JPS5918347B2 - Manufacturing method of silicon nitride sintered body - Google Patents

Manufacturing method of silicon nitride sintered body

Info

Publication number
JPS5918347B2
JPS5918347B2 JP56060671A JP6067181A JPS5918347B2 JP S5918347 B2 JPS5918347 B2 JP S5918347B2 JP 56060671 A JP56060671 A JP 56060671A JP 6067181 A JP6067181 A JP 6067181A JP S5918347 B2 JPS5918347 B2 JP S5918347B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
powder
yttrium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56060671A
Other languages
Japanese (ja)
Other versions
JPS57175777A (en
Inventor
正 岩井
高士 川人
哲夫 山田
敦彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP56060671A priority Critical patent/JPS5918347B2/en
Publication of JPS57175777A publication Critical patent/JPS57175777A/en
Publication of JPS5918347B2 publication Critical patent/JPS5918347B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は高温特性の優れた窒化ケイ素質焼結体の製法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride sintered body having excellent high-temperature properties.

窒化ケイ素は、機械的強度、耐熱性、耐熱衝撃性、耐蝕
性などに優れているため、近年、ガスタービン用部品な
どの高温構造材料の素材として注目されている。
Silicon nitride has been attracting attention in recent years as a material for high-temperature structural materials such as gas turbine parts because it has excellent mechanical strength, heat resistance, thermal shock resistance, and corrosion resistance.

ところが、窒化ケイ素はきわめて難焼結性の物質であり
、それ単独を焼結して高密度焼結体を得ることは困難で
ある。
However, silicon nitride is a substance that is extremely difficult to sinter, and it is difficult to obtain a high-density sintered body by sintering it alone.

そこで、窒化ケイ素粉末にマグネシア、アルミナ、イツ
トリアなどの酸化物粉末を焼結助剤として加え、得られ
る混合物を常圧または加圧下に焼結して、高密度焼結体
を製造する方法が提案されている。
Therefore, a method has been proposed in which oxide powders such as magnesia, alumina, and ittria are added to silicon nitride powder as sintering aids, and the resulting mixture is sintered under normal pressure or pressure to produce a high-density sintered body. has been done.

提案された方法で得られる焼結体は、焼結助剤として加
えた酸化物中の金属が窒化ケイ素と反応してケイ酸塩を
形成し、このケイ酸塩が、焼結体を構成する窒化ケイ素
粒子の粒界でガラス相を形成し、焼結体の高温使用時に
ガラス相の軟化によって機械的強度が著しく低下するた
め、高温構造材料としては好ましくないという欠点があ
る。
In the sintered body obtained by the proposed method, the metal in the oxide added as a sintering aid reacts with silicon nitride to form a silicate, and this silicate constitutes the sintered body. A glass phase is formed at the grain boundaries of silicon nitride particles, and when the sintered body is used at high temperatures, the glass phase softens and the mechanical strength is significantly reduced, so it is undesirable as a high-temperature structural material.

本発明は、提案された方法の欠点を解消し、高温におけ
る機械的強度の低下が小さい窒化ケイ素質焼結体の製法
を提供する。
The present invention eliminates the drawbacks of the proposed method and provides a method for producing a silicon nitride sintered body in which mechanical strength decreases little at high temperatures.

即ち、本発明は、窒化イツトリウム粉末を2〜15重量
係重量型含有化ケイ素粉末を、200kg/d以上の圧
力下に1500〜1900℃の範囲の温度で焼結するこ
とを特徴とする窒化ケイ素質焼結体の製法である。
That is, the present invention provides a silicon nitride powder which is characterized by sintering silicon powder containing yttrium nitride powder with a weight coefficient of 2 to 15 at a temperature in the range of 1500 to 1900° C. under a pressure of 200 kg/d or more. This is a method for producing a raw material sintered body.

