JPS6111052B2 - - Google Patents

Info

Publication number
JPS6111052B2
JPS6111052B2 JP53022269A JP2226978A JPS6111052B2 JP S6111052 B2 JPS6111052 B2 JP S6111052B2 JP 53022269 A JP53022269 A JP 53022269A JP 2226978 A JP2226978 A JP 2226978A JP S6111052 B2 JPS6111052 B2 JP S6111052B2
Authority
JP
Japan
Prior art keywords
terminal
circuit
zero
signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53022269A
Other languages
Japanese (ja)
Other versions
JPS54114738A (en
Inventor
Yoshiaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2226978A priority Critical patent/JPS54114738A/en
Publication of JPS54114738A publication Critical patent/JPS54114738A/en
Publication of JPS6111052B2 publication Critical patent/JPS6111052B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は電流比較形の比率差動継電要素に零相
電圧を導入してケーブル系統を含む3端子以上の
多端子送電系統を保護する保護継電装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protective relay device that protects a multi-terminal power transmission system having three or more terminals including a cable system by introducing a zero-sequence voltage into a current comparison type ratio differential relay element.

従来、多端子送電系統を保護する保護継電装置
の1つとして表示線継電装置があり、その一例を
第1図及び第2図により説明する。第1図は4端
子送電系統を保護する保護継電装置を示す図であ
つて、各A〜D端子より各々主変流器1を介して
端子電流i2A〜i2Dを取出しこれをそれぞれ絶縁
変流器2を介して表示線3により例えばA端子側
に設置した比率差動継電装置4に導入している。
この比率差動継電装置4は内外部事故を判定する
とともに、内部事故の場合にはトリツプ信号を前
記表示線3とは別の表示線(図示せず)を通して
各端子に転送し図示しないしや断器をトリツプす
るようにしている。
2. Description of the Related Art Conventionally, there has been an indicator line relay device as one of protective relay devices for protecting a multi-terminal power transmission system, and an example thereof will be explained with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing a protective relay device that protects a four-terminal power transmission system, in which terminal currents i 2A to i 2D are taken from each terminal A to D through a main current transformer 1 and insulated. The current is introduced through a current transformer 2 and an indicator line 3 into a ratio differential relay device 4 installed on the A terminal side, for example.
This ratio differential relay device 4 determines internal and external faults, and in the case of an internal fault, transmits a trip signal to each terminal through a display line (not shown) different from the display line 3. I also try to trip the disconnector.

次に、第2図は比率差動継電装置の構成を具体
的に示した図である。各端子電流i2A〜i2Dは表
示線3,………のインピーダンスを同じ値に合せ
る整合回路5,………および絶縁変流器6,……
…を経て電流i2A′〜i2D′として取り出した後、
これらをベクトル和回路7に加えてベクトル和を
作り、そのベクトル和電流Idを全波整流回路8
により全波整流して電気量|Id|を得ている。
この電気量|Id|を動作量とする。また、前記
電流i2A′〜i2D′は正の半波を整流する半波整流
回路9および負の半波を整流する半波整流回路1
0にそれぞれ加えて電気量i2A〜i2Dおよ
びi2A〜i2Dを得、これらをそれぞれ加算
回路11,11に加えて電気量K・Σi および
K・Σi を得ている(Kは定数)。この電気量を
抑制量とする。
Next, FIG. 2 is a diagram specifically showing the configuration of a ratio differential relay device. Each terminal current i 2A to i 2D is determined by the display line 3, the matching circuit 5, which adjusts the impedance of the impedance to the same value, and the isolation current transformer 6,...
After extracting the current as i 2A ′ ~ i 2D ′ through ...,
These are added to the vector sum circuit 7 to create a vector sum, and the vector sum current I d is added to the full wave rectifier circuit 8.
The electric quantity |I d | is obtained by full-wave rectification.
Let this electric quantity |I d | be the operating quantity. Further, the currents i 2A ′ to i 2D ′ are passed through a half-wave rectifier circuit 9 that rectifies a positive half-wave and a half-wave rectifier circuit 1 that rectifies a negative half-wave.
0 respectively to obtain the electrical quantities i 2A+ ~i 2D+ and i 2A ~i 2D , and add these to the adder circuits 11 and 11, respectively, to obtain the electrical quantities K・Σ i + and K・Σ i is obtained (K is a constant). This amount of electricity is defined as the amount of suppression.

このようにして得られた動作量および抑制量は
直流バイアス量K0と突き合せをした後それぞれ
レベル検出回路12,12に加え、動作式{|I
d|−K・Σi−K0>0}を得ている。ここで、K
ΣiはK・Σi 、K・Σi を総称する。而して、
以上の式の動作条件がそれぞれ後続の時間測定回
路13,13で決まる時間t以上継続すれば、時
間測定回路13,13より信号を出力し、さらに
後続の時間遅延回路14,14で連続出力とした
後、これらの両出力信号を論理積回路15に加え
て同回路15からトリツプ信号を送出するように
している。
The operation amount and suppression amount obtained in this way are compared with the DC bias amount K 0 and then added to the level detection circuits 12, 12, respectively, and the operation formula {|I
d |−K·Σ i −K 0 >0} is obtained. Here, K
Σ i collectively refers to K·Σ i + and K·Σ i . Then,
If the operating conditions of the above equations continue for more than the time t determined by the subsequent time measurement circuits 13, 13, the time measurement circuits 13, 13 output a signal, and the subsequent time delay circuits 14, 14 output a signal continuously. After that, these two output signals are added to the AND circuit 15, and the circuit 15 sends out a trip signal.

