JPS59184566A - Insulated gate type field effect transistor - Google Patents

Insulated gate type field effect transistor

Info

Publication number
JPS59184566A
JPS59184566A JP5886483A JP5886483A JPS59184566A JP S59184566 A JPS59184566 A JP S59184566A JP 5886483 A JP5886483 A JP 5886483A JP 5886483 A JP5886483 A JP 5886483A JP S59184566 A JPS59184566 A JP S59184566A
Authority
JP
Japan
Prior art keywords
under
gate
oxide film
film
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5886483A
Other languages
Japanese (ja)
Inventor
Kazuo Kunimasa
国政 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5886483A priority Critical patent/JPS59184566A/en
Publication of JPS59184566A publication Critical patent/JPS59184566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain a high withstand voltage IGFET whose mutual conductance gm is improved by a method wherein the majority carrier concentration of a channel region under a thicker gate insulation film is made lower than that under a thinner gate insulation film. CONSTITUTION:The gate insulation film 20 consists of the source side thin part 4 and the drain side thick part 5 in order to obtain the increase in withstand voltage. Besides, in order to improve the mutual conductance, the majority carriers of the substrate surface part 12 under the thin film thickness part 4 and that 13 under the thick film thickness part 5 are different, the former has a majoriy carrier concentration higher than that of the latter. Thereby, the threshold voltage VT of the gate oxide film region 5 can be equalized with the threshold voltage in the thin gate oxide film 4. Therefore, gm one of the characteristic parameters of the IGFET does not deteriorate. Besides, the withstand voltage is equal with that of an MOSFET having a stepwise gate insulation film.

Description

【発明の詳細な説明】 本発明は、特に絶縁ゲート型電界効果トランジスタ(以
下、IGFETという)の高耐圧化VC関わるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a high breakdown voltage VC of an insulated gate field effect transistor (hereinafter referred to as IGFET).

一般に、IGFETのドレイン耐圧は、ゲート下のドレ
イン端における電界集中によるアバランシュ破壊で決ま
る。このため、ドレイン耐圧を向上するにl−1:、I
GFET  のドレイン側のゲート絶縁膜厚をソース側
に比べ厚くする方法がとられる。
Generally, the drain breakdown voltage of an IGFET is determined by avalanche breakdown due to electric field concentration at the drain end under the gate. Therefore, in order to improve the drain breakdown voltage, l-1:, I
A method is used in which the thickness of the gate insulating film on the drain side of the GFET is made thicker than on the source side.

この方法による高耐圧MO8FETの構造を第1図に示
す。第1図において、1は例えばN型シリコン基板であ
り、基板1vcFiソース領域2およびドレイン領域3
が形成されている。ソース、ドレイン間の基板上VCは
ゲート絶縁膜としてのシリコン酸化膜20が形成されて
いる。酸化膜20の厚さは一様でなく、ソース側の薄い
部分4とドレイン側の厚い部分5とでなる。酸化膜20
上には多結晶半導体層11が設けられている。ゲート部
分以外は厚いフィールド酸化膜6が形成されている。
The structure of a high voltage MO8FET produced by this method is shown in FIG. In FIG. 1, 1 is an N-type silicon substrate, for example, and the substrate 1vcFi source region 2 and drain region 3
is formed. A silicon oxide film 20 as a gate insulating film is formed on the substrate VC between the source and drain. The thickness of the oxide film 20 is not uniform, and consists of a thin portion 4 on the source side and a thick portion 5 on the drain side. Oxide film 20
A polycrystalline semiconductor layer 11 is provided thereon. A thick field oxide film 6 is formed in areas other than the gate portion.

例えばアルミニウム等の金属でなるドレイン電極8、ゲ
ート電極9およびソース電極10が全面をおおう絶縁膜
7Vc開孔を設けて形成されている。
A drain electrode 8, a gate electrode 9, and a source electrode 10 made of metal such as aluminum, for example, are formed by providing an opening in an insulating film 7Vc covering the entire surface.

このような構造にすることにより、ゲートとドレイン間
の電界が緩和されてゲート下のドレイン端のアバランシ
ュ破壊電圧は大きくな9.IGFETの耐圧は向上する
By adopting such a structure, the electric field between the gate and the drain is relaxed, and the avalanche breakdown voltage at the drain end under the gate is increased.9. The withstand voltage of the IGFET is improved.

しかしながら、この構造をとるとゲート酸化膜20の膜
厚が薄い領域4と厚い領域5とで、IGFBTのしきい
値VTが異なり、ゲート酸化膜厚が厚い部分5でのVT
が高くなる。このため、印加ゲート電圧に対し、十分な
大きさの相互コンダクタンスを確保することができない
欠点がある。
However, when this structure is adopted, the threshold voltage VT of the IGFBT is different between the thin region 4 and the thick region 5 of the gate oxide film 20, and the VT in the thick gate oxide film 20 is different.
becomes higher. Therefore, there is a drawback that a sufficiently large mutual conductance cannot be ensured with respect to the applied gate voltage.

