JPS5843402Y2 - Hogokeiden Sochi - Google Patents

Hogokeiden Sochi

Info

Publication number
JPS5843402Y2
JPS5843402Y2 JP1973082295U JP8229573U JPS5843402Y2 JP S5843402 Y2 JPS5843402 Y2 JP S5843402Y2 JP 1973082295 U JP1973082295 U JP 1973082295U JP 8229573 U JP8229573 U JP 8229573U JP S5843402 Y2 JPS5843402 Y2 JP S5843402Y2
Authority
JP
Japan
Prior art keywords
effective component
voltage
output
component
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1973082295U
Other languages
Japanese (ja)
Other versions
JPS5029245U (en
Inventor
敏信 海老坂
洋右 辻倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP1973082295U priority Critical patent/JPS5843402Y2/en
Publication of JPS5029245U publication Critical patent/JPS5029245U/ja
Application granted granted Critical
Publication of JPS5843402Y2 publication Critical patent/JPS5843402Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 この考案は送電線、母線、電力用機器等の電力系統を保
護する電力系統保護継電装置に関するものである。
[Detailed Description of the Invention] This invention relates to a power system protection relay device that protects power systems such as power transmission lines, busbars, and power equipment.

この考案は各種の電力系統保護継電装置に適用し得るが
、ここでは母線保護継電装置に適用した場合を説明する
Although this invention can be applied to various power system protection relay devices, a case where it is applied to a busbar protection relay device will be described here.

最近、系統の大規模化に伴ない、線路の充電容量及び補
償リアクトル容量が増大し、外部の一線地絡時に変流器
(以下CTと略する)を貫通する電流も増大し、CTの
励磁電流分誤差のみで、従来のような残留差動を利用し
ている母線保護継電装置では、誤動作の可能性があった
Recently, with the increase in the scale of power systems, the charging capacity of the line and the capacity of the compensation reactor have increased, and the current passing through the current transformer (hereinafter abbreviated as CT) in the event of an external single-line ground fault has also increased, causing the excitation of the CT. Conventional bus protection relay devices that utilize residual differential differentials could cause malfunctions due to only current errors.

そのため最近は地絡故障時に発生する零相電圧(以下V
Oと略する)と零相電流(以下■0と略する)の同相分
のみを動作判定に利用し、励磁誤差のような位相の異な
る電流分の影響を受けないようにする有効分検出継電方
式を採用する傾向にある。
Therefore, recently, zero-sequence voltage (hereinafter referred to as V
This is an effective component detection joint that uses only the in-phase components of the zero-phase current (hereinafter abbreviated as 0) and the zero-phase current (hereinafter abbreviated as There is a tendency to adopt electric methods.

以下図に従って説明する。The explanation will be given below according to the figures.

第1図は通常の母線構成図であり、図中1は保護される
母線、2は充電容量、3L 32は補償用リアクトル
、11〜15は母線に接続される各線路、21〜25は
各線路に設置されたCTであり、この各CTの出力電流
を差動接続し、ここに流れる差動電流IQにより継電素
子(図示せず)を動作させるものである。
Figure 1 is a normal busbar configuration diagram, in which 1 is the busbar to be protected, 2 is the charging capacity, 3L 32 is a compensation reactor, 11 to 15 are each line connected to the busbar, and 21 to 25 are each line. This is a CT installed on a railway line, and the output currents of these CTs are differentially connected, and a relay element (not shown) is operated by the differential current IQ flowing here.

20は中性点接地抵抗、FOは母線外部−線地絡故障点
を示す。
Reference numeral 20 indicates a neutral point grounding resistance, and FO indicates a bus line external to line ground fault point.

FO点で故障が発生した時、いま例えば、充電電流IC
= j2100A リアクトル電流 IT =−j1800A中性点抵抗
電流 IR= 40OAと仮定すると、制滝電流
I F=I C+ I L+I R=j2100−j
1800+400=400+j300となる。
When a failure occurs at the FO point, for example, the charging current IC
= j2100A Reactor current IT = -j1800A Neutral point resistance current IR = Assuming 40OA, limiting current I F = I C + I L + I R = j2100-j
1800+400=400+j300.

故にlIF+=50OAとなる。一方、!発生時の電圧
位相によっては、リアクタンス31,32から合計18
00r2Aのピーり値を持つ直流分が発生し、母線の外
部故障において外部故障発生端子が過大な直流分、また
は残留磁束の影響で完全に飽和してしまうと、外部故障
にもかかわらず1800./”2Aのピーク値ヲ持つ減
衰直流分の上に50OAの交流分が重畳した第2図のよ
うな誤差差動入力端子IDが母線残留差動継電素子に進
入する。
Therefore, lIF+=50OA. on the other hand,! Depending on the voltage phase at the time of generation, a total of 18 from reactance 31, 32
If a DC component with a peak value of 00r2A is generated and the external fault generating terminal is completely saturated due to the excessive DC component or residual magnetic flux due to an external failure of the bus bar, 1800. An error differential input terminal ID as shown in FIG. 2, in which an AC component of 50 OA is superimposed on an attenuated DC component having a peak value of 2 A, enters the bus residual differential relay element.