第3図は以上の動作原理を示す比率特性図であ
る。そこで、第3図に示す比率特性において、
今、第1図のF2点で外部故障があつた場合、保
護区間内に流入する電流i2A〜i2Cは全てD端子
から流出する。従つて、i2A+i2B+i2C=−i2
となり、各端子電流のベクトル和電流Idは、I
d=i2A′+i2B′+i2C′+i2D′=0であり、従つ
て、動作量|Id|は零となる。他方、抑制量に
あつては、第4図に示す如く保護区間内に流入す
る電流と保護区間外に流出する電流の正波または
負波を別々に加えた電気量に比例した電気量KΣ
iに直流バイアス量K0を加えたものであつて確実
に正不動作となる。
FIG. 3 is a ratio characteristic diagram showing the above operating principle. Therefore, in the ratio characteristics shown in Figure 3,
If an external failure occurs at point F2 in FIG. 1, all of the currents i 2A to i 2C flowing into the protection zone flow out from the D terminal. Therefore, i 2A + i 2B + i 2C = −i 2
D , and the vector sum current I d of each terminal current is I
d =i 2A ′+i 2B ′+i 2C ′+i 2D ′=0, and therefore the amount of operation |I d | becomes zero. On the other hand, as for the amount of suppression, as shown in Fig. 4, the amount of electricity KΣ is proportional to the amount of electricity that is the sum of the positive wave or negative wave of the current flowing into the protection zone and the current flowing out of the protection zone.
It is the sum of i and the DC bias amount K 0 , which ensures correct or incorrect operation.

一方、第1図のF1点で内部故障があつた場
合、保護区間内に流入する電流をi2A〜i2C、保
護区間外に流出する電流をi2Dとすると、i2A
2B+i2C>−i2Dとなり、各端子電流のベクト
ル和電流Idは第5図に示すように、Id=i2A
+i2B′+i2C′+i2D′>0となり、動作量|Id
|は、|Id|>0となる。また、抑制量にあつ
ては、前記流入電流と流出電流の正波または負波
を別々に加えた電気量に比例した電気量KΣi
直流バイアス量K0を加えたものとなり、|Id
−KΣi−K0>0なる条件が時間測定回路13で
定まるt時間以上続くと、比率差動継電装置4は
動作して内部故障と判定する。
On the other hand, if an internal failure occurs at point F1 in Figure 1 , the current flowing into the protected area is i 2A ~ i 2C and the current flowing outside the protected area is i 2D , then i 2A +
i 2B +i 2C > -i 2D , and the vector sum current I d of each terminal current is I d = i 2A ′ as shown in FIG.
+i 2B ′+i 2C ′+i 2D ′>0, and the amount of operation |I d
| becomes |I d |>0. In addition, the amount of suppression is the amount of electricity KΣ i , which is proportional to the amount of electricity obtained by adding the positive wave or negative wave of the inflow current and outflow current, separately, and the amount of DC bias K 0 , |I d
If the condition -KΣ i -K 0 >0 continues for more than t time determined by the time measurement circuit 13, the ratio differential relay device 4 operates and determines that there is an internal failure.

しかし、第1図で示す保護系統がケーブルで構
成されている場合、架空系に対して対地静電容量
が大きく、その内部充電電流Icioは外部故障時に
流出する。第1図では図示していないがIcioの大
きさは、高抵抗接地系では有効接地電流IRの3
倍以上になる系統が多い。
However, when the protection system shown in FIG. 1 is composed of cables, the ground capacitance is large compared to the overhead system, and the internal charging current I cio flows out in the event of an external failure. Although not shown in Figure 1, the magnitude of I cio is 3 of the effective ground current I R in a high resistance grounding system.
There are many strains that more than double.

従つて、第6図のベクトル図に示すように、
F2点地絡の外部故障時に各端子電流のベクトル
和電流Idは、Id=i2A′+i2B′+i2C′+i2D
=−Icioとなり(Icio′:Icioが表示線3および
整合回路5を経た電気量)、動作量は|Id|=|
cio′|となる。また、抑制量は保護区間内に流
入する電流と保護区間外に流出する電流(i2D
+Icio′)の正波または負波を各別に加えた電気
量に比例した電気量K・Σiに直流バイアス量K0
を加えたものとなる。この時、|Id|−K・Σi
−K0>0なる条件の時間が第2図に示す時間測
定回路13で定まるt時間以上続くと誤動作とな
る。この充電電流Icioの影響をなくすために従来
次のような2通りの方法を用いている。すなわ
ち、内部充電電流を補償する方法。ベクトル
和電流Idと零相電圧V0の位相比較要素の出力と
前記比率差動継電装置4の出力との論理積をとる
方法である。
Therefore, as shown in the vector diagram of Figure 6,
F The vector sum current I d of each terminal current at the time of an external fault of a two- point ground fault is I d = i 2A ′ + i 2B ′ + i 2C ′ + i 2D
=-I cio (I cio ': I cio is the amount of electricity passed through the display line 3 and matching circuit 5), and the operating amount is |I d |=|
I cio ′| In addition, the amount of suppression is the current flowing into the protection zone and the current flowing out outside the protection zone (i 2D
DC bias amount K 0 is added to the amount of electricity K・Σ i , which is proportional to the amount of electricity obtained by adding the positive wave or negative wave of +I cio ′) to each separately.
is added. At this time, |I d |−K・Σ i
If the condition -K 0 >0 continues for more than time t determined by the time measuring circuit 13 shown in FIG. 2, a malfunction will occur. In order to eliminate the influence of this charging current I cio , the following two methods are conventionally used. That is, how to compensate for internal charging current. This is a method of calculating the logical product of the vector sum current I d , the output of the phase comparison element of the zero-sequence voltage V 0 , and the output of the ratio differential relay device 4.