不発明の目的は、相互コンダクタンスgmが向上された
高耐圧の1GFET 全提供することにある。
An object of the invention is to provide a high voltage 1GFET with improved mutual conductance gm.

不発明は、ドレイン側のゲート絶縁膜厚がソース側のそ
れよVも厚いIGFETであって、厚い方のゲート絶縁
膜下VCおけるチャンネル領域の多数キャリア濃度が薄
い方のゲート絶縁膜下におけるそれよりも低いことを特
徴とする。
The non-invention is an IGFET in which the gate insulating film on the drain side is thicker than that on the source side, and the majority carrier concentration in the channel region of VC under the thicker gate insulating film is lower than that under the thinner gate insulating film. It is characterized by being lower than

以下、図面により不発明の詳細な説明する。Hereinafter, the invention will be explained in detail with reference to the drawings.

第2図は不発明の一実施例全示し、第1図と同−機能部
は同一番号で示してその説明を省略する。
FIG. 2 shows an entire embodiment of the present invention, and the same functional parts as in FIG. 1 are designated by the same numbers and their explanations will be omitted.

第2図で示されたIGFETは、高耐圧化全得るために
ゲート絶縁膜20がソース側の薄い部分4とドレイン側
の厚い部分5とでなす、シかも、相互コンダクタンスを
向上させるために、薄い膜厚部分4下の基板表面部分1
2と厚い膜厚部分5下の基板表面部分13との多数キャ
リアが異なり、前者の方が後者よりも高い多数キャリア
濃度を有する。薄い膜厚部分4上VCは耐熱性であって
耐酸化性の導体層14が形成され、厚い膜厚部分5上に
は多結晶層15が形成され、これらはゲート電極9に接
続されている。導体層14および多結晶層15は、この
IGFET 全製造する際に用いたもので、これVCつ
いては後述する。このような構造をもつIGFBTは、
従来の第1図のIGFETと比較すると、ドレイン側の
厚いゲー)[化膜領域5下では基板表面部分13の多数
キャリアの濃度が低いことからこの領域のしきい値電圧
VT k薄いゲート酸化膜4におけるしきい値電圧と等
しくすることができる。このことによfi、1GFET
の特性パラメータの1つであるgmが劣化しない。また
、耐圧は階段状のゲート絶縁膜を有するMOSFETと
等しい。
In the IGFET shown in FIG. 2, the gate insulating film 20 has a thin part 4 on the source side and a thick part 5 on the drain side in order to obtain a high breakdown voltage. Substrate surface portion 1 under thin film thickness portion 4
2 and the substrate surface portion 13 under the thick film thickness portion 5 have different majority carriers, and the former has a higher majority carrier concentration than the latter. A heat-resistant and oxidation-resistant conductor layer 14 is formed on the thin film thickness portion 4 of the VC, and a polycrystalline layer 15 is formed on the thick film thickness portion 5, which are connected to the gate electrode 9. . The conductor layer 14 and the polycrystalline layer 15 were used in the entire manufacture of this IGFET, and the VC will be described later. IGFBT with such a structure is
Compared to the conventional IGFET shown in FIG. 4 can be made equal to the threshold voltage at 4. Due to this, 1GFET
gm, one of the characteristic parameters, does not deteriorate. Further, the breakdown voltage is equal to that of a MOSFET having a stepped gate insulating film.

