JPS6026413A - Ground-fault protecting relaying method and relay - Google Patents

Ground-fault protecting relaying method and relay

Info

Publication number
JPS6026413A
JPS6026413A JP13490883A JP13490883A JPS6026413A JP S6026413 A JPS6026413 A JP S6026413A JP 13490883 A JP13490883 A JP 13490883A JP 13490883 A JP13490883 A JP 13490883A JP S6026413 A JPS6026413 A JP S6026413A
Authority
JP
Japan
Prior art keywords
phase
circuit
zero
ground fault
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13490883A
Other languages
Japanese (ja)
Inventor
岡 正美
宇薄 勇生
耕造 片岡
大沼 芳人
伊部 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP13490883A priority Critical patent/JPS6026413A/en
Publication of JPS6026413A publication Critical patent/JPS6026413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 第1図に示した高圧または特別高圧の電路(1)のP点
において一線完全地絡事故が発生すると、地絡電流Ig
は配電線の対地間静電容量を通って地絡していない他の
2線に流れて、変圧器(2)に戻る。すなわち、各電線
路の対地静電容旭の大小により、それぞれIc1〜Ic
4及び■COとなって変圧器(2)に流れ込む。
Detailed Description of the Invention When a one-line complete ground fault occurs at point P of the high voltage or extra high voltage electrical circuit (1) shown in Figure 1, the ground fault current Ig
flows through the ground-to-ground capacitance of the distribution line to the other two lines that are not grounded, and returns to the transformer (2). That is, depending on the magnitude of the ground electrostatic capacity of each electric line, Ic1 to Ic
4 and ■ becomes CO and flows into the transformer (2).

従来地絡事故回線を検知して遮断するには、電路(1)
の中性点と大地間に発生する零相電圧■0を接地コンデ
ンサまたは接地変圧器等の零相電圧検出器ZPDにて検
出し、これを各々の地絡方向継電器DGRに判定基準信
号として供給し、地絡方向継電器DGRでは、その位相
によって零相変流器ZC’I’から入ってきた零相電流
の位相を弁別し、白線地絡方向の場合のみ出力する方法
が採用されているしかしながら、この方法においては、
零相電圧検出器ZPDの取付に際し、電路を停電する必
要が信頼性をもつ装置が必要であシ、装置の生産コスト
や工事費が高価になるなどの諸欠点がある。
Conventionally, to detect and cut off a ground fault line, the electric line (1)
The zero-phase voltage ■0 generated between the neutral point and the ground is detected by a zero-phase voltage detector ZPD such as a grounding capacitor or a grounding transformer, and this is supplied to each ground fault direction relay DGR as a judgment reference signal. However, in the ground fault direction relay DGR, a method is adopted in which the phase of the zero-sequence current coming in from the zero-sequence current transformer ZC'I' is discriminated based on its phase, and it is output only when the white line is in the ground fault direction. , in this method,
When installing the zero-phase voltage detector ZPD, there are various disadvantages such as the necessity of cutting off the electrical circuit and the need for a reliable device, which increases the production cost and construction cost of the device.

本発明は、配電線路数6以上で構成される高圧配電系統
において、各フィーダーに設置された零相変流器の出力
電流を利用し、その複数の零相変流器出力のうち事故回
線フィーダーは1回線のみであり、かつ事故回線に設置
された零相変流器出力電流と、他の複数の健全回路の零
相変流器出力電流との位相差が異なることを利用し、 
ZPDを使用しないでこれら複数の零相変流器出力電流
の位相の和をと9.この位相を以って各零相変流器ZC
Tの出力電流を位相弁別して、地絡事故回線を検知遮断
するようにし、上記従来の詫欠点を解消しうる地絡保護
継電方法及び継電器を提供しようとするものである。
The present invention utilizes the output current of a zero-phase current transformer installed in each feeder in a high-voltage distribution system consisting of six or more distribution lines, and uses the output current of a fault line current transformer to takes advantage of the fact that there is only one circuit, and the phase difference between the output current of the zero-phase current transformer installed in the faulty circuit and the output current of the zero-phase current transformers of multiple other healthy circuits is different,
9. Sum of the phases of these multiple zero-phase current transformer output currents without using ZPD. With this phase, each zero phase current transformer ZC
The present invention aims to provide a ground fault protection relay method and a relay which can eliminate the above-mentioned conventional drawbacks by detecting and cutting off a ground fault line by phase-differentiating the output current of T.