先ず、の方法について述べる。第7図は同方
法により充電電流Icioを補償する場合の装置構成
を示す図であり、第8図はそのベクトル図であ
る。外部故障時の系統側内部充電電流−Icioは零
相電圧V0に対して90゜遅れ位相にあり、また−
cio′は−Icioに対してα(α:表示線による伝
送遅れ角を示す)遅れ位相となるので、この零相
電圧V0を変圧器16を介して移相回路17に加
えれば、V0に対してα遅れのV0〓αを得、この
電気量に対し90゜進みの電気量IC COMPを得
る。これを各端子電流i2A′〜i2D′とともにベク
トル和回路7に加えれば内部充電電流を打ち消し
てその影響をなくすことができる。
First, the method will be described. FIG. 7 is a diagram showing a device configuration when the charging current I cio is compensated by the same method, and FIG. 8 is a vector diagram thereof. The system-side internal charging current −I cio at the time of an external failure is 90° behind the zero-sequence voltage V 0 , and −
Since I cio ' has a delayed phase with respect to -I cio by α (α: indicates the transmission delay angle due to the display line), if this zero-phase voltage V 0 is applied to the phase shift circuit 17 via the transformer 16, Obtain V 0 〓α which lags by α with respect to V 0 , and obtain the electrical quantity I C COMP which leads by 90° with respect to this electrical quantity. If this is added to the vector sum circuit 7 along with the terminal currents i 2A ′ to i 2D ′, the internal charging current can be canceled and its influence can be eliminated.

次に、の方法について述べる。第9図は位相
比較要素を設けた場合の装置構成を示し、第10
図は位相比較要素の位相特性を示す図である。
今、各端子電流のベクトル和電流Idと、零相電
圧V0から変圧器16、移相回路17を介して得
られる電気量V0〓αは各々バツフア回路18に
入つて方形波に変換された後、これらの方形波を
論理積回路19に入れてその方形波重なり時間が
後続の時間測定回路20で決るt時間以上であれ
ば、その時間測定回路20より信号がでてこれが
時間遅延回路21で連続出力となる。これによ
り、位相比較要素は信号を出力することになる。
ここで、t′=(180゜−θ)×1サイクルの時間/36
0゜とす ると、第10図に示すように零相電圧V0〓αに
対し、Idの電気量が傾斜内にあると動作する特
性が得られる。
Next, we will discuss the method. FIG. 9 shows the device configuration when a phase comparison element is provided, and the 10th
The figure is a diagram showing the phase characteristics of the phase comparison element.
Now, the vector sum current I d of each terminal current and the quantity of electricity V 0 〓α obtained from the zero-phase voltage V 0 via the transformer 16 and the phase shift circuit 17 enter the buffer circuit 18 and convert it into a square wave. After that, these square waves are input into the AND circuit 19, and if the overlap time of the square waves is greater than or equal to the time t determined by the subsequent time measuring circuit 20, a signal is output from the time measuring circuit 20 and this is the time delay. The circuit 21 provides continuous output. This causes the phase comparison element to output a signal.
Here, t'=(180°-θ)×1 cycle time/36
When it is set to 0°, as shown in FIG. 10, a characteristic is obtained that operates when the electrical quantity of I d is within the slope with respect to the zero-phase voltage V 0 〓α.

従つて、外部故障時の内部充電電流−Icio
(表示線を介し、−Icioよりαだけ遅れた電気量)
は第10図のように動作域外になり、このため第
9図のように構成すれば内部充電電流による不要
動作は防げられる。
Therefore, the internal charging current during external fault −I cio
(The amount of electricity that lags −I cio by α via the display line)
is outside the operating range as shown in FIG. 10. Therefore, by configuring as shown in FIG. 9, unnecessary operations due to internal charging current can be prevented.

しかし、以上の2つの方法は何れも零相電圧
V0を継電装置に導入しなければならない。とこ
ろが、多端子送電系統ではしばしば1端子あるい
は数端子を休止端として運転することがある。一
方、第11図に示す如く母線用計器変成器23よ
り零相電圧を得るケースであつて、かつ比率差動
継電装置24に零相電圧を導入しているA端子が
休止端(しや断器25Aが開放)となる場合、そ
の零相電圧の導入ができないので前記充電電流に
よる誤動作を回避することができない。
However, in both of the above two methods, the zero-sequence voltage
V 0 must be introduced into the relay device. However, multi-terminal power transmission systems often operate with one or several terminals at rest. On the other hand, as shown in FIG. 11, in the case where the zero-sequence voltage is obtained from the busbar instrument transformer 23, the A terminal, which introduces the zero-sequence voltage into the ratio differential relay device 24, is at the rest end. If the disconnector 25A is opened, the zero-sequence voltage cannot be introduced, so malfunctions due to the charging current cannot be avoided.

本発明は上記実情にかんがみてなされたもので
あつて、その目的とするところは多端子系統で数
端子が休止端となつて運転する場合でも、各端子
より転送されてくる零相電圧の中から使用すべき
零相電圧を自動的に選択して継電装置に導入する
ようにし、これによつて内部電流による誤動作を
回避できるようにする保護継電装置を提供するも
のである。
The present invention has been made in view of the above circumstances, and its purpose is to reduce the amount of zero-sequence voltage transferred from each terminal even when a multi-terminal system is operated with several terminals at rest. The present invention provides a protective relay device that automatically selects a zero-sequence voltage to be used and introduces it into the relay device, thereby avoiding malfunctions caused by internal current.

以下、本発明の一実施例について図面を参照し
て説明する。第12図は多端子の表示線継電装置
の全体構成を示し、第13図は特に内部充電電流
を補償する場合における第12図の比率差動継電
装置の具体的構成図、第14図は特に位相比較要
素を用いた場合の第12図の比率差動継電装置の
具体的構成図である。なお、第12〜第14図に
おいて従来装置(例えば第1図、第2図、………
等)と同一部分は同一符号を付してここではその
一部の説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 12 shows the overall configuration of a multi-terminal display line relay device, FIG. 13 is a specific configuration diagram of the ratio differential relay device shown in FIG. 12, especially in the case of compensating for internal charging current, and FIG. 14 12 is a specific configuration diagram of the ratio differential relay device shown in FIG. 12, especially when a phase comparison element is used. In addition, in FIGS. 12 to 14, conventional devices (for example, FIG. 1, FIG. 2, . . .
etc.) are designated by the same reference numerals, and the description of some of them will be omitted here.