第3図は、ゲート絶縁膜の膜厚に応じて基板表面部の多
数キャリア濃度が異なる第2図で示したIGFETの製
造全示す一実施例である・ます、第3図(a)に示すよ
うに、厚いフィールド酸化膜6が形成された半導体基板
10表面に熱酸化膜4vi−形成する。この熱酸化膜と
第2図で示した薄い膜厚部分との参照数字が同じである
ことから明らかなように、熱噴化膜4は薄い膜厚部分と
なる。次VCP iの不純物(fcとえば、ボロン)を
基板1の導電型が反転しないドース量(ユ1011cm
−2)でイオン注入する。次に、耐熱性であって耐酸化
性の金属14(たとえば白金)全蒸着し、リソグラフィ
ーVCよりパターンニングする(第3図(b))。これ
によって、薄い膜厚部分上の導体層が形成される0次V
C,金属12をマスクvcP型の不純物(たとえばボロ
ン)全基板1の導電型が反転しないドーズ量(−101
1(Hl−2)でさらにイオン注入する。これによって
、基板1には表面部分12よシも多数キャリア濃度が低
い表面部分13が形成される。さらVこ、金属14をマ
スクVC選択酸化した後、ドレイン側の厚いゲート酸化
膜5上に金属14が一部かさなる多結晶シリコン層15
を選択的に形成する(第3図(C))。次に、金属14
5 − と多結晶シリコン15をマスクに酸化膜のエツチング全
行ない、基板1の一部全露出させてソース。
Figure 3 is an example of manufacturing the IGFET shown in Figure 2, in which the majority carrier concentration on the substrate surface varies depending on the thickness of the gate insulating film, as shown in Figure 3(a). A thermal oxide film 4vi- is formed on the surface of the semiconductor substrate 10 on which the thick field oxide film 6 is formed. As is clear from the fact that the reference numerals of this thermal oxide film and the thin film thickness portion shown in FIG. 2 are the same, the thermal blasting film 4 is a thin film thickness portion. Next, add an impurity (fc, boron, for example) to VCP i at a dose that does not invert the conductivity type of substrate 1 (yu 1011cm).
-2) perform ion implantation. Next, a heat-resistant and oxidation-resistant metal 14 (for example, platinum) is completely deposited and patterned by lithography VC (FIG. 3(b)). This results in the formation of a zero-order V
C, the metal 12 is masked with a vcP type impurity (for example, boron) at a dose (-101
Further ion implantation is performed at 1 (Hl-2). As a result, a surface portion 13 having a lower majority carrier concentration than the surface portion 12 is formed on the substrate 1. Further, after selectively oxidizing the metal 14 using a mask, a polycrystalline silicon layer 15 is formed on the thick gate oxide film 5 on the drain side, with the metal 14 partially covering the thick gate oxide film 5.
is selectively formed (FIG. 3(C)). Next, metal 14
5- and polycrystalline silicon 15 as a mask, the entire oxide film is etched to completely expose a part of the substrate 1, and a source is formed.

ドレイン拡散層2.3を形成する(第3図(d))。A drain diffusion layer 2.3 is formed (FIG. 3(d)).

その彼、第2図で示すように層間絶縁膜としてPEG膜
7を形成し、コンタクト穴をホトレジスト工程で開孔し
てAAによるドレイン、ゲートおよびソース電極8,9
.10を形成する・ このようVC1厚いゲート酸化膜5下のチャネル領域に
薄いゲート酸化膜4下のチャネル領域より基板1とは逆
導電型の不純物を高濃度にイオン注入を行なうことによ
り、厚いゲート酸化膜5下の反転層形成が低電圧で容易
になる。従って、第3図(a)、 (b)で示した2回
のイオン注入のドーズ量全制御すれば、ゲートのソース
側、ドレイン側でのしきい値vTは同程度となり、階段
構造のMO8F’ETの相互コンダクタンスgmが劣化
することはない・第4図は、本発明の他の実施例を示す
ものである。この実施例では、ドレインの高濃度層3の
周囲にこれと同一導電型の低濃度層16が設けである。
As shown in FIG. 2, he formed a PEG film 7 as an interlayer insulating film, opened contact holes using a photoresist process, and formed drain, gate, and source electrodes 8 and 9 using AA.
.. By ion-implanting impurities of a conductivity type opposite to that of the substrate 1 into the channel region under the thick gate oxide film 5 of VC1 at a higher concentration than the channel region under the thin gate oxide film 4, a thick gate is formed. Formation of the inversion layer under the oxide film 5 is facilitated at low voltage. Therefore, if the dose of the two ion implantations shown in FIGS. 3(a) and 3(b) is fully controlled, the threshold value vT on the source side and drain side of the gate will be approximately the same, and the MO8F of the stepped structure 'The transconductance gm of ET is not degraded. Figure 4 shows another embodiment of the present invention. In this embodiment, a low concentration layer 16 of the same conductivity type is provided around the high concentration layer 3 of the drain.

よって、第2図で示した実施例VC比較して相 6− 互コンダクタンスgmは低下するが、ドレイン耐圧はさ
らVC高くすることが出来る。
Therefore, although the mutual conductance gm is lower than that of the example VC shown in FIG. 2, the drain breakdown voltage can be further increased.

