象座標法における等価回路で置き換えると第
6−2図の如くとなる。更に背後インピーダンス
Zgは無視可能なためこれを省略すると第6−3図
となる。
In addition, the circuit diagram in Figure 6-1 is an equivalent circuit in the event of a single-line ground fault in an example of a high-resistance grounding system, where 13 is a neutral point grounding resistor (hereinafter referred to as NGR), and 14 is a neutral point grounding reactor. (hereinafter referred to as NGL), 15 is the ground capacitance of the cable system transmission line (hereinafter referred to as ground capacity), 16 is the fault point resistance, E A is the generator induced voltage,
Z g is the back impedance. If the above-mentioned Fig. 6-1 is replaced with an equivalent circuit in the object coordinate method, it becomes as shown in Fig. 6-2. Furthermore, the back impedance
Since Z g is negligible, if this is omitted, the result will be Figure 6-3.

又、同地点における2線地絡事故を表わすと第
7−1図となる。これを第6図と同様にしてた対
象座標法における等価回路で置き換えると第7−
2図の如くなり、更に簡略化すれば第7−3図の
ように表わすことができる。ここで前述の第6−
3図と第7−3図の零相電圧V0を比較すると明
らかにそのV0の大きさ及び位相に差異があり前
記、零相電圧V0のベクトルは故障点抵抗16の
大きさRFによつて左右されることがわかる。前
記の様子を第8図及び第9図に示す。まず、第8
図はA相1線地絡事故時の零相電圧−V0のベク
トル軌跡であり第6−3図の故障点抵抗3RFを零
から無限大の大きさまで変化させた場合であり、
第9図はBC相の同地点2線地絡事故時の零相電
圧−V0のベクトル軌跡で、第7−3図の故障点
抵抗RFを零から無限大まで変化させた場合を表
わしている。したがつて継電器の動作範囲として
は第10図に示す様に1線地絡事故時の零相電圧
−V0の軌跡17−1、又は17−2を検出でき
るように特性12−1のようにすることが必要で
ある。一方、同地点2線地絡事故時の零相電圧−
V0のベクトル軌跡は第9図の如くであるためこ
れを誤検出しないようにしなければならない。し
かし、継電器の特性は第2図に示すように各相の
基準電圧VA、VB、VCに対して円弧となるような
つているため、例えば、BC相の2線地絡事故で
あれば継電器のB相又はC相の特性範囲内に零相
電圧−V0のベクトルが入つてくる可能性がある
ことであり、この性能限界が1線地絡検出継電器
としての性能の良否を決定してしまうことにな
る。この様子を第11図に示す。第11図はBC
相の2線地絡事故の場合であり電圧三角形はEA
EB、ECとなりBC相の線間電圧が低下する。基準
電圧VA、VB、VCは線間電圧よりベクトル合成し
て得たものであるから電圧三角形の重心点零より
三角形の頂点に向いた位相となり大きさもそれに
比例したものとなる。したがつて継電器の特性1
2−1,12−2,12−3も第11図の如く基
準電圧VA、VB、VCに対する円弧となりB相の特
性12−2とC相の特性12−3は線間電圧EBC
の大きさに応じ互いに接近してくることになる。
したがつて上記線間電圧EBCが一定以下となれば
特性12−2と12−3は重なつてしまい2線地
絡事故でも動作することになるので、従来はこの
対策として第1図では図示していないが、線間電
圧が一定値以下でロツクする方法あるいは2相が
動作した場合は出力信号を出さないように回路に
工夫をこらしている。
Figure 7-1 shows a two-wire ground fault accident at the same location. If this is replaced with an equivalent circuit in the object coordinate method similar to that shown in Figure 6, Figure 7-
2, and if further simplified, it can be represented as shown in FIG. 7-3. Here, the above-mentioned 6-
Comparing the zero-sequence voltage V 0 in Fig. 3 and Fig. 7-3, it is clear that there is a difference in the magnitude and phase of V 0. As mentioned above, the vector of the zero-sequence voltage V 0 depends on the magnitude RF of the fault point resistor 16. You can see that it depends on the situation. The above situation is shown in FIGS. 8 and 9. First, the 8th
The figure shows the vector locus of the zero-sequence voltage -V 0 at the time of an A-phase one-wire ground fault, and shows the case where the fault point resistance 3RF in Figure 6-3 is varied from zero to infinity.
Figure 9 shows the vector locus of the zero-sequence voltage -V 0 at the same point two-wire ground fault of the BC phase, and represents the case where the fault point resistance RF in Figure 7-3 is varied from zero to infinity. There is. Therefore, as shown in Fig. 10, the operating range of the relay is as shown in characteristic 12-1 so that the locus 17-1 or 17-2 of the zero-sequence voltage -V 0 at the time of a single-wire ground fault can be detected. It is necessary to do so. On the other hand, the zero-sequence voltage at the time of a two-wire ground fault accident at the same point -
Since the vector locus of V 0 is as shown in FIG. 9, it is necessary to avoid erroneously detecting this. However, as shown in Figure 2, the characteristics of a relay are arcuate with respect to the reference voltages V A , V B , and V C of each phase, so for example, if a two-wire ground fault occurs in the BC phase, For example, there is a possibility that a vector of zero-sequence voltage -V 0 may enter the characteristic range of the B phase or C phase of the relay, and this performance limit determines the quality of the performance as a one-wire ground fault detection relay. You end up doing it. This situation is shown in FIG. Figure 11 is BC
In the case of a phase two-wire ground fault, the voltage triangle is E A ,
E B and E C , and the line voltage of the BC phase decreases. Since the reference voltages V A , V B , and V C are obtained by vector synthesis from the line voltages, the phases are directed from the center of gravity zero of the voltage triangle to the apex of the triangle, and the magnitude is proportional thereto. Therefore, characteristics of relay 1
2-1, 12-2, and 12-3 are also arcs with respect to the reference voltages V A , V B , and V C as shown in FIG. B.C.
They will move closer to each other depending on the size of the .
Therefore, if the line voltage E BC falls below a certain level, characteristics 12-2 and 12-3 will overlap and it will operate even in the event of a two-wire ground fault. Although not shown, the circuit is devised so that it locks when the line voltage is below a certain value or does not output an output signal when two phases are activated.

