JPH02234071A - Ground fault detector - Google Patents

Ground fault detector

Info

Publication number
JPH02234071A
JPH02234071A JP1053628A JP5362889A JPH02234071A JP H02234071 A JPH02234071 A JP H02234071A JP 1053628 A JP1053628 A JP 1053628A JP 5362889 A JP5362889 A JP 5362889A JP H02234071 A JPH02234071 A JP H02234071A
Authority
JP
Japan
Prior art keywords
ground fault
voltage
phase
ground
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1053628A
Other languages
Japanese (ja)
Other versions
JP2723286B2 (en
Inventor
Tatsuhisa Kitama
北真 辰久
Yasuhiro Ando
康裕 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1053628A priority Critical patent/JP2723286B2/en
Publication of JPH02234071A publication Critical patent/JPH02234071A/en
Application granted granted Critical
Publication of JP2723286B2 publication Critical patent/JP2723286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To detect a ground fault even in an electric system with large variation of the voltage and frequency by providing means for the detection of voltages against the ground for each phase and the suppression of its tortion, for calculations of two phase difference and total addition of output signals for each phase, and for the detection of the ground fault from those mentioned above. CONSTITUTION:The subject device consists of voltage dropping devices 21a-c dividing the voltages against the ground for each phase by resistors, converters 22a-c for absolute values of the aforementioned output voltages, filter circuits 23a-c smoothing the above, a subtracting device 24a calculating the different voltage for the circuits 23a and 23b, similar subtracting devices 24b, 24c, an adding device 25 calculating the total output voltage for the circuits 23a-c, a gain setting device 26 for this output voltage, a gain multiplier 27, and comparators 28a-c detecting the ground fault from the above output signal and the subtracting devices 24a-c. The voltages against the ground for each phase are converted into the DC signals through the circuits 23a-c, then the output voltages for each phase are equal and the output signals of the subtracting devices 24a-c are zero but the positive or negative voltage is outputted when the ground fault is generated, and finally when the two phases voltage difference exceeds a certain rate of an overall detected voltage, the ground fault is detected by the comparators 28a-c. The detection at the same level can be thereby performed without reducing the detection accuracy.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は,可変周波数電源系統の地絡検出装置に関する
. (従来の技術) 第4図,第5図に、従来の可変周波数電源系統の地絡検
出装置を示す,第4図において、3相交流電源1より、
低電圧に降圧する.入力トランス2、回路の開閉を行な
う電磁コンタクタ3,を介して可変周波数電源装置4が
接続される.可変周波数電源装置4は、交流電力を直流
電力に変換する順変換器5、この直流電力を平滑にする
直流リアクトル6、直流電力を任意の周波数の交流電力
に変換する逆変換II7からなり、逆変換器7の出方は
出力トランス8を通して交流電動機9に接続され、交流
電動機9は回転数制御される. 地絡検出装置は,入力トランス2の1次側、可変周波数
電源装置4の入力側、及び交流電動機9の入力側の,3
箇所に設けられる,これは、入出力トランスにより回路
が絶縁されてしまうので、地絡の場所により検出できな
いことがあるからである. 第5図に地絡検出装置の詳細図を示す.地絡検出装置は
、電源系統の零相電圧を検出する零相変圧器10、前記
零相変圧器の保護用ヒューズ10a、零相変圧器IOの
出力電圧より地絡を検出する地絡過電圧継電器11、地
絡により流れる地絡電流を抑制する抑制抵抗12により
構成される.零相変圧器10の1次巻線はスター結線に
なっており,その中性点はアースに接続されている.2
次巻線はオープンデルタ結線になっており、1次側に系
統の正弦波3相交流電圧が入力されると2次側には常に
零電圧が出力される. 系統が地絡すると,3相電圧のある1相がアース電位に
固定されバランスしなくなり、2次側に電圧が発生する
.その電圧がある所定値以上になると地絡過電圧継電器
11が動作し、検出信号を出力して電磁コンタクタ3を
開いて系統を保護する.ここで、交流電動機9には可変
周波数電源装置4によって、任意の交流電力が出力トラ
ンス8を介して供給され,その交流電力の周波数に対応
した速度で、交流電動機9が回転する. このため交流電動機9の速度制御を行なう場合、交流電
力の周波数及び電圧を制御する.可変周波数電源装置4
の出力電圧は高周波を多く含んでおり波形歪が大きい.
このような電源系統に前記地絡過電圧継電器1lを用い
ると、検出の設定値が固定であるため、電源電圧の変化
により地絡過電圧継電器11の検出感度が変化し、低電
圧では、地絡検出不可能となることがあった。又これを
解決しようと、検出の設定値を低くすると、高電圧で誤
地絡検出が発生する等の問題があった.さらに、波形歪
が大きいため、地絡していない状態でも零相電圧が発生
し、誤地絡検出が多発していた.この波形歪は可変周波
数電源装置4の出力容量及び出力周波数により大きく変
化するため運転範囲全般をカバーする設定が不可能であ