先ず、内部充電電流を補償するための電気量を
得る構成について述べる。第12図、第13図に
おいて、各A〜C端子の零相電圧V0A〜V0Cを絶
縁変圧器26を介して取り出した後、表示線27
を用いて比率差動継電装置24に供給する構成で
あり、具体的には零相電圧V0A〜V0Cは表示線2
7,………およびこの表示線27,………のイン
ピーダンスを同じ値に合せるための整合回路2
8,………絶縁変圧器29,………を経て電圧V
0A′〜V0C′として取り出す。この場合、継電装置
設置端子をA端子と仮定すると、V0B′,V0C′が
転送電気量となる。絶縁変圧器29,………によ
り取出された電圧V0A′〜V0C′は方形波信号に変
換するバツフア回路30A〜30Cを介して論理
判断回路としての論理積回路31A〜31Cに供
給する。この論理積回路31Aの他方入力部には
A端子の使用条件S(しや断器又は断路器25の
閉路状態で“1”、開放状態で“0”)を加えてい
る。また、論理積回路31Bの他方入力部にはA
端子使用条件Sを否定回路32で反転した条件
を加えている。同じく論理積回路31Cの他方入
力部にはA端子使用条件Sの否定条件および論
理積回路31Bの出力を時間遅延回路33B、否
定回路34を介して得られる条件B′を加える。
0A′〜V0C′は後述するゲート回路35A〜35
Cを介して合成回路36で合成した後、この合成
信号を移相回路17に入れてV0A′〜V0C′に対し
て90゜の進み位相となるように調整して内部充電
電流補償IC COMPを取り出している。なお、ゲ
ート回路35A〜35Cは時間遅延回路33A〜
33Cより出力された信号VA′〜VC′で制御され
る。
First, the configuration for obtaining the amount of electricity for compensating the internal charging current will be described. In FIGS. 12 and 13, after the zero-phase voltages V 0A to V 0C of each A to C terminal are taken out via the isolation transformer 26, the display line 27
This is a configuration in which the zero-sequence voltages V 0A to V 0C are supplied to the ratio differential relay device 24 using
Matching circuit 2 for adjusting the impedance of 7, ...... and this display line 27, ...... to the same value
8,... Voltage V via isolation transformer 29,......
Take out as 0A ′ to V 0C ′. In this case, assuming that the relay device installation terminal is the A terminal, V 0B ′ and V 0C ′ are the amounts of transferred electricity. The voltages V 0A ′ to V 0C ′ taken out by the isolation transformers 29, . The use condition S of the A terminal ("1" when the breaker or disconnector 25 is in a closed state, and "0" when it is in an open state) is applied to the other input part of the AND circuit 31A. Moreover, the other input part of the AND circuit 31B has A
A condition obtained by inverting the terminal use condition S by a negative circuit 32 is added. Similarly, the negation condition of the A terminal usage condition S and the condition B ' obtained by passing the output of the AND circuit 31B through the time delay circuit 33B and the negation circuit 34 are added to the other input portion of the AND circuit 31C.
V 0A ′ to V 0C ′ are gate circuits 35A to 35, which will be described later.
After being synthesized by the synthesis circuit 36 via C, this synthesized signal is input to the phase shift circuit 17 and adjusted so that it has a leading phase of 90 degrees with respect to V 0A ′ to V 0C ′, and the internal charging current compensation I C COMP is being taken out. Note that the gate circuits 35A to 35C are time delay circuits 33A to 35C.
It is controlled by signals V A ' to V C ' output from 33C.

次に、位相比較要素を用いた第14図の構成は
第13図と殆んど同じであるが、特に構成上の差
異は論理積回路31A〜31Cの方形波出力信号
A〜VCをそれぞれ論理和回路37を通し、この
回路37の出力信号とベクトル和電流Idとを位
相比較する構成である。この比較の結果得た信号
は零相電圧電気量として用いる。
Next, the configuration of FIG. 14 using phase comparison elements is almost the same as that of FIG. 13, but the difference in configuration is that the square wave output signals V A to V Each signal passes through an OR circuit 37, and the output signal of this circuit 37 and the vector sum current Id are compared in phase. The signal obtained as a result of this comparison is used as the zero-sequence voltage quantity.

次に、以上のように構成した装置の作用を説明
する。なお、第13図、第14図に示す構成は零
相電圧の使用順序をV0A〜V0Cと仮定した場合の
例であり、また第13図、第14図の零相電圧選
択回路の応動は第15図に示している。
Next, the operation of the device configured as above will be explained. Note that the configurations shown in FIGS. 13 and 14 are examples assuming that the order of use of zero-sequence voltages is V 0A to V 0C , and the response of the zero-sequence voltage selection circuit in FIGS. 13 and 14 is is shown in FIG.

(1) 内部充電電流を補償するための電気量を得る
場合について。A端子以外の端子が休止端の場
合、すなわちA端子使用条件Sが“1”である
ため、論理積回路31B,31CはA端子使用
条件Sの否定条件によつてロツクされる。従
つて、第15図Aに示すように論理積回路31
Aの出力信号VAのみ方形波信号となり、この
信号VAを時間遅延回路33Aで連続“1”信
号に変換したVA′(VB′,VC′は“0”であ
る)の出力によりゲート回路35Aのみ開放状
態となり、V0A′が内部充電電流補償IC COMP
用として用いられる。
(1) Regarding obtaining the amount of electricity to compensate for the internal charging current. When the terminals other than the A terminal are at rest, that is, the A terminal use condition S is "1", and therefore the AND circuits 31B and 31C are locked by the negative condition of the A terminal use condition S. Therefore, as shown in FIG. 15A, the AND circuit 31
Only the output signal V A of A is a square wave signal, and this signal V A is converted into a continuous "1" signal by the time delay circuit 33A, and the output of V A ' (V B ', V C ' are "0"). As a result, only the gate circuit 35A becomes open, and V 0A ' is the internal charging current compensation I C COMP
used for purposes.