このように従来の一線地絡検出継電器の第1の
欠点は第10図で既述のように、1線地絡事故時
の零相電圧−V0ベクトルを確実に検出できるよ
うにするためには円弧を相当大きくとらなければ
ならず、第11図の特性12−2と12−3が重
畳する限界の線間電圧EBCを相当大きくすること
であり、換言すれば線間電圧低下検出ロツク値を
高くすることで、前記ロツク要素に頼らない範囲
が狭くなることである。次に従来の一線地絡検出
継電器の第2の欠点は例えばB相至近端C相遠方
端のような異地点2線地絡事故の場合でこの時に
は零相電圧−V0の位相が大きく変化することに
なり、この様子を第11図のベクトルOFで示し
ている。つまり、前記の線間電圧低下検出ロツク
要素が応動しない程度に線間電圧が残つたケース
であれば全面的に本来の位相特性12−2及び1
2−3で判別しなければならないが、この場合に
は継電器の特性12−2及び12−3の動作範囲
が広いので異地点2線地絡事故に対しては大変具
合が悪い。
In this way, the first drawback of the conventional one-line ground fault detection relay is that, as already mentioned in Fig. The arc must be made considerably large, and the limit line voltage E BC at which characteristics 12-2 and 12-3 in Fig. 11 overlap must be made considerably large.In other words, the line voltage drop detection lock By increasing the value, the range in which the locking element is not relied on becomes narrower. Next, the second drawback of the conventional one-line ground fault detection relay is in the case of a two-wire ground fault at different points, such as at the close end of phase B and the far end of phase C. In this case, the phase of the zero-sequence voltage -V 0 is large. This is shown by the vector OF in FIG. 11. In other words, in the case where the line voltage remains to such an extent that the line voltage drop detection lock element described above does not respond, the original phase characteristics 12-2 and 1
2-3, but in this case, the operating range of the relay characteristics 12-2 and 12-3 is wide, so it is very difficult to deal with a two-wire ground fault at a different point.

上述のように従来の1線地絡検出継電器はその
動作範囲が第2図に示す中心点零を通る円弧とな
り、その円弧の大きさは1線地絡事故時のV0
クトル軌跡よりは充分大きくする必要があり、そ
のため異地点2線地絡事故で誤動作を起す性能上
の限界が低下するという大きな欠点があつた。
As mentioned above, the operating range of the conventional one-wire ground fault detection relay is an arc passing through the center point zero shown in Figure 2, and the size of the arc is much larger than the V 0 vector locus in the case of a one-wire ground fault. This had the major drawback of lowering the performance limit for causing malfunctions due to two-wire ground faults at different locations.

本発明は上記の欠点を除去するためになされた
もので、一線地絡事故時の零相電圧のベクトルに
対し最小必要限の円弧特性を容易にし、二線地絡
事故の応動しにくい高性能な地絡検出特性を有す
る一線地絡検出継電器を提供することを目的とす
る。
The present invention was made in order to eliminate the above-mentioned drawbacks, and it facilitates the minimum required arc characteristic for the vector of zero-sequence voltage in the event of a single-wire ground fault, and provides high performance that is difficult to react to in the event of a two-wire ground fault. An object of the present invention is to provide a single line ground fault detection relay having excellent ground fault detection characteristics.