った。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a ground fault detection device for a variable frequency power supply system. (Prior Art) Figures 4 and 5 show conventional ground fault detection devices for variable frequency power supply systems. In Figure 4, from a three-phase AC power supply 1,
Steps down to low voltage. A variable frequency power supply device 4 is connected via an input transformer 2 and an electromagnetic contactor 3 that opens and closes the circuit. The variable frequency power supply device 4 consists of a forward converter 5 that converts AC power to DC power, a DC reactor 6 that smoothes this DC power, and an inverse converter II 7 that converts DC power to AC power of an arbitrary frequency. The output of the converter 7 is connected to an AC motor 9 through an output transformer 8, and the rotation speed of the AC motor 9 is controlled. The ground fault detection device includes three terminals on the primary side of the input transformer 2, the input side of the variable frequency power supply device 4, and the input side of the AC motor 9.
This is because the circuit is isolated by the input/output transformer, so it may not be possible to detect a ground fault depending on the location. Figure 5 shows a detailed diagram of the ground fault detection device. The ground fault detection device includes a zero-phase transformer 10 that detects the zero-phase voltage of the power supply system, a protective fuse 10a of the zero-phase transformer, and a ground fault overvoltage relay that detects a ground fault from the output voltage of the zero-phase transformer IO. 11. Consists of a suppression resistor 12 that suppresses ground fault current flowing due to a ground fault. The primary winding of the zero-phase transformer 10 is star-connected, and its neutral point is connected to ground. 2
The secondary winding has an open delta connection, and when the sine wave three-phase AC voltage of the system is input to the primary side, zero voltage is always output to the secondary side. When a power grid has a ground fault, one phase with three-phase voltage is fixed at ground potential and becomes unbalanced, causing voltage to occur on the secondary side. When the voltage exceeds a certain predetermined value, the ground fault overvoltage relay 11 operates, outputs a detection signal, and opens the electromagnetic contactor 3 to protect the system. Here, arbitrary AC power is supplied to the AC motor 9 by the variable frequency power supply device 4 via the output transformer 8, and the AC motor 9 rotates at a speed corresponding to the frequency of the AC power. Therefore, when controlling the speed of the AC motor 9, the frequency and voltage of the AC power are controlled. Variable frequency power supply device 4
The output voltage contains many high frequencies and has large waveform distortion.
When the ground fault overvoltage relay 1l is used in such a power supply system, the detection setting value is fixed, so the detection sensitivity of the ground fault overvoltage relay 11 changes with changes in the power supply voltage, and at low voltage, the ground fault detection Sometimes it was impossible. In addition, when trying to solve this problem by lowering the detection setting value, there were problems such as false detection of ground faults due to high voltage. Furthermore, due to large waveform distortion, zero-sequence voltage was generated even when no ground fault occurred, resulting in frequent false ground fault detections. Since this waveform distortion varies greatly depending on the output capacity and output frequency of the variable frequency power supply device 4, it has been impossible to set it to cover the entire operating range.