この誤差電流により単純な差動継電素子はもちろんのこ
と、VOに対するIOの有効分に応動する継電素子にあ
っても直流分減衰時定数と継電素子動作速度とのかね合
いによっては誤動作の可能性がある。
Due to this error current, not only simple differential relay elements but also relay elements that respond to the effective component of IO with respect to VO may malfunction depending on the balance between the DC component decay time constant and the relay element operating speed. There is a possibility that

そこで従来は第3図のような回路で直流分重畳時の誤動
作をまぬがれていた。
Conventionally, a circuit such as that shown in FIG. 3 was used to avoid malfunctions when DC components are superimposed.

第3図で71はIO差動人力変成用トランス、61.6
2はダイオード、3,4はそれぞれサンプリングおよび
サンプリングホールド回路等の機能を有した正、負の有
効分導出器、41.42は所定時間入力が継続すると出
力する人力検出要素、51はAND要素、6は継電素子
、8はVO導入用トランス、9はVOの位相またはベク
トル出力器であり、有効分導出器3,4では、VOの位
相またはベクトル出力器9からの出力を基準としてそれ
ぞれ正の半波、負の半波の有効分を導出する形となって
いる。
In Figure 3, 71 is the IO differential manual transformation transformer, 61.6
2 is a diode, 3 and 4 are positive and negative effective component derivators each having functions such as sampling and sampling hold circuits, 41.42 is a human power detection element that outputs when input continues for a predetermined time, 51 is an AND element, 6 is a relay element, 8 is a transformer for introducing VO, and 9 is a VO phase or vector output device. In the effective component derivators 3 and 4, the positive component is calculated based on the VO phase or the output from the vector output device 9, respectively. The half wave and the effective part of the negative half wave are derived.

よってこの方式での波形図を示すと第4図のようになる
Therefore, a waveform diagram in this method is shown in FIG. 4.

第4図において、VOは正弦波として人ってくるので、
有効分導出器3によりこのVOの正のピークでIOの正
の半波、有効分導出器4により負のピークで負の半波を
それぞれサンプリングするようにすれば、第4図の場合
直流分により正方向に波形が浮き上っているから、正側
の有効分導出器3のみしか応動せず、継電素子6として
は、正側、負側の有効分導出器3,4からの出力が検出
要素4L42へ所定時間継続して入力しなげれば動作に
至らないようになっているので、この場合には継電素子
6は誤動作をまぬがれる。
In Figure 4, VO comes as a sine wave, so
If the effective component deriver 3 samples the positive half-wave of IO at the positive peak of VO, and the effective component deriver 4 samples the negative half-wave of IO at the negative peak, in the case of Fig. 4, the DC component is sampled. Since the waveform rises in the positive direction, only the positive side effective component deriver 3 responds, and the relay element 6 outputs the output from the positive side and negative side effective component derivers 3 and 4. Since the relay element 6 will not operate unless it is continuously input to the detection element 4L42 for a predetermined period of time, the relay element 6 can avoid malfunction in this case.

また、交流分誤差は直流分の減衰と共に減少するから、
直流分がなくなった頃にはすでに正側、負側の有効分導
出器3,4はともに動作しない状態となっているから問
題はない。
Also, since the AC component error decreases as the DC component attenuates,
By the time the DC component disappears, both the positive side and negative side effective component derivators 3 and 4 are already in a non-operating state, so there is no problem.

ところが、第5図で示されるような第2高調波■0゜が
人ってきて、しかもこの高調波の位相力時間と共に変化
する場合には、ある瞬間には正側の有効分導出器3に誤
差入力が、次の瞬間には負側の有効分導出器4に誤差入
力が入り、この状態が続けば継電素子6は高調波誤差動
人力で容易に誤動作側に至る。
However, if the second harmonic (0°) appears as shown in Fig. 5, and the phase force of this harmonic changes with time, at a certain moment the positive side effective component deriver 3 At the next moment, an error input is input to the negative side effective component deriving device 4, and if this state continues, the relay element 6 easily malfunctions due to the harmonic error dynamic force.

この考案はこの不都合を解消しようとするものあり、そ
の目的とするところは系統故障時故障電流中に含まれる
直流分並びに高調渡分の影響を受けない電力系統保護継
電装置を得るところにある。
This invention attempts to eliminate this inconvenience, and its purpose is to obtain a power system protection relay device that is not affected by the DC component and harmonic components contained in the fault current at the time of a system failure. .