先ず2図面第2図ないし第4図にもとすいて本発明方法
の実施例を説明すると、(3)はF1〜F404回線の
配電線から成る高圧配電系統、 ZCT+〜ZCT 4
は各配電線に設置した零相変流器、 DGR+〜DGR
4は本発明に係る地絡方向継電器で、各零相変流器の二
次出力端子に接続してアシ、これらは1点線(4)内に
示したように、零相変流器ZCT 4の二次出力電流を
入力する感度電流整定回路(5)と、振幅制限増巾回路
(6)と2回路(5)の出力側と回路(6)の出力側の
間に接続し接点出力を出す位相弁別回路(7)とから成
シ、各地絡方向継電器DGR・1〜DGR4の回路(6
)は共通接続しである。
First, an embodiment of the method of the present invention will be explained with reference to FIGS. 2 to 4. (3) is a high-voltage distribution system consisting of distribution lines of F1 to F404 lines, ZCT+ to ZCT 4
are zero-phase current transformers installed on each distribution line, DGR+~DGR
Reference numeral 4 denotes a ground fault direction relay according to the present invention, which is connected to the secondary output terminal of each zero-phase current transformer. The sensitivity current setting circuit (5) which inputs the secondary output current of It consists of a phase discriminator circuit (7) to output, and a circuit (6) for each fault direction relay DGR-1 to DGR4.
) is a common connection.

今、高圧配電系統(3)のP点において一線完全地絡が
発生すると、各配電線F1〜F4には、対地静電容Ji
C+〜C4を通ってもらい電流■c1〜IC4が流れる
とともに、事故回線F4には、もらい電流IC4と重畳
して地絡電流Igか流れる。従って事故回線F4のZC
T Aを貫通する電流はIgとIC4との差の電流とな
る。この電流は、Ig)Ic4であるから、変圧器(8
)側から事故点Pに向う方向の電流であり、もらい電流
IC1〜I(jは各配電線F1〜F3の対地静電容量0
1〜C6により、大地から電線に流入し、変圧器(8)
に向って流れ込む電流でちる。
Now, if a one-line complete ground fault occurs at point P of the high-voltage distribution system (3), each distribution line F1 to F4 has a ground capacitance Ji
The currents c1 to IC4 flow through C+ to C4, and the ground fault current Ig flows through the fault line F4, superimposed on the current IC4. Therefore, ZC of accident line F4
The current passing through TA is the difference between Ig and IC4. Since this current is Ig)Ic4, the transformer (8
) side toward the fault point P, and the incoming current IC1 to I (j is the ground capacitance of each distribution line F1 to F3 is 0
1 to C6, it flows from the ground to the wire and transformer (8)
It is destroyed by the current flowing towards.

上記の状態において、零相変流器ZC’T 4から出た
二次出力電流は、感度電流整定回路(5)を経て位相弁
別回路(力に入力するとともに振幅制限増巾回路(6)
を経て、他の地絡方向継電器DGR+〜DGR3に入力
する。
In the above state, the secondary output current from the zero-phase current transformer ZC'T 4 passes through the sensitivity current setting circuit (5) and is input to the phase discrimination circuit (force) and the amplitude limiting amplification circuit (6).
The signal is then input to other ground fault direction relays DGR+ to DGR3.