以下、本発明の一実施例を図について説明す
る。図中第1図と同一の部分は同一の符号をもつ
て図示した第12図において、4−1ないし4−
12及び5−1ないし5−6はベクトル合成用抵
抗、8−1ないし8−3は矩形波変換回路であ
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In FIG. 12, the same parts as in FIG. 1 are designated by the same reference numerals.
12 and 5-1 to 5-6 are vector synthesis resistors, and 8-1 to 8-3 are rectangular wave conversion circuits.

次に本発明の動作について説明する。第13図
は本発明の継電器と特性を説明するためのもので
第1相分のみを示す。図において特性17−1,
17−2は前記第8図で既述の1線地絡事故時の
零相電圧−V0の軌跡であり、特性12−4は第
12図の零相過電圧検出要素6の出力特性で従来
と同一である。また特性19−1は本発明の継電
器の特性図であり、零相電圧−V0の軌跡を完全
に包囲する構成とするため完全1線地絡事故時の
−V0ベクトルに対し、逆位相方向に零点より−
K3VAだけ逆位相オフセツト電圧を与え、特性1
7−1及び17−2の円弧の中心点と同心円でベ
クトル−K3VAに接するようにしている。尚、特
性19−1と特性17−1の中心点は必ずしも同
一でなくてもよく、ベクトル−K3VAのオフセツ
ト電圧を大きく取れば円弧が大きくなるので、適
当に中心点を移動することにより軌跡17−1及
び17−2と協調をとればよい。ベクトルK1VA
K1VB、K1VCの導出法は従来の同様で前記第3図
に示す。次に特性19−1の導出原理を第14図
に示す。基準電圧K1VAと零相電圧−K2V0をベク
トル合成して得る−K2V0−K1VAは従来と同様に
ベクトル合成用抵抗4−1,4−6及び5−1を
介して導出し、又基準電圧VAよりオフセツト電
圧−K3VAを導出しこれを零相電圧−K2V0とベク
トル合成して−K2V0+K3VAを得る方法はベクト
ル合成用抵抗4−8,4−11,5−4を介して
電流合成すればよい。ベクトル合成用抵抗4−8
4−11の出力は−K3VAのオフセツト電圧で
あり基準電圧K1VAを導出するベクトル合成用抵
抗4−1,4−6とは逆極性になるように接続し
ている。このようにして導出した2つの電気量−
K2V0−K1VAと−K2V0+K3V0の位相角θとを一
定値になるようにして基準ベクトルK1VAとオフ
セツト電圧ベクトル−K3VAの角頂点に接する円
を描けば第14図の特性19−1を得ることがで
きる。継電器の動作範囲は特性19−1より内側
であり位相角θが一定値180°>θ>90°以上であ
れば動作するように位相角θを測定すればよい。
位相角θの測定方法は従来同じように電気量−
K2V0−K1VAと−K2V0+K3VAを各々矩形波変換
回路7−1,8−1でパルス変換しその2つのパ
ルス幅の重なり時間、または途切れ時間を測定す
ることにより簡単に検出することができる。尚、
動作出力は従来と同様に特性19−1と零相過電
圧検出要素6の特性12−4とのANDによるも
のである。
Next, the operation of the present invention will be explained. FIG. 13 is for explaining the relay of the present invention and its characteristics, and shows only the first phase. In the figure, characteristic 17-1,
17-2 is the locus of the zero-sequence voltage -V 0 at the time of the single-wire ground fault fault described in FIG. 8, and characteristic 12-4 is the output characteristic of the zero-sequence overvoltage detection element 6 in FIG. is the same as Characteristic 19-1 is a characteristic diagram of the relay of the present invention, and in order to have a configuration that completely surrounds the locus of zero-sequence voltage -V 0 , it has an opposite phase with respect to the -V 0 vector at the time of a complete one-wire ground fault. from the zero point in the direction −
Applying an anti-phase offset voltage of K 3 V A , characteristic 1
It is arranged to be in contact with the vector -K 3 V A at a concentric circle with the center point of the arcs 7-1 and 17-2. Note that the center points of characteristic 19-1 and characteristic 17-1 do not necessarily have to be the same; if the offset voltage of the vector -K 3 V A is increased, the arc becomes larger, so the center points should be moved appropriately. Therefore, it is sufficient to coordinate with the trajectories 17-1 and 17-2. Vector K 1 V A ,
The method for deriving K 1 V B and K 1 V C is the same as the conventional method and is shown in FIG. 3 above. Next, the principle for deriving characteristic 19-1 is shown in FIG. -K 2 V 0 -K 1 V A obtained by vector synthesis of the reference voltage K 1 V A and the zero-sequence voltage -K 2 V 0 is obtained by vector synthesis of the vector synthesis resistors 4-1, 4-6, and 5- as in the conventional case . 1, and derive the offset voltage -K 3 V A from the reference voltage V A , and vector synthesize it with the zero-sequence voltage -K 2 V 0 to obtain -K 2 V 0 +K 3 V A. The currents may be combined via vector combining resistors 4-8, 4-11, and 5-4. Vector synthesis resistor 4-8
. _ _ _ _ The two quantities of electricity derived in this way -
By keeping the phase angle θ of K 2 V 0 −K 1 V A and −K 2 V 0 +K 3 V 0 constant, the corner apex of the reference vector K 1 V A and the offset voltage vector −K 3 V A is determined. By drawing a circle tangent to , characteristic 19-1 in FIG. 14 can be obtained. The operating range of the relay is inside characteristic 19-1, and the phase angle θ may be measured so that the relay operates if the phase angle θ is a constant value of 180°>θ>90° or more.
The method of measuring the phase angle θ is the same as before, using the electric quantity −
Convert K 2 V 0 −K 1 V A and −K 2 V 0 +K 3 V A into pulses using rectangular wave conversion circuits 7-1 and 8-1, respectively, and measure the overlapping time or interruption time of the two pulse widths. It can be easily detected by still,
The operating output is determined by ANDing the characteristic 19-1 and the characteristic 12-4 of the zero-phase overvoltage detection element 6, as in the conventional case.