次に、A端子が休止端となる場合について説
明する。すなわち、A端子使用条件Sは“0”
であるために論理積回路31Aはロツクされ、
A,VA′の信号は“0”となる。従つて、ゲ
ート回路35Aもロツク状態となる。この時、
B端子からの零相電圧V0Bが存在するので、論
理積回路31Bの出力信号VBは第15図Bに
示すように方形波信号となる。このため、論理
積回路31Cは信号VBを時間遅延回路33B
で連続“1”信号に変換した信号VB′でロツク
される。従つて、VB′は“1”、VC′は“0”
となるためにゲート回路35Bのみ開放状態と
なりV0B′が内部充電電流補償IC COMP用とし
て用いられる。
Next, a case where the A terminal becomes the rest end will be explained. In other words, the A terminal usage condition S is “0”
Therefore, the AND circuit 31A is locked,
The signals of V A and V A ' become "0". Therefore, the gate circuit 35A is also in a locked state. At this time,
Since there is a zero-phase voltage V 0B from the B terminal, the output signal V B of the AND circuit 31B becomes a square wave signal as shown in FIG. 15B. Therefore, the AND circuit 31C transfers the signal V B to the time delay circuit 33B.
It is locked by the signal V B ' which is converted into a continuous "1" signal. Therefore, V B ' is "1" and V C ' is "0".
Therefore, only the gate circuit 35B is opened and V 0B ' is used for internal charging current compensation I C COMP .

次に、A、B端子が休止端となる場合、すな
わち第12図に示すC、D端子の2端子運用に
なる場合について説明する。この場合Aおよび
B端子からの零相電圧V0A,V0Bが存在しない
ため、条件Sが“0”で、論理積回路31A,
31Bの出力信号VA,VBは“0”となる。従
つて、論理積回路31A,31B、ゲート回路
35A,35Bは何れもロツク状態となる。
Next, a case where terminals A and B become idle ends, that is, a case where two terminals of terminals C and D shown in FIG. 12 are operated will be described. In this case, since the zero-phase voltages V 0A and V 0B from the A and B terminals do not exist, the condition S is "0" and the AND circuit 31A,
The output signals V A and V B of 31B become "0". Therefore, AND circuits 31A, 31B and gate circuits 35A, 35B are all in a locked state.

一方、C端子からの零相電圧V0C′が存在す
るので、論理積回路31Cの出力信号VCは第
15図Cのように方形波信号となる。そして、
信号VCを時間遅延回路33Cで連続“1”信
号に変換したVC′の出力によりゲート回路35
Cのみ開放状態となり、零相電圧V0C′が内部
充電電流補償IC COMP用として用いられる。
On the other hand, since there is a zero-phase voltage V 0C ' from the C terminal, the output signal V C of the AND circuit 31C becomes a square wave signal as shown in FIG. 15C. and,
The signal V C is converted into a continuous "1" signal by the time delay circuit 33C, and the gate circuit 35 is output by the output of V C '.
Only C becomes open, and the zero-phase voltage V 0C ' is used for internal charging current compensation I C COMP .

A、B、C端子が休止端となり1端子のみ運
用するような場合には電流差動を用いた本継電
装置は原理的に適用できないので、多端子
(n)系統では(n−1)端子の零相電圧から
1端子分を選択することとなる。すなわち、
(n−1)端子の零相電圧のうち(n−2)端
子分が、差動継電装置の設置する端子に転送さ
れる。ここで、時間遅延回路33A〜33Cの
遅延時間に(1サイクル+余裕分)を用いる
と、第15図に示す如くVA〜VCの方形波信号
は連続“1”信号に変換されたVA′〜VC′にな
る。従つて、休止端があるケースでも内部充電
電流の影響を容易になくすことができる。
In principle, this relay device using current differential cannot be applied in cases where A, B, and C terminals are idle terminals and only one terminal is operated, so in a multi-terminal (n) system, (n-1) One terminal is selected from the zero-sequence voltages of the terminals. That is,
Of the zero-sequence voltages at the (n-1) terminals, the voltage at the (n-2) terminals is transferred to the terminals where the differential relay device is installed. Here, if (1 cycle + margin) is used as the delay time of the time delay circuits 33A to 33C, the square wave signals of V A to V C are converted to continuous "1" signals, as shown in FIG. A ′ to V C ′. Therefore, even in the case where there is a rest end, the influence of the internal charging current can be easily eliminated.

(2) 次に、第14図にて位相比較要素に用いる電
気量を得る場合について述べる。A端子以外の
端子が休止端の場合には第15図Aに示すよう
に、論理積回路31Aの出力電圧VAのみが第1
4図に示す論理和回路37に導入され位相比較
用信号として用いられる。
(2) Next, the case of obtaining the amount of electricity used in the phase comparison element will be described with reference to FIG. When a terminal other than the A terminal is at rest, only the output voltage V A of the AND circuit 31 A is at the first terminal, as shown in FIG. 15A.
The signal is introduced into an OR circuit 37 shown in FIG. 4 and used as a phase comparison signal.

次に、A端子が休止端となる場合について述
べる。第15図Bに示すようにA端子使用条件
の反転信号により、論理積回路31Bの出力
電圧VBのみが論理和回路37に導入され位相
比較信号として用いられる。この場合A端子使
用条件S=0であるので、論理積回路31A
ロツクされてVA=0となり、またB′=0で
あるので論理積回路31cはロツクされVC
0となる。
Next, the case where the A terminal becomes the rest end will be described. As shown in FIG. 15B, only the output voltage V B of the AND circuit 31 B is introduced into the OR circuit 37 and used as a phase comparison signal by the inverted signal of the A terminal usage condition. In this case, since the A terminal usage condition S=0, the AND circuit 31A is locked and V A =0, and since B '=0, the AND circuit 31c is locked and V C =0.
It becomes 0.