従って位相弁別回路(7)の基準位相入力回路に与えら
れる電流は、全回、li!11F1〜F4の地絡方向継
電器DGR1〜DGR4の振幅制限増巾回路を経た出力
電流の合成値となり2位相もこれにより定まる。
Therefore, the current applied to the reference phase input circuit of the phase discrimination circuit (7) is li! This becomes the composite value of the output currents that have passed through the amplitude limiting amplification circuits of the ground fault direction relays DGR1 to DGR4 of 11F1 to F4, and the two phases are also determined by this.

この位相は健全回線)1〜F3のもらい電流Ic+〜I
C3を代表する位相となり、必要な移相回路を使用する
ことにより、常に位相弁別回路(力の出力に事故回線側
零相電流を正出力とさせることができる。
This phase is a healthy line) 1~F3's received current Ic+~I
The phase is representative of C3, and by using the necessary phase shift circuit, it is possible to always make the zero-phase current on the fault line side the positive output of the phase discrimination circuit (force output).

このことを等価的に書くと第6図のようになる。なお、
第6図においてei−64は各零相変流器ZCT 1〜
ZCT 4の二次出力信号から振幅制限増[1]回路を
経た電圧、R11〜R14は定電流化のための出力抵抗
、 R1−R4は負荷抵抗である。この等価回路に於け
る動作例に於て′e1〜る6はもらい電流によるZCT
出力位相、二4は白線地絡によるZCT出力位相の信号
電圧である。この電圧によ電流れる位相信号電流11〜
I4は、’R,11〜R14の出力抵抗を経てR1−R
4の各継電器入力抵抗が並列接続された負荷回路に重畳
して流れる。又、各継電器入力抵抗R・1〜1%4は、
それぞれ等しい値となる様にしであるので、それぞれの
継′l気には+1〜i4の和の1/4が流れる事となり
、この電流によって発生する電圧(eo =Rx (i
1+i2+13−1−i4)/4)が地絡方向判別基準
信号となる。この事をベクトル的に表現すると第4図と
なる。
This can be written equivalently as shown in Figure 6. In addition,
In Fig. 6, ei-64 indicates each zero-phase current transformer ZCT1~
The voltage from the secondary output signal of ZCT 4 passes through the amplitude limit increase [1] circuit, R11 to R14 are output resistances for constant current, and R1 to R4 are load resistances. In the example of operation in this equivalent circuit, 'e1 to 6 are ZCTs due to direct currents.
The output phase, 24, is the signal voltage of the ZCT output phase due to the white line ground fault. Phase signal current 11~ generated by this voltage
I4 is connected to R1-R via the output resistors 'R, 11 to R14.
4 relay input resistances are superimposed on the load circuits connected in parallel. In addition, each relay input resistance R・1~1%4 is
Since they are set to have equal values, 1/4 of the sum of +1 to i4 flows through each joint, and the voltage generated by this current (eo = Rx (i
1+i2+13-1-i4)/4) becomes the ground fault direction determination reference signal. Figure 4 shows this in vector form.

次に、第5図にもとすいて本発明に係る地絡方向継電器
の一実施例を説明すると、 (10)は落雷や具用設備
等から発生して入ってくる高周波成分を除去する低域沖
波器、(1りは電流レベル検出回路、賭は振巾制限緩衝
増巾回路、 (14)は感度電流整定回路、C1団はス
イッチング回路、a6)は増巾回路、U力は定電流化回
路、 US+は位相弁別回路、 tt湧は入力回路。
Next, referring to Fig. 5, one embodiment of the earth fault directional relay according to the present invention will be explained. (1) is a current level detection circuit, (14) is a sensitivity current setting circuit, C1 group is a switching circuit, (a6) is an amplification circuit, and U power is a constant current. US+ is a phase discrimination circuit, and tt is an input circuit.