(発明が解決しようとする課題) 以上のように従来技術では,その検出範囲に限界があり
出力電圧の波形歪による誤検出,低出力電圧による検出
不能等の問題があった.又,零相変圧を検出する手法の
ため、地絡の種類,地絡相の判断が出きす,復旧作業に
時間がかかるなどの問題があった. 従来技術の問題点から本発明は、可変周波数電源装置の
ように波形歪が大きい電源系統,運転状態により低圧,
周波数が大きく変化する電源系統においても地絡検出が
可能な地絡検出装置を提供することを目的とする. 〔発明の構成〕 (課題を解決するための手段) 従って前記目的を達成するために、本発明は、電源系統
の対地電圧を各相ごとに検出し,その検出信号を各相ご
とに絶対値変換する第1の手段,第1の手段の出力信号
の歪を各相ごとに抑制する第2の手段,第2の手段の各
相出力信号において、2相の差を演算する第3の手段、
前記第2の手段の各相出力信号の総和を演算する第4の
手段,第4の手段の出力を調整する第5の手段、第5の
手段の出力信号と前記第3の手段の出力信号により地籍
を検出する第6の手段を具備した、地絡検出装置を提供
する. (作 用) このように構成された地絡検出装置において、波形歪の
大きい電源系統,出力電圧,周波数が広範囲に変化する
電源系統においても波形歪を抑制し,出力電圧,周波数
に似合った検出レベルの設定ができ、誤検出,検出不能
等なく、地絡検出できる. (実施例) 本発明の実施例を第1図に示す.可変周波数電源装置の
,各相の対地電圧をそれぞれ抵抗にて分圧する降圧器2
1 a = c、その出力電圧を絶対値変換する変換器
22a=c,その出力電圧を平滑にするフィルター回路
23a=c、 フィルター回路23aの出力電圧と、 
フィルター回路23bの出力電圧の差を演算する減算器
24a、同様にフィルター回路23bとフィルター回路
23cの差電圧を演算する減算器24b、フィルター回
路23cとフィルター回路23aの差電圧を演算する減
算器24c、フィルター回路23a, 23b,23c
の出力電圧の総和を演算する加算器、加算器25の出力
電圧に対し,地絡と判断するゲインを設定する設定器2
6,加算器25の出力電圧に設定器26により設定され
たゲインを乗算する乗算器27、地絡検出レベルを設定
された乗算器27の出力信号と、各2相の差電圧を演算
した減算器24a=cの出力信号とを比較し、地絡を検
出する比較器28a=cにより構成される. 以上のような構成により電源系統の地絡検出手法を説明
する. 電源系統の各相の対地電圧は,降圧器21 a ” c
により、それぞれ降圧され,絶対値変換器22a〜C、
フィルター回路23a=cを介して,各相とも、それぞ
れ直流信号に変換される. 可変周波数電源装置4のように、その出力電圧が,波形
歪を多く含んだ電源系統においては,フィルターをかけ
ることにより、サージ電圧による誤動作を防止できる.
又,直流信号に変換することにより,広範囲の周波数領
域においても、ほぼ同一のフィルター効果を得ることが
出来,フィルター効果自体も高くなる.フィルター回路
23a=cの出力電圧は,通常地絡してなければ各相と
も同じ大きさの出力電圧が得られる.よって減算器”2
4a”cの出力信号は、通常時“零”である.が,ある
相が地絡していれば、正もしくは負の極性をもった電圧
が出力される. 地絡検出レベルは、加算器25による各相の検゛出電圧
の総和値に設定器26により設定されたゲインを,乗算
器27により乗算した値となる.つまり、各2相の検出
電圧の差電圧が、検出電圧全体のある一定パーセントを
超えると、比較器28a, b, cにより地絡を検出
する. 本発明の他の実施例を、第2図に示し,その構成,作用
,効果を説明する. 第2図においては,前記第1図に対して,地絡した相を
判断するシーケンス回路29を付加して構成される. 尚第1図と同一記号は同じ作用を示すので,説明を省略
する.作用について,U相地絡を例にとって説明する. U相が,あるインピーダンスを持って地絡すると,U相
の電圧がアース電位に極端に近くなり,降圧器21 a
 = cの検出電圧はU相が、他のv,w相より低くな
る.よって、減算器24a〜Cの出力は、24aが負,
24bが零,24cが正となる.1線地絡の場合他の2
相の検出電圧は等しいため、減算器24aと24cの出
力は、極性は違うが、同じ検出レベルになってしまい、
比較器28a, cは、2つとも,地絡を検出してしま
う.そこで,シーケンス回路29により,減算[124
a”cの出力の極性を監視し、負ならば、地絡相と判断
し、比較器28a=cとのAND条件で,地絡相を検出
する.効果としては、地絡した相の検出が可能で,地絡
時の地籍場所の限定が容易になり,復旧作業が大幅に短
縮できる. 本発明の更に他の実施例を第3図に示し,その構成,作
用,効果を説明する. 第3図においては,第1図に対して、地絡の種類を判断
するシーケンス回路30を付加して構成される. 尚第1図と同一記号は,同じ作用を示すので、説明を省
略する.作用について、U相,■相,地絡を例にとって
説明する. U相と、■相がそれぞれあるインピーダンスを持って地
絡すると、降圧器21a=cの検出電圧は、それぞれの
地絡インピーダンスにより、降下する.今、仮にU相の
地絡インピーダンスが、■相の地絡インピーダンスより
、小さいとすると,減算器24a”cの出力は24aが
負、24bが負,24cが正となる. 2線接地の場合、3相のうち、2相が,地絡した電位に
固定されるため,同電圧を検出する相がなく、減算器2
4a=cの出力は、3つとも必ず,正か負の極性が表わ
れる. そこで、 シーケンス回路30により、減算器24a〜
Cの出力の極性を監視し、零があれば,1線接地.零が
なければ2線接地と判断し,比較@28a〜CのOR条
件と、ANDをとり、地籍の種類を検出する. 効果としては、1線地絡か2線地絡かの地絡の種類が検
出可能で,地絡時の地絡場所の限定が容易になり復旧作
業が大幅に短縮できる.又,今回降圧器21a=cは、
抵抗による分圧で説明したが降圧トランスによる検出も
可能で,同様の効果を得ることができる. 〔発明の効果〕 本発明によれば、可変電圧可変周波数電源装置のように
波形歪が大きく電圧,周波数が広範囲に変化する電源系
統であっても、その出力電圧を基準にした検出レベルの
設定が可能であるため、広範囲において,検出精度を低
下させることなく,同一レベルでの検出が可能である. 又,各相それぞれ単独での地絡検出を実施しているので
,地絡の場所の限定が可能である。
(Problems to be Solved by the Invention) As described above, the conventional technology has a limited detection range and has problems such as false detection due to waveform distortion of the output voltage and inability to detect due to low output voltage. In addition, because the method detects zero-phase transformation, there were problems such as difficulty in determining the type of ground fault and ground fault phase, and the time required for restoration work. In view of the problems of the prior art, the present invention solves problems in power supply systems with large waveform distortion, such as variable frequency power supplies, and in low-voltage,
The purpose of this paper is to provide a ground fault detection device that can detect ground faults even in power supply systems where the frequency changes significantly. [Structure of the Invention] (Means for Solving the Problem) Therefore, in order to achieve the above object, the present invention detects the ground voltage of the power supply system for each phase, and converts the detection signal into an absolute value for each phase. A first means for converting, a second means for suppressing distortion of the output signal of the first means for each phase, and a third means for calculating a difference between two phases in each phase output signal of the second means. ,