なお、不発明はPチャンネル型のものについて説明した
が、Nチャンネル型にも適用できる。また、その製法は
第3図に限定されない。
Although the invention has been described for a P-channel type, it can also be applied to an N-channel type. Further, the manufacturing method is not limited to that shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の階段状ゲート構造含有する高耐圧MO
8FETの構造を示す断面図、第2図は本発明の一実旅
例を示す高耐圧MO8FETの構造断面図、第3図(a
)〜(d)は不発明による高耐圧MO8−FET  の
製造方法の一例を示す工程断面図、第4図は本発明の他
の実施例含水す断面図である。 図中、1・・・・・・N型シリコン基板、2・・・・・
・ソース拡散層、3・・・・・・ドレイン拡散層、4・
・・・・・薄いゲートば化膜、訃・・・・・厚いゲート
酸化膜、6・・・・・・フィールド改化膜、7・・・・
・層間絶縁膜、8・・・・・・ドレイン電極、9・・・
・・・ゲート電極、10・・・・・ソース電極、11.
15・・・・・多結晶シリコン層、12・・・・・・薄
いゲート酸化膜下の半導体基板表面の多数キャリア濃度
の多い領域、13・・・・・・厚いゲート酸化膜下の半
導体基板表面の多数キャリア濃度の少ない領域、14・
・・・・白金、16・・・・・・ドレイン低濃度層。 第 1 区 1 1虫 I  & 第4区
Figure 1 shows a conventional high-voltage MO containing a stepped gate structure.
FIG. 2 is a cross-sectional view showing the structure of an MO8FET, and FIG.
) to (d) are process cross-sectional views showing an example of a manufacturing method of a high voltage MO8-FET according to the invention, and FIG. 4 is a cross-sectional view of another embodiment of the present invention in a water-containing state. In the figure, 1... N-type silicon substrate, 2...
・Source diffusion layer, 3...Drain diffusion layer, 4.
... Thin gate oxide film, Thick gate oxide film, 6... Field modification film, 7...
・Interlayer insulating film, 8...Drain electrode, 9...
. . . Gate electrode, 10 . . . Source electrode, 11.
15...Polycrystalline silicon layer, 12...Region with high majority carrier concentration on the surface of the semiconductor substrate under the thin gate oxide film, 13...Semiconductor substrate under the thick gate oxide film Region with low majority carrier concentration on the surface, 14.
...Platinum, 16... Drain low concentration layer. 1st Ward 1 1 Insect I & 4th Ward

Claims (1)

【特許請求の範囲】[Claims] ゲート絶縁膜が膜厚の薄い第1部分と膜厚の厚い第2部
分とでなる絶縁ゲート型電界効果トランジスタVCおい
て、前記第1部分下の半導体基板表面部の多数キャリア
良度が前記第2部分下の半導体基板表面部のそれよりも
高いこと全特徴とする絶線ゲート型電界効果トランジス
タ。
In an insulated gate field effect transistor VC in which the gate insulating film has a first portion with a thin film thickness and a second portion with a thick film thickness, the majority carrier quality of the semiconductor substrate surface portion under the first portion is An isolated gate field effect transistor characterized in that its height is higher than that of the surface of a semiconductor substrate below.
JP5886483A 1983-04-04 1983-04-04 Insulated gate type field effect transistor Pending JPS59184566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5886483A JPS59184566A (en) 1983-04-04 1983-04-04 Insulated gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5886483A JPS59184566A (en) 1983-04-04 1983-04-04 Insulated gate type field effect transistor

Publications (1)

Publication Number Publication Date
JPS59184566A true JPS59184566A (en) 1984-10-19

Family

ID=13096584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5886483A Pending JPS59184566A (en) 1983-04-04 1983-04-04 Insulated gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPS59184566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214672A (en) * 1990-12-12 1992-08-05 Sharp Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214672A (en) * 1990-12-12 1992-08-05 Sharp Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US4810666A (en) Method for manufacturing a mosic having self-aligned contact holes
US4140548A (en) MOS Semiconductor process utilizing a two-layer oxide forming technique
US5031008A (en) MOSFET transistor
US4225875A (en) Short channel MOS devices and the method of manufacturing same
JPS6312168A (en) Ldd mis type field effect transistor
US5130264A (en) Method of making a thin film transistor
US4520553A (en) Process for manufacturing an integrated insulated-gate field-effect transistor
JPH03101238A (en) Mos type semiconductor device and its manufacture
JPH05251694A (en) Mos type semiconductor device and its manufacture
JPS61256769A (en) Semiconductor device
JP2629995B2 (en) Thin film transistor
US4216573A (en) Three mask process for making field effect transistors
JPS59184566A (en) Insulated gate type field effect transistor
JPS61255069A (en) Insulated gate field-effect transistor
JPH06216151A (en) Semiconductor device and manufacture thereof
JPH01264265A (en) Semiconductor device and its manufacture
JPH0196960A (en) Semiconductor device
JPH05243261A (en) Insulated-gate field-effect transistor
JPS61256670A (en) Insulated gate field effect transistor
JPH0128509B2 (en)
KR940004258B1 (en) Manufacturing method of soi structure device
JPS6254959A (en) Manufacture of mis semiconductor device
JPS626664B2 (en)
JPH0923012A (en) Semiconductor device and its manufacture
JPH06314782A (en) Manufacture of semiconductor device