なお、上記実施例では第14図に示す如く、オ
フセツト電圧−K3VAを基準電圧K1VAに対し、
180°としたが、これを例えば遅れ90°にするなど
オフセツト電圧位相を適当に変えることにより特
性の基準電圧をK11VALαに変え円弧19−1の
傾きを変化させることができる。これは電力系統
の零相回路がインダクテイブL性かキヤパシテイ
ブC性かにより1線地絡事故時の零相電圧−V0
のベクトルが基準電圧より進むか又は遅れるかに
変化するため継電器の動作範囲もこれに合せ進み
側を広くするか又は逆にするかを決めることがあ
り、このような場合は第15図に示すような適用
例がある。
In addition, in the above embodiment, as shown in FIG. 14, the offset voltage -K 3 V A is set to the reference voltage K 1 V A ,
180 degrees, but by appropriately changing the offset voltage phase, for example by setting a delay of 90 degrees, the characteristic reference voltage can be changed to K 11 V A Lα, and the slope of the arc 19-1 can be changed. This depends on whether the zero-phase circuit in the power system is inductive L or capacitive C, so the zero-phase voltage -V 0 at the time of a one-wire ground fault
Since the vector changes to either lead or lag behind the reference voltage, the operating range of the relay may also be determined to widen the leading side or reverse it. In such a case, it is shown in Figure 15. There are similar application examples.