次に、A、B端子が休止端となる場合につい
て説明する。この場合には第15図Cに示すよ
うに、=“1”およびB′=“1”により論理
積回路31cから出力電圧VCのがでて論理和
回路37に導入され位相比較用信号として用い
られる。以上の点から休止端がある場合でも位
相比較要素によつて内部充電電流の影響を容易
になくすことができる。
Next, a case where the A and B terminals are at rest ends will be described. In this case, as shown in FIG. 15C, due to ="1" and B '="1", the output voltage V C is output from the AND circuit 31c and introduced into the OR circuit 37 as a phase comparison signal. used. From the above points, even if there is a rest end, the influence of the internal charging current can be easily eliminated by the phase comparison element.

従つて、本装置では使用したい零相電圧を順序
よく自動的に選択して位相比較回路および内部充
電電流補償回路へと導入することができる。
Therefore, in this device, the zero-sequence voltages to be used can be automatically selected in an orderly manner and introduced into the phase comparator circuit and the internal charging current compensation circuit.

なお、上記実施例では4端子系統について述べ
たが、原理的には3端子以上の多端子にも適用可
能である。第16図は多端子(n)系統に適用
し、かつ位相比較用、内部充電電流補償用の2電
気量を得るようにしたものである。構成の概要は
第13図および第14図の組合せから容易であ
り、従つて、第16図において上記第13図、第
14図と同一部分は同一符号を付して説明を省略
する。
In the above embodiment, a four-terminal system was described, but in principle it is also applicable to a multi-terminal system of three or more terminals. FIG. 16 shows an example in which the system is applied to a multi-terminal (n) system, and two electrical quantities are obtained, one for phase comparison and one for internal charging current compensation. The outline of the configuration can be easily understood from the combination of FIGS. 13 and 14, and therefore, in FIG. 16, the same parts as in FIGS.

また、上記実施例では表示線継電装置について
述べたが、例えばパイロツト継電装置の1つであ
るFMキヤリアおよびPCMキヤリヤ継電装置にも
適用可能である。先ず、FMキヤリア継電装置に
あつては、第17図aに示すように入力電気量を
周波数変換装置38でその電気量に対応した周波
数(マイクロ波)に変換して伝送し、これを受信
側の装置39で周波数に対応した電気量に変換す
ればよい。
Furthermore, although the above embodiments have been described with reference to the display line relay device, the present invention can also be applied to, for example, FM carrier and PCM carrier relay devices, which are one type of pilot relay device. First, in the case of the FM carrier relay device, as shown in Fig. 17a, the input electrical quantity is converted into a frequency (microwave) corresponding to the electrical quantity by the frequency converter 38 and transmitted, and this is received. The device 39 on the side may convert it into an amount of electricity corresponding to the frequency.

また、PCMキヤリア継電装置にあつては、第
17図bに示すように入力電気量をコード変換装
置41でその電気量に対応するパルスコードに変
換してマイクロ波で伝送し、これを受信側の装置
42でパルスコードに対応する電気量に変換した
ものである。
In addition, in the case of the PCM carrier relay device, as shown in FIG. 17b, the input electrical quantity is converted into a pulse code corresponding to the electrical quantity by the code conversion device 41, transmitted by microwave, and received. The pulse code is converted into an electrical quantity corresponding to the pulse code by a device 42 on the side.

さらに、上記実施例では伝送手段として表示線
を用いてアナログ量の零相電気量を伝送するよう
にしたが、例えば第18図に示すように各端子に
おいて零相電気量を第19図のようなデイジタル
量(矩形波)に変換して伝送するようにしてもよ
い。この場合の伝送手段としては、マイクロ波、
電力線搬送波が使用できる。従つて、第18図に
示す43は矩形信号をマイクロ波又は電力線搬送
波に変換する装置、44はマイクロ波又は電力線
盤送波を矩形信号に変換する装置である。
Furthermore, in the above embodiment, the analog quantity of zero-sequence electricity was transmitted using the display line as a transmission means, but for example, as shown in Fig. 18, the zero-sequence electricity quantity was transmitted at each terminal as shown in Fig. 19. Alternatively, the signal may be converted into a digital quantity (rectangular wave) and transmitted. In this case, the transmission means include microwave,
Power line carrier waves can be used. Therefore, 43 shown in FIG. 18 is a device that converts a rectangular signal into a microwave or power line carrier wave, and 44 is a device that converts a microwave or power line board transmission wave into a rectangular signal.