本発明によれば、1000℃以上という高温においても
機械的強度の低下が小さい高密度窒化ケイ素質焼結体が
得られるという優れた効果が奏される。
According to the present invention, an excellent effect is achieved in that a high-density silicon nitride sintered body whose mechanical strength decreases little even at high temperatures of 1000° C. or higher is obtained.

焼結助剤として使用される窒化イツトリウムの使用割合
は、窒化イツトリウムと窒化ケイ素との合計量に対して
2〜15重量係重量ましくは5〜10重量係重量る。
The proportion of yttrium nitride used as a sintering aid is 2 to 15% by weight or 5 to 10% by weight relative to the total amount of yttrium nitride and silicon nitride.

窒化イツトリウムの使用割合が過度に小さいと高温にお
ける機械的強度の大きい焼結体を得ることができず、そ
の使用割合が過度に太きいと、得られる焼結体中の粒界
相が多くなりその機械的強度が低下する。
If the proportion of yttrium nitride used is too small, a sintered body with high mechanical strength at high temperatures cannot be obtained, and if the proportion of yttrium nitride used is too large, the resulting sintered body will contain many grain boundary phases. Its mechanical strength decreases.

本発明における窒化イツトリウム粉末を含有する窒化ケ
イ素粉末の調製法については特に制限はなく、たとえば
つぎのような方法が採用される。
There are no particular restrictions on the method for preparing silicon nitride powder containing yttrium nitride powder in the present invention, and for example, the following method may be employed.

(1)予め調製した窒化イツトリウム粉末と窒化ケイ素
粉末とを、アセトン、ベンゼン、トルエンなどの有機溶
媒中で混合した後、有機溶媒を留去する方法。
(1) A method in which yttrium nitride powder and silicon nitride powder prepared in advance are mixed in an organic solvent such as acetone, benzene, or toluene, and then the organic solvent is distilled off.

本発明における窒化イツトリウムは加水分解を受けやす
いので、上記方法は乾燥した不活性ガス雰囲気下に実施
することが望ましい。
Since yttrium nitride in the present invention is susceptible to hydrolysis, it is desirable to carry out the above method under a dry inert gas atmosphere.

(2)イツトリウム粉末と窒化ケイ素粉末とを混合後、
窒素ガス雰囲気中で750〜1100℃の範囲の温度に
加熱して、イツトリウムを窒化する方法。
(2) After mixing yttrium powder and silicon nitride powder,
A method of nitriding yttrium by heating it to a temperature in the range of 750 to 1100°C in a nitrogen gas atmosphere.

この方法においては、窒素ガス雰囲気中での加熱に先立
ち、粉末混合物を水素流通下に550〜900℃の範囲
の温度に加熱して、原料粉末中に混入する酸素を除去す
ることが好ましい。
In this method, prior to heating in a nitrogen gas atmosphere, the powder mixture is preferably heated to a temperature in the range of 550 to 900° C. under hydrogen flow to remove oxygen mixed in the raw material powder.

本発明において窒化イツトリウムを含有する窒化ケイ素
粉末は、予め成型した後に焼結してもよく、成型と焼結
とを同時に行なってもよい。
In the present invention, the silicon nitride powder containing yttrium nitride may be molded in advance and then sintered, or molding and sintering may be performed simultaneously.

本発明においては窒化イツトリウムを含有する窒化ケイ
素粉末あるいはこれの成型体を加圧下に加熱して、窒化
ケイ素質焼結体を得る。
In the present invention, a silicon nitride sintered body is obtained by heating a silicon nitride powder containing yttrium nitride or a molded body thereof under pressure.

焼結圧力は200 ky/cyit以上である。The sintering pressure is 200 ky/cyit or more.

焼結圧力がこれより低いと、機械的強度の高い焼結体を
得ることが困難になる。
If the sintering pressure is lower than this, it will be difficult to obtain a sintered body with high mechanical strength.

焼結温度は1500〜1900°C1好ましくは、16
00〜1800℃である。
The sintering temperature is 1500 to 1900°C, preferably 16
00-1800°C.