このように、本発明は、交流送電系統の相電圧
を検出する計器用変成器1の2次線間電圧導入ト
ランス2−1〜2−3の線間電圧を線間電圧検出
用ベクトル合成抵抗4−1〜4−6によりベクト
ル合成して導出した線間電圧と、前記相電圧と同
位相で基準電圧検出用ベクトル合成抵抗4−1〜
4−6によつて導出した基準電圧VA(A相分に対
しVAO以下同じ。)と、前記変成器1の3次巻線
より導出した零相電圧−V0に対応した電圧−
K2V0と前記基準電圧に対応した電圧K1VAとをベ
クトル合成して得た第1の電気量−K2V0−K1VA
と、前記基準電圧とは逆位相で前記基準電圧に比
例したオフセツト電圧−K3VA及び零相電圧に対
応した電圧−K2V0とをベクトル合成した得た第
2の電気量−K2V0−K3Aと、前記第1の電気量
−K2V0−K1VAと第2の電気量−K2V0−K3Aとの
位相差θを検出するNAND回路9−1〜9−3
と、前記送電系の一線地絡故障時に前記零相電圧
−V0のベクトル軌跡17−1,17−2の原点
より前記オフセツト電圧−K3Aの方向に前記オフ
セツト電圧−K3Aに対応する分だけ円弧特性の円
弧を大きくし、前記円弧特性19−1は前記零相
電圧−V0のベクトル軌跡17−1,17−2と
ほぼ同じ形になるようにした第1要素10−1〜
10−3と、前記零相電圧−V0の大きさに比例
した電気量を検出するようにした第2要素6とを
備え、前記第1要素10−1〜10−3と第2要
素6とが共に動作した時に継電器の出力信号を出
すようにしたことを特徴としたものである。
As described above, the present invention detects the line voltage of the secondary line voltage introduction transformers 2-1 to 2-3 of the instrument transformer 1 that detects the phase voltage of the AC power transmission system by using the vector composite resistor for line voltage detection. 4-1 to 4-6, the line voltage derived by vector synthesis and the vector synthesis resistor 4-1 to 4-6 for detecting the reference voltage in the same phase as the phase voltage.
4-6, the reference voltage V A (the same applies below V AO for the A phase component) and the zero-sequence voltage derived from the tertiary winding of the transformer 1 - the voltage corresponding to V 0 -
The first quantity of electricity obtained by vector synthesis of K 2 V 0 and the voltage K 1 V A corresponding to the reference voltage −K 2 V 0 −K 1 V A
, an offset voltage −K 3 V A that is in opposite phase to the reference voltage and proportional to the reference voltage, and a voltage −K 2 V 0 corresponding to the zero-sequence voltage, and a second quantity of electricity −K obtained by vector synthesis. 2 V 0 −K 3A , the first electrical quantity −K 2 V 0 −K 1 V A , and the second electrical quantity −K 2 V 0 −K 3A ; a NAND circuit 9 for detecting the phase difference θ; 1-9-3
And, at the time of a one-line ground fault in the power transmission system, an amount corresponding to the offset voltage -K 3A is generated from the origin of the vector loci 17-1, 17-2 of the zero-sequence voltage -V 0 in the direction of the offset voltage -K 3A . The first elements 10-1 to 10-1 are made such that the arc of the arc characteristic is made larger by the same amount, so that the arc characteristic 19-1 has almost the same shape as the vector locus 17-1, 17-2 of the zero-sequence voltage -V 0
10-3, and a second element 6 configured to detect an amount of electricity proportional to the magnitude of the zero-sequence voltage -V0 , the first elements 10-1 to 10-3 and the second element 6 A relay output signal is output when both are operated together.

また、本発明の第15図に示す実施例では、
NAND回路9−1〜9−3は、前記逆位相オフ
セツト電圧−K3Aを所定量移相した電圧−K3A
90°と零相電圧−V0に対応した電圧−K2V0とをベ
クトル合成して得た第2の電気量−K2V0+K3A
∠90°と、前記零相電圧−V0に対応した電圧−
K2V0と前記基準電圧とをベクトル合成して得た
第1の電気量−K2V0+K1Aとの位相差θを検出
するようにしたことを特徴としたものである。
Furthermore, in the embodiment shown in FIG. 15 of the present invention,
The NAND circuits 9-1 to 9-3 generate a voltage -K 3A ∠ which is obtained by shifting the phase of the anti-phase offset voltage -K 3A by a predetermined amount.
The second electrical quantity obtained by vector synthesis of 90° and the voltage −K 2 V 0 corresponding to the zero-sequence voltage −V 0 −K 2 V 0 +K 3A
∠90° and the voltage corresponding to the zero-sequence voltage −V 0
The present invention is characterized in that the phase difference θ between the first quantity of electricity -K 2 V 0 +K 1A obtained by vector synthesis of K 2 V 0 and the reference voltage is detected.

以上のように、本発明によれば1線地絡事故時
の零相電圧−V0のベクトル軌跡に対する円弧特
性の裕度(検出裕度)を最小必要限とするため、
円弧特性に適当なオフセツトを持たせ、2線地絡
事故に応動しにくくしている。
As described above, according to the present invention, in order to minimize the tolerance (detection margin) of the arc characteristic with respect to the vector locus of zero-sequence voltage -V 0 at the time of a one-wire ground fault,
The arc characteristics have an appropriate offset to make it difficult to respond to two-wire ground faults.

すなわち1線地絡事故時に確実な動作をさせる
ためには、この時の−V0のベクトル軌跡より裕
度のある特性とすることが必要であるが、第10
図に示す従来の特性では、−V0電圧の小さい領域
(不完全地絡)ではどうしても−V0ベクトル軌跡
と特性が近接してしまうことになるので、この小
電圧域に裕度を設けるために特性の円弧を広げる
と、大電圧域(完全地絡域)での動作範囲が必要
以上に大きくなつてしまう。
In other words, in order to ensure reliable operation in the event of a one-wire ground fault, it is necessary to have characteristics with more margin than the vector locus of -V 0 at this time.
In the conventional characteristics shown in the figure, in the region where the −V 0 voltage is small (incomplete ground fault), the −V 0 vector locus and the characteristics inevitably become close to each other, so we created a margin in this small voltage region. If the arc of the characteristic is widened, the operating range in the large voltage range (completely ground fault range) will become larger than necessary.