a fourth means for calculating the sum of each phase output signal of the second means; a fifth means for adjusting the output of the fourth means; an output signal of the fifth means and an output signal of the third means; A ground fault detection device is provided, which is equipped with a sixth means for detecting cadastral land. (Function) In the ground fault detection device configured in this way, waveform distortion can be suppressed even in power systems with large waveform distortion, or power systems where output voltage and frequency vary over a wide range, and detection suitable for the output voltage and frequency can be performed. The level can be set, and ground faults can be detected without false detection or failure to detect. (Example) An example of the present invention is shown in Figure 1. A step-down converter 2 that divides the ground voltage of each phase using a resistor in a variable frequency power supply device.
1 a = c, a converter 22a = c that converts the output voltage into an absolute value, a filter circuit 23a = c that smoothes the output voltage, an output voltage of the filter circuit 23a,
A subtracter 24a that calculates the difference in output voltage of the filter circuit 23b, a subtracter 24b that similarly calculates the difference voltage between the filter circuit 23b and the filter circuit 23c, and a subtracter 24c that calculates the difference voltage between the filter circuit 23c and the filter circuit 23a. , filter circuits 23a, 23b, 23c
an adder that calculates the sum of the output voltages of the adder 25, and a setting device 2 that sets a gain for determining a ground fault for the output voltage of the adder 25;
6. A multiplier 27 that multiplies the output voltage of the adder 25 by the gain set by the setter 26, and subtraction that calculates the output signal of the multiplier 27 to which the ground fault detection level is set and the voltage difference between each two phases. The comparator 28a=c detects a ground fault by comparing the output signal of the comparator 24a=c. The method for detecting ground faults in power supply systems using the above configuration will be explained. The ground voltage of each phase of the power supply system is
The voltage is stepped down by the absolute value converters 22a to 22C, respectively.
Each phase is converted into a DC signal through the filter circuit 23a=c. In a power supply system where the output voltage includes a large amount of waveform distortion, such as the variable frequency power supply device 4, malfunctions due to surge voltage can be prevented by applying a filter.
In addition, by converting the signal to a DC signal, it is possible to obtain almost the same filter effect over a wide range of frequencies, and the filter effect itself becomes higher. The output voltage of the filter circuit 23a=c usually has the same magnitude for each phase unless there is a ground fault. Therefore, the subtractor "2"
The output signal of 4a"c is normally "zero". However, if a certain phase has a ground fault, a voltage with positive or negative polarity is output. The ground fault detection level is determined by the adder. The value is obtained by multiplying the sum of the detected voltages of each phase by the multiplier 27 by the gain set by the setter 26.In other words, the difference voltage between the detected voltages of each two phases is the sum of the detected voltages of each phase by the multiplier 27. When a certain percentage is exceeded, a ground fault is detected by the comparators 28a, b, and c.Another embodiment of the present invention is shown in FIG. 2, and its structure, operation, and effect will be explained.In FIG. is constructed by adding a sequence circuit 29 for determining the ground faulted phase to that shown in Fig. 1. Note that the same symbols as in Fig. 1 indicate the same actions, so the explanation will be omitted. Regarding the actions, Let's take a U-phase ground fault as an example. When the U-phase has a ground fault with a certain impedance, the voltage of the U phase becomes extremely close to the ground potential, and the step-down converter 21 a
= The detection voltage of c is lower in the U phase than in the other v and w phases. Therefore, the outputs of the subtractors 24a to 24C are such that 24a is negative,
24b is zero and 24c is positive. In case of 1 wire ground fault, other 2