焼結温度が下限より低いと機械的強度の大きい焼結体を
得ることができず、焼結温度が上限より高いと窒化ケイ
素自体の分解が起こる。
If the sintering temperature is lower than the lower limit, a sintered body with high mechanical strength cannot be obtained, and if the sintering temperature is higher than the upper limit, silicon nitride itself will decompose.

つぎに実施例および比較例を示す。Next, Examples and Comparative Examples will be shown.

実施例および比較例において、焼結体の密度はアルキメ
デス法によって測定し、そのマイクロビッカース硬度(
以下単に硬度という)は日本光学社製QM型高温顕微硬
度計により測定した。
In Examples and Comparative Examples, the density of the sintered body was measured by the Archimedes method, and its micro Vickers hardness (
The hardness (hereinafter simply referred to as hardness) was measured using a QM high temperature micro hardness meter manufactured by Nippon Kogaku Co., Ltd.

焼結体の曲げ強度は、焼結体から3×3×40mmの試
験片を切り出し、表面を研磨した後、スパン20m−ク
ロスヘッドスピード0.5mm1分の条件で、三点曲げ
試験して求めた。
The bending strength of the sintered body was determined by cutting out a 3 x 3 x 40 mm test piece from the sintered body, polishing the surface, and performing a three-point bending test under the conditions of a span of 20 m and a crosshead speed of 0.5 mm for 1 minute. Ta.

以下の記載において「係」はすべて「重量係」を示す。In the following description, all references to "person in charge" refer to "person in charge of weight."

実施例1及び2 第1表に記載の割合の窒化ケイ素粉末(窒素含有率38
.0%、シリコン含有率60.0%、酸素含有率1.8
%、比表面積4.2m/g)と窒化イツトリウムとの合
計量10gおよびアセトン10dをアルミナ製ボールミ
ルに仕込み、窒素雰囲気下に室温で16時間湿式粉砕し
た。
Examples 1 and 2 Silicon nitride powder (nitrogen content 38
.. 0%, silicon content 60.0%, oxygen content 1.8
%, specific surface area: 4.2 m/g), a total amount of 10 g of yttrium nitride, and 10 d of acetone were charged into an alumina ball mill, and wet milled at room temperature under a nitrogen atmosphere for 16 hours.

粉砕混合物を窒素雰囲気下に乾燥して、アセトンを除き
粉末混合物を得た。
The ground mixture was dried under nitrogen atmosphere to remove acetone and obtain a powder mixture.

粉末混合物0.5gを1.5ton/iの圧力で直径7
mm、長さ8mmの円柱に成型した後、窒化ホウ素製の
カプセルに入れ、このカプセルを石英ガラス中に真空封
入した。
0.5 g of the powder mixture was heated to a diameter of 7 at a pressure of 1.5 ton/i.
After molding into a cylinder with a length of 8 mm and a length of 8 mm, it was placed in a capsule made of boron nitride, and this capsule was vacuum sealed in quartz glass.

ついで、石英ガラス封入成型品をパイレックス中に真空
封入した。
Then, the quartz glass encapsulated molded product was vacuum sealed in Pyrex.

こうして得られた二重封入された成型品を、20″00
kg/iの圧力下に第1表に記載の温度で30分間熱間
静水圧焼結して、窒化ケイ素質焼結体を得た。
The double-encapsulated molded product obtained in this way was
Hot isostatic sintering was carried out for 30 minutes at the temperature shown in Table 1 under a pressure of kg/i to obtain a silicon nitride sintered body.

焼結体の密度および硬度を第1表に示す。Table 1 shows the density and hardness of the sintered body.

比較例1及び2 窒化イツトリウムに代えて、第1表に記載の量のイツト
リアを使用した以外は実施例1を繰返した。
Comparative Examples 1 and 2 Example 1 was repeated, except that yttrium nitride was replaced by yttrium in the amounts listed in Table 1.