以上詳記したように本発明によれば、多端子系
統のうち休止端があつても確実に必要な零相電圧
を、各端子の零相電圧から自動的に選択して継電
装置に導入することが可能となり、これにより内
部充電電流による誤動作の影響をなくすことがで
きる。
As detailed above, according to the present invention, even if there is an idle end in a multi-terminal system, the necessary zero-sequence voltage is automatically selected from the zero-sequence voltages of each terminal and introduced into the relay device. This makes it possible to eliminate the influence of malfunctions caused by internal charging current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の保護継電装置の一例としての表
示線継電装置の構成図、第2図は第1図に示す比
率差動継電装置の内部構成図、第3図は第1図に
示す装置の動作量を説明する比率特性図、第4図
は抑制量を説明する特性図、第5図および第6図
は内部故障および外部故障における動作量、抑制
量の特性図、第7図は内部充電電流を補償する場
合の従来装置の構成図、第8図は第7図のベクト
ル図、第9図は位相比較要素を設けた場合の従来
装置構成図、第10図は第9図の位相特性図、第
11図は同じく従来例を説明する構成図、第12
図は本発明に係る保護継電装置の一実施例を説明
する構成図、第13図は内部充電電流を補償する
ために示す第12図の比率差動継電装置の具体的
構成図、第14図は位相比較要素を用いた場合の
第12図の比率差動継電装置の具体的構成図、第
15図a〜cは第12図〜第14図に示す装置の
動作を説明する波形図、第16図ないし第19図
は本発明装置の他の実施例を説明する構成図およ
び特性図である。 1……主変流器、2……絶縁変流器、3……表
示線、4……比率差動継電装置、5……整合回
路、7……ベクトル和回路、8……全波整流回
路、9……正波半波整流回路、10……負波半波
整流回路、11……加算回路、13……時間測定
回路、14……時間遅延回路、15……論理積回
路、17……移相回路、24……比率差動継電装
置(内部充電電流対策付き)、25……しや断器
又は断路器、27……表示線、28……整合回
路、29……絶縁変圧器、31A,31B……論理
積回路、32……否定回路、33A,33B……時
間遅延回路、34……否定回路、35A,35B
…ゲート回路、36……合成回路、37……論理
和回路。
Fig. 1 is a block diagram of an indicator line relay device as an example of a conventional protective relay device, Fig. 2 is an internal block diagram of the ratio differential relay device shown in Fig. 1, and Fig. 3 is a diagram similar to that shown in Fig. 1. 4 is a characteristic diagram explaining the amount of suppression, FIGS. 5 and 6 are characteristic diagrams of the amount of operation and suppression in internal and external failures, and FIG. The figure is a block diagram of a conventional device when compensating the internal charging current, FIG. 8 is a vector diagram of FIG. 7, FIG. 9 is a block diagram of a conventional device when a phase comparison element is provided, and FIG. Fig. 11 is a configuration diagram illustrating the conventional example, and Fig. 12 is a phase characteristic diagram.
13 is a block diagram illustrating an embodiment of the protective relay device according to the present invention, FIG. 13 is a specific block diagram of the ratio differential relay device shown in FIG. 14 is a specific configuration diagram of the ratio differential relay device shown in FIG. 12 when a phase comparison element is used, and FIGS. 15 a to 15 c are waveforms illustrating the operation of the device shown in FIGS. 12 to 14. 16 to 19 are configuration diagrams and characteristic diagrams illustrating other embodiments of the device of the present invention. 1...Main current transformer, 2...Isolated current transformer, 3...Display line, 4...Ratio differential relay device, 5...Matching circuit, 7...Vector sum circuit, 8...Full wave Rectifier circuit, 9... Positive wave half-wave rectifier circuit, 10... Negative wave half-wave rectifier circuit, 11... Addition circuit, 13... Time measurement circuit, 14... Time delay circuit, 15...... AND circuit, 17... Phase shift circuit, 24... Ratio differential relay device (with internal charging current countermeasure), 25... Line breaker or disconnector, 27... Display line, 28... Matching circuit, 29... Isolation transformer, 31 A , 31 B ...AND circuit, 32...NOT circuit, 33 A , 33 B ...Time delay circuit, 34...NOT circuit, 35 A , 35 B ...
...Gate circuit, 36...Synthesis circuit, 37...OR circuit.

Claims (1)