(20+ l″j:移相回路、0I)は増巾回路、(2
榎は正位相の増rlJ及びスイッチング回路、 (23
+は時限整定回路、(2勢は逆位相一時ロック回路、C
5)は逆位相の増巾及びスイツチング回路、 (26+
はロック時限整定回路、07)は出力スイッチング回路
、 (28)は出力継電器回路、 (291は表示回路
、側は本地絡方向継電器を零相変流器ZCTを含めてテ
ストする回路、 (311は安定化電源回路である。
(20+l″j: phase shift circuit, 0I) is amplification circuit, (2
Enoki is a positive phase increase rlJ and switching circuit, (23
+ is a time-limited setting circuit, (2 is an opposite phase temporary lock circuit, C
5) is an anti-phase amplification and switching circuit, (26+
07) is the lock time setting circuit, 07) is the output switching circuit, (28) is the output relay circuit, (291 is the display circuit, side is the circuit that tests the main earth fault direction relay including the zero-phase current transformer ZCT, (311 is the This is a stabilized power supply circuit.

以上の回路構成において、零相変流器ZCTで検出され
た零相電流による二次出力は2回路00)及びαυを経
て回路(14)に供給され2回路(14)で整定されて
いる感度電流に応じた値の電圧に変換され2回路(16
)を経て回路Q8)に供給される。一方回路(10)及
び(11)を経た信号の一部は回路(131,(151
及び(I7)を経て、他回線の地絡方向継電器DGRに
接続(h、f2)される。回路(lり及び(15)は不
要な微少レベルの不要出力を制限する0回路ttSには
、本地絡方向継電器と図参照)0この位相信号は回路(
20)で利用しやすい位相に移相される。このようにし
て得られた地絡方向判別基準位相信号は回路(2I)で
所定のレベルに増巾され7回路α句に供給される。回路
(Ialでは2回路(16)よp入った零相電流の信号
を回路(21)より入った基準位相信号で弁別し、白線
地絡方向の位相の時は、正の電圧出力を出し、他線地絡
方向の位相の時は、負の電圧出力を出す。正の出力は9
回路(22)を経て回路(23)で地絡保護協調のため
の時限整定を行われ2回路(2(1)及び(27)を経
て2回路C;!8)に供給され、出力接点(321f:
閉路する。この出力接点(3力は開路接点とすることも
できる。一方回路(2力を経た信号め一部は回路し9)
を経て地絡が発生している間点灼する動作中表示灯(3
3)及び地絡が解消しても表示を継続する電磁機械表示
式の動作中表示灯(34)に供給され、とれらの表示装
置□□□)+ (34)を動作させる。
In the above circuit configuration, the secondary output due to the zero-sequence current detected by the zero-phase current transformer ZCT is supplied to the circuit (14) via two circuits 00) and αυ, and the sensitivity is set by the two circuits (14). It is converted into a voltage with a value corresponding to the current and is passed through two circuits (16
) is supplied to circuit Q8). On the other hand, some of the signals passing through circuits (10) and (11) are transferred to circuits (131, (151)
and (I7), it is connected (h, f2) to the ground fault direction relay DGR of another line. Circuit (1 and (15) limit the unnecessary output of unnecessary minute level 0 circuit ttS has a main fault direction relay and see the figure) 0 This phase signal is connected to the circuit (
20), the phase is shifted to an easily usable phase. The ground fault direction determination reference phase signal thus obtained is amplified to a predetermined level in circuit (2I) and supplied to the seven circuits α. The zero-phase current signal input from the circuit (16) in the circuit (Ial) is discriminated by the reference phase signal input from the circuit (21), and when the phase is in the direction of the white line ground fault, a positive voltage output is output. When the phase is in the direction of the other line ground fault, a negative voltage output is output.The positive output is 9
Time-limited setting for ground fault protection cooperation is performed in circuit (23) via circuit (22), and the signal is supplied to two circuits (2 (1) and (27) to 2 circuits C; !8), and the output contact ( 321f:
Close the circuit. This output contact (3 forces can also be an open circuit contact. On the other hand, the circuit (a part of the circuit is connected to the signal through 2 forces)
An operating indicator light (3
3) and an electromagnetic-mechanical display type operating indicator light (34) that continues to display even if the ground fault is removed, and these display devices □□□)+ (34) are operated.