Since the detection voltages of the phases are equal, the outputs of the subtractors 24a and 24c have the same detection level, although their polarities are different.
Both comparators 28a and 28c detect a ground fault. Therefore, the sequence circuit 29 performs subtraction [124
The polarity of the output of a"c is monitored, and if it is negative, it is determined to be a ground fault phase, and the ground fault phase is detected under the AND condition with comparator 28a=c.The effect is to detect the ground fault phase. This makes it easier to limit the cadastral location in the event of a ground fault, and the restoration work can be greatly shortened. Still another embodiment of the present invention is shown in Fig. 3, and its configuration, operation, and effects will be explained. In Fig. 3, a sequence circuit 30 for determining the type of ground fault is added to the structure shown in Fig. 1. The same symbols as in Fig. 1 indicate the same functions, so the explanation will be omitted. .The action will be explained by taking U phase, ■ phase, and ground fault as an example. If U phase and ■ phase each have a ground fault with a certain impedance, the detected voltage of step-down converter 21a=c will be equal to the respective ground fault impedance. Assuming that the ground fault impedance of the U phase is smaller than the ground fault impedance of the ■ phase, the outputs of the subtracters 24a''c are negative for 24a, negative for 24b, and positive for 24c. In the case of two-wire grounding, two of the three phases are fixed at the grounded potential, so there is no phase that detects the same voltage, and the subtracter 2
All three outputs of 4a=c always have positive or negative polarity. Therefore, the sequence circuit 30 subtracters 24a to
Monitor the polarity of the output of C, and if there is a zero, connect one wire to ground. If there is no zero, it is determined that there is a two-wire grounding, and the OR conditions of comparison @28a to C are ANDed to detect the type of cadastral property. As an effect, it is possible to detect the type of ground fault, whether it is a 1-wire ground fault or a 2-wire ground fault, which makes it easier to determine the location of the ground fault in the event of a ground fault, and the recovery work can be greatly shortened. Also, this time the step-down device 21a=c is
Although we have explained voltage division using a resistor, detection using a step-down transformer is also possible, and the same effect can be obtained. [Effects of the Invention] According to the present invention, even in a power supply system such as a variable voltage variable frequency power supply device where the waveform distortion is large and the voltage and frequency vary over a wide range, the detection level can be set based on the output voltage. Therefore, it is possible to perform detection at the same level over a wide range without reducing detection accuracy. Furthermore, since ground faults are detected independently for each phase, it is possible to limit the location of ground faults.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図,第3図は本発明のそれぞれ異なる実施
例を示した構成図、第4図は従来例の構成図、第5図は
従来例の地絡検出回路の詳細図である. 1・・・3相交流電源   2・・・入力トランス3・
・・電磁コンタクタ 4・・・可変電圧可変周波数電源装置 5・・・順変換器     6・・・直流リアクトル7
・・・逆変換器     8・・・出力トランス9・・
・交流電動機    10・・・零相計器用変圧器11
・・・地絡過電圧継電器 12・・・抑制抵抗21・・
・降圧器      22・・・絶対値変換器23・・
・フィルター回路  24・・・減算器25・・・加算
器      26・・・検出レベル設定器27・・・
乗算器      28・・・比較器29・・・地絡相
シーケンス回路 30・・・地絡種類シーケンス回路 代理人 弁理士  則 近 憲 佑 同     弟子丸   健 第 図 第 図
Figures 1, 2, and 3 are configuration diagrams showing different embodiments of the present invention, Figure 4 is a configuration diagram of a conventional example, and Figure 5 is a detailed diagram of a conventional ground fault detection circuit. be. 1...3-phase AC power supply 2...Input transformer 3.
...Electromagnetic contactor 4...Variable voltage variable frequency power supply device 5...Forward converter 6...DC reactor 7
...Inverse converter 8...Output transformer 9...
・AC motor 10...Zero-phase instrument transformer 11
...Ground fault overvoltage relay 12...Suppression resistor 21...
・Step-down converter 22... Absolute value converter 23...
・Filter circuit 24...Subtractor 25...Adder 26...Detection level setter 27...
Multiplier 28...Comparator 29...Ground fault phase sequence circuit 30...Ground fault type sequence circuit agent Patent attorney Noriyuki Chika Yudo Ken Deshimaru