以下、この考案の一実施例第6図に従って説明する。An embodiment of this invention will be described below with reference to FIG. 6.

この発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

第6図において、72は電流変成器、10は基本波のみ
を通す高調波フィルタ、100はこのフィルタ10を通
った基本波のVOに対するIO有効分を導出するサンプ
リングおよびサンプリングホールド回路等の機能を有し
た有効分導出器、52はAND要素であり、上記3つの
有効分導出器3゜4.100が何れも動作した時にのみ
継電素子6を駆動するものである。
In FIG. 6, 72 is a current transformer, 10 is a harmonic filter that passes only the fundamental wave, and 100 is a sampling and sampling hold circuit for deriving the effective IO component for VO of the fundamental wave that has passed through this filter 10. The effective component deriving device 52 is an AND element, which drives the relay element 6 only when all three effective component deriving devices 3.4.

系統故障により発生する零相電圧vOによる人力でベク
トル出力器9から90位相ずれのあるサンプリング出力
が出てCT差動回路に現われる。
A sampling output with a phase shift of 90 degrees is output from the vector output device 9 by human input due to the zero-phase voltage vO generated due to a system failure, and appears in the CT differential circuit.

差動零相電流■0の中の有効分を導出する点は第3図で
述べたとおり有効分導出器3,4によりそれぞれ正波、
負波の有効分を導出する。
As mentioned in Fig. 3, the effective component in the differential zero-sequence current ■0 is derived by the effective component derivators 3 and 4, respectively.
Derive the effective component of the negative wave.

第6図ではこの有効分導出器3,4に加えて差動零相電
流IOの中から基本波成分のみを取り出す高調波フィル
タ10を通して基本波を得、この基本波の中のVOに対
する有効分が一定の設定値以上あることを有効分導出器
100で検出し、人力検出要素34へ所定時間継続して
人力が得られた場合にAND要素52に出力を出す回路
を追加している。
In FIG. 6, in addition to the effective component derivators 3 and 4, a fundamental wave is obtained through a harmonic filter 10 that extracts only the fundamental component from the differential zero-sequence current IO, and the effective component for VO in this fundamental wave is A circuit is added that detects with the effective component deriving device 100 that the value is greater than a certain set value, and outputs an output to the AND element 52 when the human power detection element 34 receives human power continuously for a predetermined period of time.

したがってすべての有効分導出器3,4,100が何れ
も動作信号を出した時のみAND要素52から出力が出
て継電素子6を駆動することになる。
Therefore, only when all effective component derivators 3, 4, and 100 output operating signals, the AND element 52 outputs an output to drive the relay element 6.

よってこの考案によれば、故障発生時の直流分重畳に対
しては有効分導出器3,4により誤動作を防ぎ、高調波
含有に対しては有効分導出器100により誤動作を妨げ
るからいかなる故障状態にあっても正確な動作を期待で
きるものである。
Therefore, according to this invention, when a DC component is superimposed when a fault occurs, the effective component derivers 3 and 4 prevent malfunction, and when harmonics are included, the effective component deriver 100 prevents malfunction, so that no fault condition can occur. Accurate operation can be expected even when

尚、電力系統を保護する所謂電力系統保護継電装置はそ
の目的上公共性が濃く、誤動作による影響の及ぶ範囲が
広いため、保護継電装置のうちでも、特に、動作の確実
性が強く要請される。
Furthermore, because the purpose of the so-called power system protection relay device that protects the power system is very public, and the range of influence that can be affected by malfunction is wide, there is a strong demand for reliable operation, especially among protective relay devices. be done.

したがって、上記高調波による誤動作の防止をも実現で
きることによる効果は電力系統保護継電装置において極
めて顕著である。
Therefore, the effect of being able to prevent malfunctions caused by harmonics is extremely significant in the power system protection relay device.