これを本発明によるオフセツト付円弧特性とす
れば、第13図に示す通り小電圧域から大電圧域
までほゞ同じ幅の裕度を有した特性とすることが
可能であり、大電圧域(完全地絡域)付近の動作
域を最小必要限に設定することができ、異地点2
線地絡事故等に対する誤動作防止の性能が従来特
性より向上させることができる効果がある。
If this is made into the circular arc characteristic with offset according to the present invention, it is possible to obtain a characteristic with approximately the same margin from the small voltage region to the large voltage region, as shown in FIG. 13, and the large voltage region ( It is possible to set the operating range near the complete ground fault area to the minimum required level, and
This has the effect of improving the performance of preventing malfunctions such as line-to-ground faults compared to conventional characteristics.

以下、その詳細について、第16図を用いて説
明する。第16図は、従来のものと本願発明のも
のとの性能比較を示す特性図であり、B−C相二
線地絡事故におけるB相リレーと動作域特性のみ
を表している。第16図において、12−2は従
来の特性、19−2は本発明の特性、01は特性
19−2の中心点、02は特性12−2の中心点
である。また、特性12−4は前述の零相過電圧
検出要素の動作域特性であり、特性17−1は説
明の便宜上記載したものでB相一線地絡事故時の
−V0電圧軌跡を特性19−2と比較できるよう
に仮に記載している。即ち、一線地絡事故時の−
V0電圧ベクトルの軌跡は、事故相電圧を基準と
した円弧特性となり、その中心点は、第6−3図
に示す系統条件から決まるのは前述の通りである
が、第16図における−V0の軌跡17−1は仮
に電圧EBを一線地絡事故時の基準電圧と見なし
て、中心点を01として描いている。特性19−
2は、前述の通り一線地絡事故時の−V0の軌跡
17−1に対し一定の裕度を保つようにオフセツ
トをかけており、第16図の特性例では−V0
軌跡17−1の中心点01と同心円になるように
半径01,03で描く円上の円弧特性であるため
V0電圧の小さい領域(不完全地絡)から大きい
領域(完全地絡)までオフセツト量に比例した同
じ裕度を得ることができる。一方、特性12−2
はオフセツトを有していないため、動作域裕度を
得るためには特性の中心点をずらして、大きな円
弧とする必要があり、第16図の例では半径0・
02で描く円上の円弧特性となつている。すなわ
ち、一線地絡事故の小電圧域(例えば特性12−
4の動作限界点P3)において特性19−2の同
じ裕度を得るためには特性12−4と19−2の
交点P3を通るように特性12−2を大きくする
必要があるが、その結果、線間電圧EBC線上にお
ける特性12−2の動作限界点P1は特性19−
2の動作限界点P2より広くなつてしまう。従つ
て、二線地絡事故を考えれば、従来の特性12−
2より本発明の特性19−2の方が不要な動作域
が狭い分だけ有利となり、異地点二線地絡事故に
対する性能が向上する効果がある。
The details will be explained below using FIG. 16. FIG. 16 is a characteristic diagram showing a performance comparison between the conventional one and the one of the present invention, and shows only the B-phase relay and operating range characteristics in a B-C phase two-wire ground fault accident. In FIG. 16, 12-2 is the conventional characteristic, 19-2 is the characteristic of the present invention, 01 is the center point of the characteristic 19-2, and 02 is the center point of the characteristic 12-2. In addition, characteristic 12-4 is the operating range characteristic of the above-mentioned zero-sequence overvoltage detection element, and characteristic 17-1 is described for convenience of explanation, and characteristic 19-1 is the -V 0 voltage trajectory at the time of a B-phase single line ground fault. This is provided provisionally so that it can be compared with 2. In other words, at the time of a single line ground fault -
The locus of the V 0 voltage vector has a circular arc characteristic with the fault phase voltage as a reference, and its center point is determined from the system conditions shown in Figure 6-3 as described above, but -V in Figure 16 The locus 17-1 of 0 is drawn with the center point as 01, assuming that the voltage E B is the reference voltage at the time of a single line ground fault. Characteristic 19-
2 is offset to maintain a certain margin with respect to the locus 17-1 of -V 0 at the time of a single-line ground fault accident, and in the characteristic example of Fig. 16, the locus 17-1 of -V 0 is Because it is an arc characteristic on a circle drawn with radii 01 and 03 so that it is concentric with the center point 01 of 1
The same margin proportional to the amount of offset can be obtained from a small region of V 0 voltage (incomplete ground fault) to a large region (complete ground fault). On the other hand, characteristic 12-2
has no offset, so in order to obtain operating range tolerance, it is necessary to shift the center point of the characteristic and make it a large arc, and in the example of Fig. 16, the radius is 0.
It is an arc characteristic on the circle drawn by 02. In other words, in the small voltage range of single-line ground fault (for example, characteristic 12-
In order to obtain the same tolerance of characteristic 19-2 at the operating limit point P3 ) of characteristic 12-4 and 19-2, it is necessary to increase characteristic 12-2 so that it passes through the intersection point P3 of characteristics 12-4 and 19-2. As a result, the operating limit point P 1 of characteristic 12-2 on the line voltage E BC line is the characteristic 19-
It becomes wider than the operating limit point P 2 of 2. Therefore, considering the two-wire ground fault accident, the conventional characteristic 12-
2, characteristic 19-2 of the present invention is more advantageous in that the unnecessary operating range is narrower, and has the effect of improving performance against two-wire ground faults at different locations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一線地絡検出継電器のブロツク
回路図、第2図は第1図の検出特性図、第3図な
いし第11図は従来例及び本発明を説明するため