結果を第1表に示す。実施例 3 窒化ケイ素粉末(窒素含有率35.0i%、シリコン含
有率59.3%、酸素含有率2,7覧比表面積11.4
m/g)93%と窒化イツトリウム粉末7、0 %から
なる混合物60gおよびアセトン60dを、アルミナ製
ボールミルに仕込み、窒素雰囲気下に室温で16時間湿
式粉砕した。
The results are shown in Table 1. Example 3 Silicon nitride powder (nitrogen content 35.0i%, silicon content 59.3%, oxygen content 2.7, specific surface area 11.4)
60 g of a mixture consisting of 93% m/g) and 7.0% yttrium nitride powder and 60 d of acetone were placed in an alumina ball mill and wet milled at room temperature under a nitrogen atmosphere for 16 hours.

粉砕混合物を窒素雰囲気下に乾燥して、アセトンを除き
粉末混合物を得た。
The ground mixture was dried under nitrogen atmosphere to remove acetone and obtain a powder mixture.

粉末混合物を40X20mmの黒鉛製ダイスに充填し、
窒素雰囲気下、1780°Cで480 kg/iの圧力
をかけて1時間ホットプレスすることにより、粉末混合
物の成型と焼結とを同時に行なった。
Fill the powder mixture into a 40 x 20 mm graphite die,
The powder mixture was molded and sintered simultaneously by hot pressing at 1780°C under a nitrogen atmosphere for 1 hour under a pressure of 480 kg/i.

焼結体の密度は3.089 /cyit、その曲げ強度
は25℃で88kg/m4. 1200℃で75kg/
maでであった。
The density of the sintered body is 3.089/cyit, and its bending strength is 88 kg/m4 at 25°C. 75kg/at 1200℃
It was in ma.

比較例 3 窒化イツトリウム粉末に代えて混合物に対して7.0係
のイツトリアを使用した以外は実施例3を繰返した。
Comparative Example 3 Example 3 was repeated except that yttrium 7.0 was used in the mixture in place of the yttrium nitride powder.

得られた焼結体の密度は3.129/iその曲げ強度は
25℃で78 kg/ryal、 1200°Cで6
1 kg/mmであった。
The density of the obtained sintered body was 3.129/i, and its bending strength was 78 kg/ryal at 25°C and 6 at 1200°C.
It was 1 kg/mm.

実施例 4 窒化ケイ素粉末(窒素含有率37゜2係、シリコン含有
率60.2%、酸素含有率2,1%、比表面積18.5
ml g) 94.5係とイツトリウム粉末5.5係
からなる混合物30gおよびベンゼン30m1を、アル
ミナ製ボールミルに仕込み、窒素雰囲気下に室温で16
時時間式粉砕した。
Example 4 Silicon nitride powder (nitrogen content 37°2, silicon content 60.2%, oxygen content 2.1%, specific surface area 18.5)
ml g) 30 g of a mixture consisting of 94.5 parts and 5.5 parts of yttrium powder and 30 ml of benzene were charged into an alumina ball mill, and heated at room temperature under a nitrogen atmosphere for 16 g.
Pulverized time-wise.

粉砕混合物を窒素雰囲気下に乾燥して、ベンゼンを除き
粉末混合物を得た。
The ground mixture was dried under nitrogen atmosphere to remove benzene and obtain a powder mixture.

この粉末混合物を石英製ボートに充填して管状電気炉に
入れ、水素雰囲気中700℃で2時間加熱した。
This powder mixture was filled into a quartz boat, placed in a tubular electric furnace, and heated at 700° C. for 2 hours in a hydrogen atmosphere.

引き続いて、窒素ガスを流し、900℃で5時間加熱し
て、窒化ケイ素粉末と窒化イツトリウム粉末との混合物
を得た。
Subsequently, nitrogen gas was supplied and the mixture was heated at 900° C. for 5 hours to obtain a mixture of silicon nitride powder and yttrium nitride powder.

このようにして得られた粉末混合物を使用し、実施例3
と同様にして、窒化ケイ素質焼結体を得た。
Using the powder mixture thus obtained, Example 3
A silicon nitride sintered body was obtained in the same manner as above.