しかも、この高調波による誤動作を防止するにあたりこ
れまでの装置を構成している構成部分に新たな構成部分
を付加するだけでよく、何ら全面的な変更を行なう必要
はなく、しかも付加すべき構成部分は基本波フィルタ及
び第3の有効分導出器等よいので、簡単な構成で上記二
種の保護動作を防止できる効果がある。
Moreover, in order to prevent malfunctions caused by harmonics, it is only necessary to add new components to the components that have made up the existing device, and there is no need to make any complete changes; Since the parts include a fundamental wave filter and a third effective component deriving device, the above two types of protection operations can be prevented with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の母線構成図、第2図は故障発生時の過渡
電流波形図、第3図は従来の保護継電装置を示す回路図
、第4図はその動作状態を説明するための波形図、第5
図は従来装置の不都合を説明するための波形図、第6図
はこの考案の一実施例を示す回路図である。 図においてIOは電流、VOは電圧、61.62はダイ
オード、3,4は第1.第2の有効分検出器、10はフ
ィルタ、100は第3の有効分検出器、4L 42,
43は人力検出要素、52はAND要素、6は継電素子
である。 なお各図中同一符号は同一または相当部分を示すものと
する。
Fig. 1 is a normal bus bar configuration diagram, Fig. 2 is a transient current waveform diagram when a fault occurs, Fig. 3 is a circuit diagram showing a conventional protective relay device, and Fig. 4 is a diagram for explaining its operating state. Waveform diagram, 5th
The figure is a waveform diagram for explaining the disadvantages of the conventional device, and FIG. 6 is a circuit diagram showing an embodiment of this invention. In the figure, IO is current, VO is voltage, 61.62 is a diode, 3 and 4 are first . 2nd effective component detector, 10 is a filter, 100 is a 3rd effective component detector, 4L 42,
43 is a human force detection element, 52 is an AND element, and 6 is a relay element. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電圧が正極性にあるときの該電圧に対する電流の有効分
を検出し該有効分に基づく出力を導出する第1の有効分
導出器、電圧が負極性にあるときの該電圧に対する電流
の有効分を検出し該有効分に基づく出力を導出する第2
の有効分導出器、上記電流のうちの基本波を導出するフ
ィルタ、この基本波の上記電圧に対する有効分を検出し
該有効分に基づく出力を導出する第3の有効分導出器、
上記各有効分導出器の出力を夫々の人力とし所定時間人
力が継続すると出力する各人力検出要素、この各入力検
出要素の出力を入力とするアンド要素、このアンド要素
の出力に応動する継電素子を備えたことを特徴とする電
力系統保護継電装置。
a first effective component deriver that detects an effective component of current relative to the voltage when the voltage is in positive polarity and derives an output based on the effective component; and an effective component of current relative to the voltage when the voltage is in negative polarity; A second step that detects and derives an output based on the effective component.
a filter that derives the fundamental wave of the current; a third effective component deriver that detects the effective component of the fundamental wave with respect to the voltage and derives an output based on the effective component;
Each human power detection element that takes the output of each of the effective component derivators above as human power and outputs when the human power continues for a predetermined time, an AND element that takes the output of each input detection element as input, and a relay that responds to the output of this AND element. A power system protection relay device characterized by being equipped with an element.
JP1973082295U 1973-07-11 1973-07-11 Hogokeiden Sochi Expired JPS5843402Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1973082295U JPS5843402Y2 (en) 1973-07-11 1973-07-11 Hogokeiden Sochi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1973082295U JPS5843402Y2 (en) 1973-07-11 1973-07-11 Hogokeiden Sochi

Publications (2)

Publication Number Publication Date
JPS5029245U JPS5029245U (en) 1975-04-03
JPS5843402Y2 true JPS5843402Y2 (en) 1983-10-01

Family

ID=28261509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1973082295U Expired JPS5843402Y2 (en) 1973-07-11 1973-07-11 Hogokeiden Sochi

Country Status (1)

Country Link
JP (1) JPS5843402Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288941A (en) * 1976-01-21 1977-07-26 Hitachi Ltd Air conditioner for automobile
JPS5536058U (en) * 1978-08-31 1980-03-07
JPS55125816U (en) * 1979-03-01 1980-09-05

Also Published As

Publication number Publication date
JPS5029245U (en) 1975-04-03

Similar Documents

Publication Publication Date Title
US5627712A (en) Transformer differential relay
JP5881919B1 (en) Protection relay device
JPS5843402Y2 (en) Hogokeiden Sochi
JPH01190215A (en) Phase selector
JPS648524B2 (en)
JPS5854843Y2 (en) AC filter protection device
JPH0378426A (en) Line-to-ground fault detector
JPH02234071A (en) Ground fault detector
SU904064A1 (en) Device for earthing protection in electric network with low earthing current
JPH0210654B2 (en)
JPS6295923A (en) Protective relay of transformer
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI
JPH0210655B2 (en)
JPS60180434A (en) Transformer protection relaying device
JPS63186522A (en) Grounding protective relay
JPS5866527A (en) Ground-fault bus protecting relay unit
JPS6026412A (en) Inspecting device of protecting relay
JPH0465613B2 (en)
JPS61109416A (en) Ground protective relay device
JPS6392220A (en) Failure detector for power system
JPS63114525A (en) Current differential relay
JPS61227630A (en) Protective relay
JPS63121423A (en) Digital current differential relay
JPS5911243B2 (en) Protective relay device
JPS62181626A (en) Distribution line end short-circuit relay