Claims (1)

【特許請求の範囲】[Claims]  可変周波数電源系統の対地電圧を降圧する降圧器、前
記降圧器により降圧した対地電圧により前記電源系統の
地絡を検出する検出器を最低限有する構成において、前
記降圧器の出力信号を各相ごとに絶対値変換する第1の
手段、第1の手段の出力信号の歪を各相ごとに抑制する
第2の手段、第2の手段の各相出力号において2相の差
を演算する第3の手段、前記第2の手段の各相出力信号
の総和を演算する第4の手段、第4の手段の出力を対地
電圧により調整する第5の手段、第5の手段の出力信号
と前記第3の手段の出力信号により地絡を検出する第6
の手段を具備したことを特徴とする地絡検出装置。
In a configuration that includes at least a step-down device that steps down the ground voltage of a variable frequency power supply system, and a detector that detects a ground fault in the power system using the ground voltage stepped down by the step-down device, a first means for converting the absolute value to a fourth means for calculating the sum of each phase output signal of the second means; a fifth means for adjusting the output of the fourth means by ground voltage; and an output signal of the fifth means and the fourth means. A sixth means for detecting a ground fault based on the output signal of the third means.
A ground fault detection device characterized by comprising the following means.
JP1053628A 1989-03-08 1989-03-08 Ground fault detector Expired - Lifetime JP2723286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053628A JP2723286B2 (en) 1989-03-08 1989-03-08 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053628A JP2723286B2 (en) 1989-03-08 1989-03-08 Ground fault detector