の補足説明図、第12図は本発明の一実施例を示
す一線地絡検出継電器の原理回路図、第13図は
本発明による零相位相特性図、第14図と第15
図は第12図の回路説明図、第16図は従来のも
のと本願発明のものとの性能比較を示す特性図で
ある。 1……計器用変成器、2−1ないし2−3……
PT2次線間電圧導入トランス、3……PT3次零相
電圧導入トランス、4−1ないし4−12,5−
1ないし5−6……ベクトル合成用抵抗、6……
零相過電圧検出要素、7−1ないし7−3,8−
1ないし8−3……矩形波変換回路、9−1ない
し9−3……NAND回路、10−1ないし10
−3……位相弁別回路、11−1ないし11−3
……AND回路。なお、図中同一符号は同一又は
相当部分を示す。
FIG. 1 is a block circuit diagram of a conventional single line ground fault detection relay, FIG. 2 is a detection characteristic diagram of FIG. 1, and FIGS. 3 to 11 are supplementary explanatory diagrams for explaining the conventional example and the present invention. FIG. 12 is a principle circuit diagram of a one-line ground fault detection relay showing an embodiment of the present invention, FIG. 13 is a zero-phase phase characteristic diagram according to the present invention, and FIGS. 14 and 15.
The figure is an explanatory diagram of the circuit shown in FIG. 12, and FIG. 16 is a characteristic diagram showing a performance comparison between the conventional circuit and the circuit of the present invention. 1...Instrument transformer, 2-1 to 2-3...
PT secondary line voltage introduction transformer, 3...PT tertiary zero-phase voltage introduction transformer, 4-1 to 4-12, 5-
1 to 5-6...Resistance for vector synthesis, 6...
Zero-phase overvoltage detection element, 7-1 to 7-3, 8-
1 to 8-3...Square wave conversion circuit, 9-1 to 9-3...NAND circuit, 10-1 to 10
-3...Phase discrimination circuit, 11-1 to 11-3
...AND circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 交流送電系統の相電圧を検出する計器用変成
器の2次線間電圧導入トランスの線間電圧を線間
電圧検出用ベクトル合成抵抗によりベクトル合成
して導出した線間電圧と、前記相電圧と同位相で
基準電圧検出用ベクトル合成抵抗によつて導出し
た基準電圧と、前記変成器の3次巻線より導出し
た零相電圧に対応した電圧と前記基準電圧に対応
した電圧とをベクトル合成して得た第1の電気量
と、前記基準電圧とは逆位相で前記基準電圧に比
例したオフセツト電圧及び零相電圧に対応した電
圧とをベクトル合成して得た第2の電気量と、前
記第1の電気量と第2の電気量との位相差を検出
するNAND回路と、前記送電系の一線地絡故障
時に前記零相電圧のベクトル軌跡の原点より前記
オフセツト電圧の方向に前記オフセツト電圧に対
応する分だけ円弧特性の円弧を大きくし、前記円
弧特性は前記零相電圧のベクトル軌跡とほぼ同じ
形になるようにした第1要素と、前記零相電圧の
大きさに比例した電気量を検出するようにした第
2要素とを備え、前記第1要素と第2要素とが共
に動作した時に継電器の出力信号を出すようにし
たことを特徴とする一線地絡検出継電器。 2 NAND回路は、前記逆位相オフセツト電圧
を所定量移相した電圧と零相電圧に対応した電圧
とをベクトル合成して得た第2の電気量と、前記
零相電圧に対応した電圧と前記基準電圧とをベク
トル合成して得た第1の電気量との位相差を検出
するようにしたことを特徴とする特許請求の範囲
第1項記載の一線地絡検出継電器。
[Scope of Claims] 1 Line-to-line voltage derived by vector-synthesizing the line-to-line voltage of the secondary line-voltage introduction transformer of the instrument transformer that detects the phase voltage of an AC power transmission system using a vector combination resistor for line-to-line voltage detection voltage, a reference voltage derived by a vector composite resistor for reference voltage detection in the same phase as the phase voltage, a voltage corresponding to the zero-sequence voltage derived from the tertiary winding of the transformer, and a voltage corresponding to the reference voltage. A first quantity of electricity obtained by vector synthesis of the voltage obtained by vector synthesis, and a voltage corresponding to an offset voltage and a zero-sequence voltage which are in opposite phase to the reference voltage and are proportional to the reference voltage. a NAND circuit that detects a phase difference between the first electrical quantity and the second electrical quantity; and a NAND circuit that detects the phase difference between the first electrical quantity and the second electrical quantity; a first element in which the arc of the arc characteristic is made larger in the voltage direction by an amount corresponding to the offset voltage so that the arc characteristic has approximately the same shape as the vector locus of the zero-sequence voltage; A second element configured to detect an amount of electricity proportional to the magnitude thereof, and an output signal of a relay is output when the first element and the second element operate together. Fault detection relay. 2. The NAND circuit generates a second electrical quantity obtained by vector synthesis of a voltage obtained by shifting the phase of the anti-phase offset voltage by a predetermined amount and a voltage corresponding to the zero-sequence voltage, a voltage corresponding to the zero-sequence voltage, and a voltage corresponding to the zero-sequence voltage. 2. The single line ground fault detection relay according to claim 1, wherein a phase difference between the first electrical quantity obtained by vector synthesis of the reference voltage and the first electrical quantity is detected.
JP6250483A 1983-04-08 1983-04-08 One strand ground-fault detecting relay Granted JPS59188328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6250483A JPS59188328A (en) 1983-04-08 1983-04-08 One strand ground-fault detecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6250483A JPS59188328A (en) 1983-04-08 1983-04-08 One strand ground-fault detecting relay