(l15)は表示灯(34)の復帰スイッチである。負
の出力は、回路(25)及びc26)を経て回路鉋)に
供給される。この回路c24)は、実際の配電線路に地
絡方向継電装置を布設しfc場合、地絡回線を選択検出
し、その回路を開路した瞬間、零相成分の減幅振動波等
が発生し2本地絡方向継電器を誤動作あるいは不必要動
作させることを防止する。
(l15) is a return switch for the indicator light (34). The negative output is supplied to the circuit (c26) via the circuit (25) and c26). In this circuit c24), when a ground fault direction relay device is installed on an actual power distribution line (fc), the ground fault circuit is selectively detected and the moment the circuit is opened, a reduced amplitude oscillation wave of a zero-phase component is generated. To prevent a dual ground fault directional relay from malfunctioning or unnecessary operation.

以上の回路構成は1例えは着脱しやすいプラグインユニ
ット式に設計され、5回路同時収容のできる収納箱に差
し込む描造とし、収納箱側の端子でそれぞれの低回m信
号人・出力回路f1 、 f2相互間を接続して、地絡
方向継電器@を構成する。
The above circuit configuration is designed as a plug-in unit that is easy to install and remove, and is designed to be inserted into a storage box that can accommodate 5 circuits at the same time. , f2 are connected to each other to form a ground fault direction relay @.

本発明は、以上のように零相電圧検出器を使用しないで
各々の零相変流器の出力信号を合成して基準位相を生成
し、これにより零相電流の位相を弁別し、白線地絡の方
向の場合のみ出力する。すなわち零相電圧信号をも零相
変流器を介して零相電流より得るようにしたから、高圧
充電部に接続する個所は全くなく、従って工事が容易で
、工事費が廉価になる。特に本発明の地絡方向継電器に
分割型零相変流器を組合せれば、既設高圧電路や特別高
圧電路の選択地絡保護装置の設置工事を。
As described above, the present invention generates a reference phase by synthesizing the output signals of each zero-sequence current transformer without using a zero-sequence voltage detector, and thereby distinguishes the phase of the zero-sequence current. Output only in the direction of the connection. That is, since the zero-sequence voltage signal is also obtained from the zero-sequence current via the zero-sequence current transformer, there is no connection to the high-voltage charging section, and therefore the construction is easy and the construction cost is low. In particular, if the ground fault directional relay of the present invention is combined with a split type zero-phase current transformer, installation of a selective ground fault protection device for existing high-voltage power lines or special high-voltage power lines will be possible.

配電線路を停電させることなく極めて容易に行うことも
可能である0
It is also possible to do this very easily without causing a power outage to the power distribution lines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の地絡方向継電器を布設した6相電路の単
線結線図、第2図は本発明に係る地絡方向継電器を布設
した6相電路の単線結線図、第ろ図は同電路の一線完全
地絡発生時における等価回路図、第4図は第6図におけ
る全同線に流れる出力電流のベクトル図、第5図(は本
発明に係る地絡保護協調器の一実施例を示すブロック線
図である(3)・・・高圧配電系統、 ZCT・・零相
変流器、 DGR・・・地絡方向継電器、(5)・・・
感度電流整定回路、(6)・・・振幅制限増巾回路、(
7)・・・位相弁別回路。
Fig. 1 is a single line diagram of a 6-phase line in which a conventional ground-fault relay is installed, Figure 2 is a single-line connection diagram of a 6-phase line in which a ground-fault relay according to the present invention is installed, and Fig. FIG. 4 is an equivalent circuit diagram when a complete ground fault occurs in one line; FIG. 4 is a vector diagram of the output current flowing through all the lines in FIG. 6; FIG. It is a block diagram showing (3)...High voltage distribution system, ZCT...Zero phase current transformer, DGR...Ground fault direction relay, (5)...
Sensitivity current setting circuit, (6)...amplitude limit amplification circuit, (
7)...Phase discrimination circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)6回線以上の配電線路において、各々の配電線路
に取付けた零相変流器の出力信号を合成して地絡方向判
別の基準位相信号を生成し、この基準 ・位相信号によ
シ零相電流の地絡方向判別を行うことを特徴とする地絡
保護継電方法。
(1) In distribution lines with six or more circuits, the output signals of the zero-phase current transformers installed on each distribution line are combined to generate a reference phase signal for determining the direction of a ground fault, and this reference phase signal is used to A ground fault protection relay method characterized by determining the ground fault direction of zero-sequence current.
(2)6回線以上の配電線路の各々の配電線路に取付け
た零相変流器に、それらの出力電流の位相を合成して地
絡方向判別の基準位相信号を生成する入力回路と、上記
各零相変流器の出力信号と上記入力回路の出力信号とを
入力し白線地絡方向の位相と他線地絡方向の位相とを弁
別して各別に信号を出力する位相弁別回路とを接続して
成る地絡保護継電器。
(2) An input circuit that generates a reference phase signal for ground fault direction determination by combining the phases of the output currents of the zero-phase current transformers installed on each of the six or more distribution lines; Connect to a phase discrimination circuit that inputs the output signal of each zero-phase current transformer and the output signal of the above input circuit, discriminates the phase in the white line ground fault direction and the phase in the other line ground fault direction, and outputs a signal separately. A ground fault protection relay consisting of:
(3)零相変流器が分割型零相変流器である特許請求の
範囲第2項記載の地絡保護継電器。
(3) The earth fault protection relay according to claim 2, wherein the zero-phase current transformer is a split-type zero-phase current transformer.
JP13490883A 1983-07-23 1983-07-23 Ground-fault protecting relaying method and relay Pending JPS6026413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13490883A JPS6026413A (en) 1983-07-23 1983-07-23 Ground-fault protecting relaying method and relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13490883A JPS6026413A (en) 1983-07-23 1983-07-23 Ground-fault protecting relaying method and relay

Publications (1)

Publication Number Publication Date
JPS6026413A true JPS6026413A (en) 1985-02-09

Family

ID=15139338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13490883A Pending JPS6026413A (en) 1983-07-23 1983-07-23 Ground-fault protecting relaying method and relay

Country Status (1)

Country Link
JP (1) JPS6026413A (en)

Similar Documents

Publication Publication Date Title
JPS5889028A (en) Method and device for detecting 1-wire ground fault accident of 3-phase power system
JPS59209018A (en) Protecting relaying device and method
US4329727A (en) Directional power distance relay
Lanz et al. Transient signals and their processing in an ultra high-speed directional relay for EHV/UHV transmission line protection
Yee et al. Ultra High Speed Relay for EHV/UHV Transmission Lines--Installation-Staged Fault Tests and Operational Experience
JPS6026413A (en) Ground-fault protecting relaying method and relay
US4296451A (en) Ultra high speed protective relay circuit
JP3272350B2 (en) Distribution line phase detector
JPS5843402Y2 (en) Hogokeiden Sochi
JP4420259B2 (en) Detection method of ground fault in two parallel underground transmission lines
JPH0442726A (en) Ground fault indicator for distribution line
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI
JPH0510516Y2 (en)
JPH01114324A (en) Selective ground-fault relay
JPS6349072Y2 (en)
JPS5846824A (en) Protective relay unit
JPH03270633A (en) Ground relay device
JPS61109416A (en) Ground protective relay device
JPH02266817A (en) Power system-protective relay
JPH01160313A (en) Protective relay
JPH06105451A (en) Line protection relay device
JPS6084918A (en) Display wire relaying device
JPS63114525A (en) Current differential relay
JPS60234421A (en) Channel selecting relaying device
JPS6115520A (en) 2-wire defect protecting relay