Publications (2)

Publication Number Publication Date
JPH02234071A true JPH02234071A (en) 1990-09-17
JP2723286B2 JP2723286B2 (en) 1998-03-09

Family

ID=12948175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053628A Expired - Lifetime JP2723286B2 (en) 1989-03-08 1989-03-08 Ground fault detector

Country Status (1)

Country Link
JP (1) JP2723286B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007090791A2 (en) * 2006-02-07 2007-08-16 Siemens Aktiengesellschaft Method and device for detecting ground faults in a supply cable
DE102010023038A1 (en) * 2010-06-08 2011-12-08 Repower Systems Ag Wind energy plant and method for operating a wind energy plant
CN107607885A (en) * 2017-08-17 2018-01-19 南京南瑞继保电气有限公司 A kind of variable-frequency power sources pilot system and its experimental control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007090791A2 (en) * 2006-02-07 2007-08-16 Siemens Aktiengesellschaft Method and device for detecting ground faults in a supply cable
WO2007090791A3 (en) * 2006-02-07 2007-11-15 Siemens Ag Method and device for detecting ground faults in a supply cable
DE102010023038A1 (en) * 2010-06-08 2011-12-08 Repower Systems Ag Wind energy plant and method for operating a wind energy plant
CN107607885A (en) * 2017-08-17 2018-01-19 南京南瑞继保电气有限公司 A kind of variable-frequency power sources pilot system and its experimental control method

Also Published As

Publication number Publication date
JP2723286B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
CN109167345B (en) A kind of ground fault arc-suppressing method and device based on controllable voltage source
US9054589B2 (en) Method and apparatus for detecting power converter capacitor degradation using negative sequence currents
EP3359973B1 (en) Method and system for locating ground faults in a network of drives
JP2010193704A (en) Robust ac chassis fault detection using pwm sideband harmonics
US11355912B2 (en) Method and device for detecting faults in transmission and distribution systems
US5627712A (en) Transformer differential relay
JPH1141812A (en) Controller of power system self-excited converter
RU112527U1 (en) DEVICE FOR PROTECTING THE CONTROLLED BYPASS REACTOR FROM EARTH CIRCUITS
JPH02234071A (en) Ground fault detector
JPH09312930A (en) Detection of defect in power system and protection of the system from the defect
JP3652584B2 (en) Leakage detection protection method and apparatus for low-voltage ground circuit
CN113300360B (en) Commutation failure starting value setting method and device
US20220334151A1 (en) Open-phase detection circuit and power conversion apparatus
JP2980698B2 (en) Inverter device
JP3231605B2 (en) Control device of AC / DC converter
Bazzi et al. Utilization of median filters in power electronics: Traction drive applications
JPH0643196A (en) Insulation monitor device in low voltage electric circuit
JPS5843402Y2 (en) Hogokeiden Sochi
JPH08262085A (en) Three-phase unbalance detector and power converter
JP3519760B2 (en) Islanding detection device
JP2923572B2 (en) Change width detector
JP3004692B2 (en) PWM failure detection circuit
JP3106841B2 (en) Harmonic component detection circuit of multiple inverter system
JPH0336920A (en) Ground protector for electrical rotary machine
JPH0320970B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12