Publications (2)

Publication Number Publication Date
JPS59188328A JPS59188328A (en) 1984-10-25
JPH0517771B2 true JPH0517771B2 (en) 1993-03-10

Family

ID=13202063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6250483A Granted JPS59188328A (en) 1983-04-08 1983-04-08 One strand ground-fault detecting relay

Country Status (1)

Country Link
JP (1) JPS59188328A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114130A (en) * 1979-02-22 1980-09-03 Mitsubishi Electric Corp Oneeline grounddfault detecting relay unit
JPS5780230A (en) * 1980-11-06 1982-05-19 Tokyo Shibaura Electric Co Protection relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114130A (en) * 1979-02-22 1980-09-03 Mitsubishi Electric Corp Oneeline grounddfault detecting relay unit
JPS5780230A (en) * 1980-11-06 1982-05-19 Tokyo Shibaura Electric Co Protection relay

Also Published As

Publication number Publication date
JPS59188328A (en) 1984-10-25

Similar Documents

Publication Publication Date Title
US6442010B1 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
EP2331978B1 (en) Method and device for supervising secondary circuit of instrument transformer in power system
EP0994548A2 (en) Distance relay
JPS58186326A (en) Method of discriminating direction from measuring point to defect point in ac transmission line
JPS5893422A (en) Protecting device for high voltage transmission line
JPH0517771B2 (en)
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JPS5843402Y2 (en) Hogokeiden Sochi
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI
JPH0619405B2 (en) Disconnection detection device for PT secondary circuit
JP2723286B2 (en) Ground fault detector
JP2781102B2 (en) Bus protection relay
JPH0442726A (en) Ground fault indicator for distribution line
JP2577364B2 (en) 1-line ground fault detection relay system
JPH03270633A (en) Ground relay device
JPS5814137B2 (en) Busbar selection relay device
JPS6240925B2 (en)
SU815835A1 (en) Device for protecting from grounding in network with insulated neutral wire
JPS6240926B2 (en)
JP3075607U (en) Ground fault protection device
JPS6026413A (en) Ground-fault protecting relaying method and relay
JPH023371B2 (en)
JPS6111052B2 (en)
JP2600682B2 (en) Ground fault protection relay
JPH0210654B2 (en)