【特許請求の範囲】 1 n端子(n≧3)送電系統のうち1端子以上
の端子を休止端として運転する送電系統の保護継
電装置において、 前記各端子の端子電流をベクトル合成して得ら
れる電気量を動作量とし、かつ各端子の端子電流
をスカラー合成して得られる電気量を抑制量と
し、これらの動作量と抑制量の差が所定値を越え
たときトリツプ信号を出力する比率差動継電要素
と、 複数端子に変圧器を設けてそれぞれの端子の零
相電圧を取り出す零相電圧取得手段と、 前記複数端子に対応して個別に設けられ、一方
入力端に前記零相電圧取得手段により取り出され
た各端子の零相電圧が入力される複数の論理判断
回路およびこれらの論理判断回路の他方入力端に
対してしや断器又は断路器(以下、しや断器等と
指称する)の使用条件信号が予め定められた端子
に対応する前記論理判断回路を除く他の論理判断
回路に対して互いにロツクするように入力する否
定回路を有し、通常時は前記予め定められた端子
に対応する前記論理判断回路から選択信号を出力
し、該端子が休止端となり、しや断器等が開路の
時には前記否定回路を用いて前記他の論理判断回
路から予め定めた順序に従つて選択信号を出力す
る選択信号出力手段と、 前記複数端子に対応して個別に設けられ、前記
選択信号出力手段から出力された選択信号に基づ
いて選択された端子の零相電圧を出力するゲート
回路およびこのゲート回路から出力された零相電
圧を移相調整して出力する移相回路を有し、この
移相調整された零相電圧を内部充電電流補償信号
として出力する零相電圧選択手段とを備え、この
内部充電電流補償信号を前記比率差動継電要素に
おける動作量に与えて系統内部充電電流を補償す
るようにしたことを特徴とする保護継電装置。 2 n端子(n≧3)送電系統のうち1端子以上
の端子を休止端として運転する送電系統の保護継
電装置において、 前記各端子の端子電流をベクトル合成して得ら
れる電気量を動作量とし、かつ各端子の端子電流
をスカラー合成して得られる電気量を抑制量と
し、これらの動作量と抑制量の差が所定値を越え
たときトリツプ信号を出力するための第1の条件
信号を出力する比率差動継電要素と、 複数端子に変圧器を設けてそれぞれの端子の零
相電圧を取り出す零相電圧取得手段と、 前記複数端子に対応して個別に設けられ、一方
入力端に前記零相電圧取得手段により取り出され
た各端子の零相電圧が入力される複数の論理判断
回路およびこれらの論理判断回路の他方入力端に
対してしや断器等の使用条件信号が予め定められ
た端子に対応する前記論理判断回路を除く他の論
理判断回路に対して互いにロツクするように入力
する否定回路を有し、通常時は前記予め定められ
た端子に対応する前記論理判断回路の出力を位相
比較信号として出力し、該端子が休止端となり、
しや断器等が開路の時には前記否定回路を用いて
予め定めた順序に従つた前記他の論理判断回路の
出力を位相比較信号として出力する位相比較信号
出力手段と、 この位相比較信号出力手段によつて出力された
位相比較信号に対応する端子の零相電圧と前記動
作量の位相が所定位相にあるときにトリツプ信号
を出力するための第2の条件信号を出力する位相
比較要素とを備え、 この位相比較要素と前記比率差動継電要素の両
方から前記条件信号が出力されたことを条件とし
て前記トリツプ信号を出力するようにしたことを
特徴とする保護継電装置。
[Scope of Claims] 1. In a protective relay device for a power transmission system that operates with one or more terminals in an n-terminal (n≧3) power transmission system as a rest end, The amount of electricity obtained by scalar combining the terminal currents of each terminal is the amount of electricity, and the amount of electricity obtained by scalar composition of the terminal currents of each terminal is the amount of suppression. a differential relay element; a zero-sequence voltage acquisition means that is provided with a transformer at a plurality of terminals and takes out the zero-sequence voltage of each terminal; A plurality of logical judgment circuits into which the zero-sequence voltage of each terminal extracted by the voltage acquisition means is input, and a wire breaker or disconnector (hereinafter referred to as a wire breaker, etc.) are connected to the other input terminals of these logic judgment circuits. It has a negation circuit which inputs a usage condition signal (designated as . A selection signal is output from the logic judgment circuit corresponding to the terminal that has been selected, and when the terminal becomes a rest end and a circuit breaker or the like is open, the negation circuit is used to select a signal from the other logic judgment circuit in a predetermined order. a selection signal output means for outputting a selection signal according to the selection signal; and a selection signal output means provided individually corresponding to the plurality of terminals and outputting a zero-sequence voltage of a terminal selected based on the selection signal output from the selection signal output means. and a phase shift circuit that adjusts the phase of the zero-phase voltage output from the gate circuit and outputs the phase-shifted zero-phase voltage, and outputs the phase-shifted zero-phase voltage as an internal charging current compensation signal. 1. A protective relay device comprising: selecting means, wherein the internal charging current compensation signal is applied to the operation amount in the ratio differential relay element to compensate for the system internal charging current. 2. In a protective relay device for a power transmission system that operates with one or more terminals in an n-terminal (n≧3) power transmission system as a rest terminal, the amount of electricity obtained by vector-synthesizing the terminal currents of each of the terminals is used as the operating amount. and the amount of electricity obtained by scalar combining the terminal currents of each terminal as the amount of suppression, and a first condition signal for outputting a trip signal when the difference between these operating amounts and the amount of suppression exceeds a predetermined value. a ratio differential relay element that outputs a zero-sequence voltage; a plurality of logic judgment circuits into which the zero-sequence voltage of each terminal extracted by the zero-sequence voltage acquisition means is input, and a use condition signal such as a circuit breaker is preliminarily provided to the other input terminal of these logic judgment circuits. The logic judgment circuit has a negative circuit that inputs the logic judgment circuits other than the logic judgment circuit corresponding to the predetermined terminal so as to lock each other, and normally the logic judgment circuit corresponds to the predetermined terminal. Outputs the output as a phase comparison signal, and this terminal becomes the rest end,
a phase comparison signal output means for outputting the output of the other logical judgment circuit according to a predetermined order as a phase comparison signal by using the negation circuit when a circuit breaker or the like is open; and this phase comparison signal output means a phase comparison element that outputs a second condition signal for outputting a trip signal when the zero-sequence voltage of the terminal corresponding to the phase comparison signal outputted by the operation amount and the phase of the operation amount are in a predetermined phase; A protective relay device comprising: outputting the trip signal on the condition that the condition signal is output from both the phase comparison element and the ratio differential relay element.
JP2226978A 1978-02-28 1978-02-28 Protective relay Granted JPS54114738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2226978A JPS54114738A (en) 1978-02-28 1978-02-28 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2226978A JPS54114738A (en) 1978-02-28 1978-02-28 Protective relay

Publications (2)

Publication Number Publication Date
JPS54114738A JPS54114738A (en) 1979-09-07
JPS6111052B2 true JPS6111052B2 (en) 1986-04-01

Family

ID=12078037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2226978A Granted JPS54114738A (en) 1978-02-28 1978-02-28 Protective relay

Country Status (1)

Country Link
JP (1) JPS54114738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169652U (en) * 1988-05-23 1989-11-30
JPH0246351A (en) * 1988-08-08 1990-02-15 Daishowa Seiki Co Ltd Epicyclic transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169652U (en) * 1988-05-23 1989-11-30
JPH0246351A (en) * 1988-08-08 1990-02-15 Daishowa Seiki Co Ltd Epicyclic transmission

Also Published As

Publication number Publication date
JPS54114738A (en) 1979-09-07

Similar Documents

Publication Publication Date Title
US4841405A (en) Protective relaying apparatus for providing fault-resistance correction
US11143715B2 (en) Broken conductor detection in a multiple-phase electric power delivery system
Eissa et al. A novel digital distance relaying technique for transmission line protection
US4261038A (en) Protection of electrical power supply systems
US4329727A (en) Directional power distance relay
US4636909A (en) Digital impedance relay
US11757282B2 (en) Method and device for controlling at least one circuit breaker of a power system
Gangadharan et al. Influence of current transformer saturation on line current differential protection algorithms
US10923901B2 (en) Protective relay device
US3732464A (en) Distance relay system
JPS6111052B2 (en)
Gallen et al. A Digital System for Directional-Comparison Relaying
JP4176529B2 (en) Differential protection relay system
Rushton et al. Fault-performance analyses of transmission-line differential protection systems related to their polar-characteristic requirements
US2546021A (en) Control system
Holbach et al. Loop selective direction measurement for distance protection
JPS6124900B2 (en)
JP2577364B2 (en) 1-line ground fault detection relay system
JPH0311921A (en) Ground-fault detecting and protecting device
JPS605130B2 (en) Current differential relay method
JP2607483B2 (en) Ground fault directional relay
JPS6236453B2 (en)
SU1128324A1 (en) Process for determining faulted connection when occuring single-phase short-circuit in network with low fault-to-earth current
Cory et al. Simple phase-detection relay for distribution networks
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI