JPS59175330A - One line ground-fault detecting relay - Google Patents

One line ground-fault detecting relay

Info

Publication number
JPS59175330A
JPS59175330A JP5086783A JP5086783A JPS59175330A JP S59175330 A JPS59175330 A JP S59175330A JP 5086783 A JP5086783 A JP 5086783A JP 5086783 A JP5086783 A JP 5086783A JP S59175330 A JPS59175330 A JP S59175330A
Authority
JP
Japan
Prior art keywords
phase
voltage
zero
ground fault
line ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5086783A
Other languages
Japanese (ja)
Inventor
江田 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5086783A priority Critical patent/JPS59175330A/en
Publication of JPS59175330A publication Critical patent/JPS59175330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は高抵抗接地系電力系統の1線地絡事故を検出
する一組地絡事故検出継電器罠関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a set of ground fault detection relay traps for detecting single wire ground faults in a high resistance ground power system.

従来この種の装置として第1図及び第2図に示すものが
あった。第1図及び第2図において、1は変圧器(以下
、PTと称す)、2は不足電圧リレー、5は零相過電圧
リレー、2a、2b、2cは不足電圧リレー2の各相接
点で電圧低下を検出すれば開放となる。また4は一線地
絡事故時に付勢される補助リレーである。
Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. In Figures 1 and 2, 1 is a transformer (hereinafter referred to as PT), 2 is an undervoltage relay, 5 is a zero-phase overvoltage relay, and 2a, 2b, and 2c are voltages at each phase contact of the undervoltage relay 2. If a drop is detected, it will be opened. Further, 4 is an auxiliary relay that is energized in the event of a line ground fault.

次に動作について説明する。高抵抗接地電力系統で一線
地絡事故を生じると、線間電圧の大ぎさには変化ないが
、健全相電圧が線間電圧にまで上昇するため、PTlの
3次オーブンデルタ回路に6EにこでEは相電圧値)の
零相電圧な生じる。
Next, the operation will be explained. When a line-to-ground fault occurs in a high-resistance grounded power system, the magnitude of the line-to-line voltage does not change, but the healthy phase voltage rises to the line-to-line voltage. The zero-sequence voltage (E is the phase voltage value) is generated.

このため不足電圧リレー2は検出しないが零相過電圧リ
レー6が動作し、第2図の補助リレー4が応動すること
になる。次に、線間の短絡な伴なう3φS、2φS、2
φGでは不足電圧リレー2が電圧低下を検出することか
できるため、2φG故障で零相過電圧リレー6が応動し
ても第2図の補助リレ−40付勢条件なロックし動作さ
せないよ5に構成している。このような方式は短絡優先
方式と称し昔より広く一線地絡事故検出に採用されてい
る方式で周知のものである。
Therefore, the undervoltage relay 2 is not detected, but the zero-phase overvoltage relay 6 is activated, and the auxiliary relay 4 shown in FIG. 2 responds. Next, if there is a short circuit between the lines, 3φS, 2φS, 2
In φG, the undervoltage relay 2 can detect a voltage drop, so even if the zero-phase overvoltage relay 6 responds due to a 2φG failure, the auxiliary relay 40 shown in Fig. 2 is locked and does not operate under the energizing condition. are doing. This method is called the short-circuit priority method and is a well-known method that has been widely used for detecting line-to-ground faults since ancient times.

従来の一線地絡検出装置は以上のように構成されている
ので、電源インピーダンスが小さい大容量系統において
遠方端2φG故障では線間電圧が相当残り、不足電圧リ
レーが動作できないケースがあるため2φG故障であり
ながら一線地絡と区別がつかない場合が生じ、保護の信
頼性を低下させる大ぎな欠点を持っている。
Conventional single-line ground fault detection devices are configured as described above, so in the case of a 2φG failure at the far end in a large-capacity system with low power source impedance, a considerable amount of line voltage remains, and there are cases where the undervoltage relay cannot operate, resulting in a 2φG failure. However, there are cases where it is indistinguishable from a single-line ground fault, and it has a major drawback that reduces the reliability of protection.

この発明は上記のような従来のものの欠点な除去するた
め罠なされたもので、−線地絡事故のみを確実に検出す
る一線地絡検出リレー(以下1φG検出リレーと称す)
を実現する一線地絡検出継電器を提供することを目的と
している。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and provides a single line ground fault detection relay (hereinafter referred to as 1φG detection relay) that reliably detects only negative line ground faults.
The purpose of this research is to provide a single line ground fault detection relay that achieves this.

以下、この発明の一実施例を図について順次説明する。An embodiment of the present invention will be explained below with reference to the drawings.

第3図から第9図までは、この発明の詳細な説明するた
めの原理補足説明図である。第3図は高抵抗接地系にお
ける一線地絡時(F1点)と2線地絡時(F2点)の場
合の等価回路図であり、5は中性点抵抗、Zgは背後イ
ンピーダンス、”leハllA路インピーダンスである
。金弟4図はF1点で人相完全1φGが発生した場合の
PT102次線間電正反び3次零相電圧のベクトル図を
示す。
FIG. 3 to FIG. 9 are supplementary explanatory diagrams for explaining the principle of the present invention in detail. Figure 3 is an equivalent circuit diagram for a single wire ground fault (point F1) and a two wire ground fault (point F2) in a high resistance grounding system, where 5 is the neutral point resistance, Zg is the back impedance, and "le Hall A path impedance.Kinji 4 shows a vector diagram of the PT10 secondary line voltage and tertiary zero-sequence voltage when a complete human phase 1φG occurs at the F1 point.

事故相の対地電圧Eaは零となるが健全相のgb、Ec
は、中性点抵抗5の影響で各々線間電圧EBAIEOA
の大きさとなるが、電圧三角形が変わらないため、PT
102次線間電2圧は変らない。一方、PTIの3次の
オープンデルタ回路はEa 、Eb 、 Ecの合成電
圧のため一5Ea=−3Vo  の零相電圧が生じる事
となる。
The ground voltage Ea of the faulty phase becomes zero, but gb and Ec of the healthy phase
are the line voltages EBAIEOA due to the influence of the neutral point resistance 5.
However, since the voltage triangle does not change, PT
The 102nd line voltage 2 does not change. On the other hand, in the third-order open delta circuit of PTI, a zero-sequence voltage of -5Ea=-3Vo is generated due to the combined voltage of Ea, Eb, and Ec.

次に第5図は、F2点でB−C相の完全2φGが発生し
た場合のPTlの2次及び3次電圧のベクトル図を示す
Next, FIG. 5 shows a vector diagram of the secondary and tertiary voltages of PTl when a complete 2φG of B-C phase occurs at point F2.

B−C相の線間電圧EBoは背後インピーダンスZgと
線路インピーダンスZeO比で決定され、背後インピー
ダンスZgに対し線路インピーダンスZeが大ぎければ
その線間電圧EBoも大ぎくなる事は容易にわかる。こ
こでは詳細説明は省略するが高抵抗接地系の場合、零相
インピーダンスZ04−3RNが正相インピーダンスZ
、 = Zg−1−Ze 、逆相インピーダンスZ、÷
Zg + Zeに対し非常に犬ぎいため同地点の完全2
φGでは第5図に示すように零相電圧−3Voが1φG
時のイの太ぎさとなり、B−C相2φGであれば人相電
圧と同位相の方向に発生する。ここで第4図の1φG故
障時の零相電圧−5Voと第5図の2φG故障時の零相
電圧−5V。
The line voltage EBo of the B-C phase is determined by the ratio of the back impedance Zg and the line impedance ZeO, and it is easy to see that if the line impedance Ze is large with respect to the back impedance Zg, the line voltage EBo will also be large. Although detailed explanation is omitted here, in the case of a high resistance grounding system, the zero-sequence impedance Z04-3RN is the positive-sequence impedance Z.
, = Zg-1-Ze, negative phase impedance Z, ÷
Complete 2 at the same point because it is very difficult for Zg + Ze
At φG, the zero-sequence voltage -3Vo is 1φG as shown in Figure 5.
If the B-C phase is 2φG, the voltage will be generated in the same phase direction as the human phase voltage. Here, the zero-sequence voltage at the time of 1φG failure in FIG. 4 is -5Vo, and the zero-sequence voltage at the time of 2φG failure in FIG. 5 is -5V.

を比較して判ることは零相電圧の大きさ以外に位相の関
係が異なる点であり、1φG故障の場合は相電圧位相に
対して逆位相であるのに対し2φG故障の場合は相電圧
位相E同位相の関係にあり。
What can be seen by comparing the zero-sequence voltages is that in addition to the magnitude of the zero-sequence voltage, the phase relationship is different. In the case of a 1φG fault, the phase is opposite to the phase voltage phase, whereas in the case of a 2φG fault, the phase voltage phase is different. E They are in the same phase relationship.

これは1φG故障又は2φG故障の故障相を変えても成
りたつ条件である。本発明はこの点に注目したものであ
り、さら疋特殊な系統条件及び故障条件に対しても問題
ないように考慮しである。次に特殊な条件下における1
φG故障時と2φG故障時の零相電圧位相について説明
する。第6−1図はケーブル系統におけるA相不完全1
φG故障の等価回路を示しており、6は中性点りアクド
ルXい7はケーブルの対地静電容量Xc、8は故障点抵
抗R2である。第6−1図を対象座標法における等価回
路に置ぎ変えると第6−2図の通りとなり、さらに第6
−3図は、背後インピーダンスZgが無視できる程小さ
いた値のため簡略化すれば簡略等価回路のようになる。
This condition holds even if the failure phase of the 1φG failure or the 2φG failure is changed. The present invention focuses on this point, and also takes into consideration special system conditions and failure conditions. Next, 1 under special conditions
The zero-sequence voltage phase at the time of φG failure and 2φG failure will be explained. Figure 6-1 shows A-phase imperfection 1 in the cable system.
An equivalent circuit of a φG failure is shown, where 6 is a neutral point handle X, 7 is a cable ground capacitance Xc, and 8 is a failure point resistance R2. If we replace Fig. 6-1 with the equivalent circuit in the object coordinate method, we get the equivalent circuit shown in Fig. 6-2.
In Figure 3, the back impedance Zg is so small that it can be ignored, so if it is simplified, it will look like a simplified equivalent circuit.

一方第6−1図の系統と同一系統で例えばB−C相不完
全2φG故障が発生した場合な第7−1図に示す。第7
−1図を対象座標法における等価回路に置き変えると第
7−2図の通りとなり、さらに簡略化すれば第7−3図
のよう忙なる。
On the other hand, FIG. 7-1 shows a case where, for example, a B-C phase incomplete 2φG fault occurs in the same system as that shown in FIG. 6-1. 7th
If Fig.-1 is replaced with an equivalent circuit in the object coordinate method, it becomes as shown in Fig. 7-2, and if it is further simplified, it becomes busy as shown in Fig. 7-3.

ここで第6−3図と第7−3図をその各等価回路比較し
てみれば明らかに零相電圧■0の大きさ及び位相の関係
に差があり、かつそれが故障点抵抗R。
If we compare the equivalent circuits of Fig. 6-3 and Fig. 7-3, it is clear that there is a difference in the magnitude and phase relationship of the zero-sequence voltage (1)0, and this is the fault point resistance R.

8で変化する事が判る。中性点抵抗5の太ぎさRNおよ
び中性点りアクドル6の大きさXLおよびケーブルの対
地静電容量70大ぎさXcは系統により定°まっだ定数
であるため第6−3図又は第7−3図の零相電圧Voの
ベクトル軌跡は故障点抵抗8の抵抗値R2を変化するこ
とにより求める事ができ、そnを第8図、第9図に示す
。第8図は第6−3図に示す1φG故障時の−Vo[圧
のベクトル軌跡で円弧8−1は容量性の場合1円弧8−
2は誘導性の場合である。すなわち第6−3図で各等価
インピーダンスがX。> 5 XLの場合故障点抵抗8
を無限大より0まで変化すれば−vO電圧のベクトルは
点0より円弧8−1に沿ってA点まで変化する事を表わ
しており逆に等価インピーダンスが3XL>X。
You can see that it changes at 8. The thickness RN of the neutral point resistor 5, the size XL of the neutral point axle 6, and the magnitude Xc of the ground capacitance 70 of the cable are constants depending on the system, so they are shown in Figure 6-3 or 7. The vector locus of the zero-sequence voltage Vo in FIG. Figure 8 shows the vector locus of -Vo[pressure at the time of 1φG failure shown in Figure 6-3.
2 is an inductive case. In other words, each equivalent impedance is X in Figure 6-3. > 5 For XL, failure point resistance 8
When changes from infinity to 0, the -vO voltage vector changes from point 0 to point A along arc 8-1, and conversely, the equivalent impedance is 3XL>X.

の場合は0点より円弧8−2に沿ってA点まで変化する
。次に第9図は第7−3図に示す2φG故障時の−Vo
[圧のベクトル軌跡であり、ベクトル場合のτ■0電圧
ベクトルを表わしており1円弧9−1は容量性の場合1
円18A9−2は誘導性の場合で、第8図の円弧8−1
に対し第9図の円弧9−1、円弧8−2に対し円弧9−
2の関係となる。
In the case of , the point changes from point 0 to point A along the arc 8-2. Next, Figure 9 shows -Vo at the time of 2φG failure shown in Figure 7-3.
[It is a vector locus of pressure, and represents the τ■0 voltage vector in the vector case, and 1 arc 9-1 is 1 in the capacitive case.
Circle 18A9-2 is inductive, and arc 8-1 in FIG.
For arc 9-1 and arc 8-2 in Fig. 9, arc 9-
There is a relationship of 2.

以上のことから、系統条件が定まれば1φG故障時の一
■0電圧ベクトルの軌跡は定まり、その特性は相電圧ベ
クトルに対する円弧となり、2φG故障時の一■0ベク
トル軌跡とは明らかに異なるものであるから第8図に示
す特性8−1および8−2で囲まれた範囲に−VO宵圧
ベクトルが存在するな1φG検出リレーとする事ができ
る。
From the above, if the system conditions are determined, the locus of the 1■0 voltage vector at the time of a 1φG failure is determined, and its characteristic is an arc with respect to the phase voltage vector, which is clearly different from the locus of the 1■0 vector at the time of a 2φG failure. Therefore, it is possible to use a 1φG detection relay in which the -VO evening pressure vector exists in the range surrounded by characteristics 8-1 and 8-2 shown in FIG.

以下本発明について説明する。The present invention will be explained below.

第1O図は本発明の基本原理である1φG検出継朗器の
一例は特性図であり、ベクトル■いは人相の相電圧と同
相の基準電圧、ベクトル■8はB相の相電圧と同相の基
準電圧、ベクトルV。はC相の相電圧と同相の基準電圧
であり、特性10−1.10−2.10−5は各々A相
、B相、C相の基準電圧vAtVB、Voに対して円弧
となるように作られた特性で、円弧の内に一■0電圧ベ
クトルが入れば1φG故障と判定するもので、特性10
−1はA相1φG故障検出用、I¥j性10−2はB相
1φG故障検出用、特性10−3はC相1φG故障検出
用の判定基準となるものである。特性10−4は零相電
圧の大きさを検出するもので従来の零相過電圧リレー6
と同じ目的で設けたものであるが1本発明の必須条件で
はない。次に第ii図は、第1θ図の特性な得るための
本実施例の一線地絡検出装置の原理回路構成図を示す。
Figure 1O is a characteristic diagram of an example of a 1φG detection relay device, which is the basic principle of the present invention. The reference voltage of vector V. is a reference voltage that is in phase with the phase voltage of C phase, and characteristics 10-1.10-2.10-5 are arcs with respect to the reference voltages vAtVB and Vo of A phase, B phase, and C phase, respectively. This is a created characteristic that determines a 1φG failure if a 10 voltage vector falls within the arc, and characteristic 10
-1 is a criterion for detecting an A-phase 1φG failure, I\j property 10-2 is a criterion for detecting a B-phase 1φG failure, and characteristic 10-3 is a criterion for detecting a C-phase 1φG failure. Characteristic 10-4 is for detecting the magnitude of zero-sequence voltage, and is similar to the conventional zero-sequence overvoltage relay 6.
Although it is provided for the same purpose, it is not an essential condition of the present invention. Next, FIG. ii shows a principle circuit diagram of the one-line ground fault detection device of this embodiment for obtaining the characteristics shown in FIG. 1θ.

第11図において11−1〜11−6は入カドランスで
PTlの2次線間電圧を導入するだめのものでありトラ
ンス11−1にはAB相の線間電圧、トランス11−2
にはBC相の線間電圧、11−6にはCA相の線間電圧
が導入されるようになづており、2次コイルは中間タッ
プ付又は2巻線形となっておりトランス2次電圧の正波
、負波な同時に導出できるようにしている。12は■0
トランスであり%PT103次出力笥圧を導入するため
のものであり、中間タップ付2次コイルと3次コイルを
有している。
In Fig. 11, input transformers 11-1 to 11-6 are used to introduce the secondary line voltage of PTl, and the transformer 11-1 has the AB phase line voltage, and the transformer 11-2
The line voltage of the BC phase is introduced into 11-6, and the line voltage of the CA phase is introduced into 11-6.The secondary coil has an intermediate tap or is a two-turn type, and the transformer secondary voltage It is possible to derive both positive and negative waves at the same time. 12 is ■0
It is a transformer for introducing %PT10 tertiary output voltage, and has a secondary coil with an intermediate tap and a tertiary coil.

16−1〜15−6.14−1〜14−4は出力抵抗で
トランス11−1〜11−6および12の2次電圧に比
例した電流を導出し、電流ベクトルの合成ができるよう
にしたものである。15は零相過電圧要素で、トランス
12の3次コイル出力が一定値以上あれば動作出力を出
すもので、第1θ図の特性10−4を形成するものであ
る。16−1〜16−5.17はく形波変換回路で、交
流入力なパルス波形に変換するトランジスタ回路である
。18−1〜18−6はNANDAND回路−1〜20
−6はAND回路、19−1〜19−6は位相弁別回路
である。次に回路の動作を説明をA相1φGの場合につ
いて説明する。1φGの場合は前述の通りPTlの2次
線間電圧は変化しないためトランス11−1〜11−6
の2次電圧はxi 2−1図に示す通りとなる。すなわ
ち、トランス11−1の出力電圧はEAB% トランス
11−2の出力電圧はE、)ランス11−3の出力型0 圧はE。Aの平衡三角形となる。この出力電圧を抵抗1
3−1〜15−6で電流変換しベクトル合成すれば、抵
抗16−1と16−6の出力合成は電圧−(EAB  
”’OA )のベクトルに比例し、第12−1図に示す
−VAのベクトルと比例している。同様に抵抗16−5
と16−2の出力合成は電圧−(EBO−EAB )で
−vBのベクトルと比例し、抵抗16−5と16−4の
出力合成は電圧−’ EOA −E110’ )で−■
oのベクトルと比例する。この電圧−■え、−VB、−
V。はPT102次出力相電圧と逆位相であり1φG故
障時のVoベクトルと同方向にありこれを基準ベクトル
とする。一方PT1の3次回路にはアース側が正極で零
相電圧5 Vo f生じており、これをトランス12で
導入し抵抗14−1〜14−5で電流変換して前記基準
ベクトルと合成したものをA相についてのみ第12−2
 図に示j。
16-1 to 15-6. 14-1 to 14-4 are output resistors that derive a current proportional to the secondary voltage of transformers 11-1 to 11-6 and 12, so that current vectors can be synthesized. It is something. Reference numeral 15 denotes a zero-phase overvoltage element, which outputs an operational output if the output of the tertiary coil of the transformer 12 exceeds a certain value, and forms the characteristic 10-4 in Fig. 1θ. 16-1 to 16-5.17 A square wave conversion circuit, which is a transistor circuit that converts an AC input pulse waveform. 18-1 to 18-6 are NANDAND circuits -1 to 20
-6 is an AND circuit, and 19-1 to 19-6 are phase discrimination circuits. Next, the operation of the circuit will be explained for the case where the A phase is 1φG. In the case of 1φG, as mentioned above, the secondary line voltage of PTl does not change, so the transformers 11-1 to 11-6
The secondary voltage of xi is as shown in Figure 2-1. That is, the output voltage of the transformer 11-1 is EAB%, the output voltage of the transformer 11-2 is E, and the output type 0 voltage of the transformer 11-3 is E. It becomes an equilibrium triangle of A. This output voltage is
If currents are converted by 3-1 to 15-6 and vector combined, the output combination of resistors 16-1 and 16-6 will be voltage - (EAB
It is proportional to the vector of -VA shown in Figure 12-1.Similarly, the resistor 16-5
The output combination of resistors 16-5 and 16-4 is proportional to the vector of -vB at voltage -(EBO-EAB), and the output combination of resistors 16-5 and 16-4 is voltage -'EOA-E110') and -■
It is proportional to the vector of o. This voltage -■Eh, -VB, -
V. is in opposite phase to the PT10 secondary output phase voltage and in the same direction as the Vo vector at the time of 1φG failure, and is used as a reference vector. On the other hand, in the tertiary circuit of PT1, the ground side is positive and a zero-phase voltage of 5 Vo f is generated, which is introduced by the transformer 12, converted into a current by the resistors 14-1 to 14-5, and synthesized with the reference vector. 12-2 only for A phase
As shown in the figure.

すなわちく形波変換回路16−1に対する入力は抵抗1
4 1 k介シテに、Vo (K2 ハ定R)が印加さ
れ、さらに抵抗15−1.16−6を介して−KI V
A (Klは定数)が印加さnることになるので結局入
力としては−に、 Vo −K、 Vえに比例した交流
入力が印加される。一方、く形波変換回路17に対して
は抵抗14−4を介して−に2Voが印加されており、
今、この2人力の位相差をθとすれば、θが一定値(1
800>θ)900の条件でθを定数とする)となるよ
うにVOの大きさと位相を変えながら軌跡を描けば第1
2−2図の実線に示すような円弧となり、第10図に示
す特性1〇−1が得られるものである。尚2人力の位相
差な検出する方法は従来より種々の方法が用いられてい
るが、この実施例における動作原理を第13図(a)乃
至+f+の各出力波形で簡単に説明する。く形波変換回
路17.16−1に導入される入力は同図(al 、 
(C)のように各h −K、 Vaおよび−に、 Vo
 −K、 VAの交流波形であるが、今これの負波にお
いてのみスイッチングする回路ケ採用したとjれば、第
11図実施)に示す通りNAND回路18−1の出力は
く形波変換回路17及び16−1の両方が出力な出して
ない期間、すなわち180°−00の時間分だけ信号を
出丁ことになり、このパルス幅が、規定値以上出ておれ
ば動作ロックとするもので、これを位相弁別回路19−
1で検出する。
In other words, the input to the square wave conversion circuit 16-1 is the resistor 1.
Vo (K2 constant R) is applied to the 4 1 k interface, and -KI V is further applied via the resistor 15-1.16-6.
Since A (Kl is a constant) is applied, an AC input proportional to Vo -K and V is applied as an input. On the other hand, 2Vo is applied to the square wave conversion circuit 17 through the resistor 14-4.
Now, if the phase difference between these two human forces is θ, then θ is a constant value (1
If we draw a trajectory while changing the magnitude and phase of VO so that θ is a constant under the condition of 800>θ), the first
This results in an arc as shown by the solid line in Fig. 2-2, and the characteristic 10-1 shown in Fig. 10 is obtained. Various methods have been used in the past to detect the phase difference between two manual forces, but the principle of operation in this embodiment will be briefly explained using output waveforms shown in FIGS. 13(a) to +f+. The input introduced into the rectangular wave conversion circuit 17.16-1 is shown in the same figure (al,
As in (C), for each h −K, Va and −, Vo
-K and VA AC waveforms, but if we adopt a circuit that switches only in the negative waves, the output of the NAND circuit 18-1 will be a square wave conversion circuit, as shown in Figure 11). The signal will be output during the period when both 17 and 16-1 are not outputting, that is, the time 180°-00, and if this pulse width exceeds the specified value, the operation will be locked. , this is connected to the phase discrimination circuit 19-
1 to detect.

すなわち第12−2図の−に、 Voの位相が−KIV
Aに対して広がり動作域より外に出れば位相差θが小さ
くなり、第13図EelのNAND回路18−1の出力
パルス幅は長くなり動作ロックとなる。一方第12−2
図の−に、Voの位相がKIvAに対し同相方向に寄れ
ば、動作域に入る事になるが、この場合は位相差θが大
ぎくなり、第13図telのNAND回路18−1の出
力パルス幅は短かくなり動作ロックが効果しないように
なるようにしたもので、NAND回路18−1の出力パ
ルス幅を適当値に決める事により2人力の位相差θな検
出する事ができるものである。
In other words, as shown in Figure 12-2, the phase of Vo is -KIV.
If it expands with respect to A and goes out of the operating range, the phase difference θ becomes smaller, and the output pulse width of the NAND circuit 18-1 of Eel in FIG. 13 becomes longer and the operation becomes locked. On the other hand, No. 12-2
If the phase of Vo approaches the in-phase direction with respect to KIvA, it will enter the operating range, but in this case, the phase difference θ will become too large, and the output of the NAND circuit 18-1 in tel of FIG. The pulse width is shortened so that the operation lock is not effective, and by setting the output pulse width of the NAND circuit 18-1 to an appropriate value, it is possible to detect the phase difference θ between two people. be.

尚、ここでは特に図示はしないが、至近端2φG対策と
しては、従来の短絡優先方式(線間電圧が一定値以下で
ロックとする方式)又は多相動作時ロック方式(例えば
第ii図の各相出方要素2゜−1〜20−6の内2要素
以上が同時に動作した場合は最終出力をロックとする方
式)を併用すれば簡単に対処できるものである。
Although not particularly shown here, as measures against 2φG at the closest end, the conventional short-circuit priority method (a method that locks when the line voltage is below a certain value) or the lock method during multiphase operation (for example, the method shown in Fig. ii) If two or more of the phase output elements 2°-1 to 20-6 operate at the same time, the final output is locked.

以上説明したように本発明の一線地絡検出装置によれば
1φG時に生じる一Vot[圧ベクトル軌跡と全く同じ
形の特性を取り出す事ができるため。
As explained above, according to the one-line ground fault detection device of the present invention, it is possible to extract a characteristic having exactly the same shape as the one Vot [pressure vector locus that occurs at 1φG.

電力系統の条件及び検出したい不完全地絡係数が設定さ
れれば、その時に生じるーVoベクトル軌跡より、少し
大きい相似形の特性となるよう[1φG検出リレーな設
計しておけば、従来方式の最大の欠点であった遠方端2
φGで故障線間電圧が低下しないケースでも本発明の位
相特性により確実に不動作とする事ができ、1φG故障
のみに応動させる事かできる効果を有している。
Once the conditions of the power system and the incomplete ground fault coefficient that you want to detect are set, it is possible to design a 1φG detection relay so that it has a similar characteristic that is slightly larger than the -Vo vector locus that occurs at that time. Far end 2 was the biggest drawback
Even in the case where the fault line voltage does not drop at φG, the phase characteristics of the present invention can ensure the inoperation, and have the effect of being able to respond only to a 1φG failure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の一線地絡検出装置の構成図、第
3図〜第9図は本発明の詳細な説明するための原理補足
説明図、第1O図は本発明の基本原理による一線地絡継
電器の特性図、第11図は本発明の一実施例による一線
地絡検出継電器の原理回路構成図、第12−1図〜第1
2−2図は同実施例における電圧ベクトル図を、第13
図は、第11図実施例の各部の出力信号波形図を示して
いる。 1・、、PT、11−1〜11−3.、・PT2次線間
電圧導入トランス、12・・・PT3次Voll圧導入
トランス、13−1〜15−6.14−1〜14−4・
・・ベクトル合成用抵抗、15・・・零相過電圧検出要
素、16−1〜16−1.17・・・く形波変換回路、
18−1〜18−6・・・NANDAND回路−1〜1
9−6・・・位相弁別回路%20−1〜20−6・・・
AND回路。 なお図中、同一符号は同一、又は相当部分を示す。 第 l 図 弗2図 第 3 図 t 弗4図  第5図
Figures 1 and 2 are block diagrams of a conventional single-line ground fault detection device, Figures 3 to 9 are supplementary explanatory diagrams of the principle for explaining the present invention in detail, and Figure 1O is the basic principle of the present invention. FIG. 11 is a characteristic diagram of a one-line ground fault relay according to the present invention, and FIG.
Figure 2-2 shows the voltage vector diagram in the same example.
The figure shows an output signal waveform diagram of each part of the embodiment in FIG. 11. 1., PT, 11-1 to 11-3. ,・PT secondary line voltage introduction transformer, 12...PT tertiary Vol pressure introduction transformer, 13-1 to 15-6.14-1 to 14-4・
... Vector synthesis resistor, 15 ... Zero-phase overvoltage detection element, 16-1 to 16-1.17 ... Rectangular wave conversion circuit,
18-1 to 18-6...NANDAND circuit-1 to 1
9-6... Phase discrimination circuit %20-1 to 20-6...
AND circuit. In the figures, the same reference numerals indicate the same or equivalent parts. Figure l Figure 2 Figure 3 Figure t Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 系統に一線地絡事故が生じたとぎに零相電圧を検出する
ことにより作動させる一線地絡検出継電器において、上
記系統から計器用変圧器の2次線間電圧より導出した相
電圧と同位相の検出相電圧と3次零相電圧とをそれぞれ
ベクトル合成して得られる第1の電気量と、上記零相電
圧に比例した第2の電気量とを導出し、上記第1の電気
量及び上記第2の電気量の位相差を検出することにより
一線地絡事故時の零相電圧ベクトル軌跡と相似な特性を
確保して一線地絡事故を判定したことを特徴とする一線
地絡検出装置。
In a single-line ground fault detection relay that is activated by detecting zero-sequence voltage when a single-line ground fault occurs in the system, A first electrical quantity obtained by vector synthesis of the detected phase voltage and the tertiary zero-sequence voltage, respectively, and a second electrical quantity proportional to the zero-sequence voltage are derived, and the first electrical quantity and the above A single-line ground fault detection device characterized in that a single-line ground fault is determined by detecting a phase difference between the second electric quantities to ensure characteristics similar to a zero-sequence voltage vector locus at the time of a single-line ground fault.
JP5086783A 1983-03-24 1983-03-24 One line ground-fault detecting relay Pending JPS59175330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5086783A JPS59175330A (en) 1983-03-24 1983-03-24 One line ground-fault detecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5086783A JPS59175330A (en) 1983-03-24 1983-03-24 One line ground-fault detecting relay

Publications (1)

Publication Number Publication Date
JPS59175330A true JPS59175330A (en) 1984-10-04

Family

ID=12870669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5086783A Pending JPS59175330A (en) 1983-03-24 1983-03-24 One line ground-fault detecting relay

Country Status (1)

Country Link
JP (1) JPS59175330A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114130A (en) * 1979-02-22 1980-09-03 Mitsubishi Electric Corp Oneeline grounddfault detecting relay unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114130A (en) * 1979-02-22 1980-09-03 Mitsubishi Electric Corp Oneeline grounddfault detecting relay unit

Similar Documents

Publication Publication Date Title
CN1042682C (en) Ground fault circuit interrupter with immunity to wide band noise
TW438979B (en) Residual current detection device
JP2676704B2 (en) Differential protection relay
JPH0984254A (en) Power supply system, inverter equipment, and distributed power supply system
US5587864A (en) Short circuit and ground fault protection for an electrical system
JP2000261958A (en) Protective device for grounding current suppressing device and grounding suppressing method
JPS59175330A (en) One line ground-fault detecting relay
JP3101736B2 (en) Distribution line protection device
JPS5843402Y2 (en) Hogokeiden Sochi
JP2596671B2 (en) Digital ground fault overvoltage relay for high voltage distribution lines.
WO2024057442A1 (en) Transformer protection relay and transformer protection method
JP2967362B2 (en) High voltage ground fault relay method
Ristic et al. The major differences between electromechanical and microprocessor based technologies in relay setting rules for transformer current differential protection
JPH023371B2 (en)
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI
JPH03251040A (en) Power distribution line fault zone detector
Swift et al. Inrush restraint algorithms for transformer differential relays
JPH0378426A (en) Line-to-ground fault detector
JP2002118954A (en) Directional ground relay
JP2607483B2 (en) Ground fault directional relay
JPS5814137B2 (en) Busbar selection relay device
JPS5854843Y2 (en) AC filter protection device
JPH0210654B2 (en)
JPS58144521A (en) Protecting relay unit
Rafa Digital protection of power transformer using microcontroller-based relay