焼結体の密度は3.10g/criL、その曲げ強度は
25℃で80kg/m7N11200℃で72kg/m
aであった。
The density of the sintered body is 3.10g/criL, and its bending strength is 80kg/m at 25℃72N11 72kg/m at 200℃
It was a.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化イツl−IJウム粉末を2〜15重量係重量型
含有化ケイ素粉末を、200ky/ff1以上の圧力下
に1500〜1900℃の範囲の温度で焼結することを
特徴とする窒化ケイ素質焼結体の製法。
1 Silicon nitride material characterized by sintering silicon powder containing 2 to 15 weight coefficients of I-IJium nitride powder at a temperature in the range of 1500 to 1900° C. under a pressure of 200 ky/ff1 or more. Manufacturing method of sintered body.
JP56060671A 1981-04-23 1981-04-23 Manufacturing method of silicon nitride sintered body Expired JPS5918347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56060671A JPS5918347B2 (en) 1981-04-23 1981-04-23 Manufacturing method of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56060671A JPS5918347B2 (en) 1981-04-23 1981-04-23 Manufacturing method of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS57175777A JPS57175777A (en) 1982-10-28
JPS5918347B2 true JPS5918347B2 (en) 1984-04-26

Family

ID=13149013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56060671A Expired JPS5918347B2 (en) 1981-04-23 1981-04-23 Manufacturing method of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5918347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614344U (en) * 1984-06-15 1986-01-11 鹿児島日本電気株式会社 fluorescent display tube
JPH0270352U (en) * 1988-11-17 1990-05-29

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123292B1 (en) * 1983-04-22 1990-11-14 Toshiba Tungaloy Co. Ltd. Silicon nitride sintered body and method for preparing the same
JPS59199577A (en) * 1983-04-22 1984-11-12 東芝タンガロイ株式会社 Heat resistant silicon nitride sintered body and manufacture
JPS59213676A (en) * 1983-05-19 1984-12-03 東芝タンガロイ株式会社 High strength silicon nitride sintered body and manufacture
US4672046A (en) * 1984-10-15 1987-06-09 Tdk Corporation Sintered aluminum nitride body
US4892848A (en) * 1985-07-30 1990-01-09 Kyocera Corporation Silicon nitride sintered body and process for preparation thereof
JP2015086125A (en) * 2013-11-01 2015-05-07 国立大学法人東北大学 Nitrogen and silicon-based sintered body and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614344U (en) * 1984-06-15 1986-01-11 鹿児島日本電気株式会社 fluorescent display tube
JPH0270352U (en) * 1988-11-17 1990-05-29

Also Published As

Publication number Publication date
JPS57175777A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
US4908171A (en) Method of sintering articles of silicon nitride
US4356136A (en) Method of densifying an article formed of reaction bonded silicon nitride
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
JPS6256107B2 (en)
JPS62176954A (en) Polycrystal silicon carbide sintered product
JPS5918347B2 (en) Manufacturing method of silicon nitride sintered body
JPS6350311B2 (en)
CN101734920A (en) Titanium nitride porous ceramics and preparation method thereof
EP0170889B1 (en) Zrb2 composite sintered material
EP0337607A1 (en) Production and sintering of reaction bonded silicon nitride composites containing silicon carbide whiskers or silicon nitride powders
JPS63156070A (en) Silicon nitride base sintered body and manufacture
JPH09221367A (en) Conductive silicon carbide material composite material and its production
JPS5988373A (en) Manufacture of silicon nitride sintered body
JPH0253388B2 (en)
JPH025711B2 (en)
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
EP0305759A1 (en) Si3N4 Process using polysilane or polysilazane as a binder
JPS6328871B2 (en)
JPS60186470A (en) Manufacture of silicon nitride sintered body
JPH054946B2 (en)
Rogers Densified silicon nitride ceramics and their production
JPH0818875B2 (en) Method for manufacturing silicon nitride sintered body
JPS61141671A (en) Manufacture of sialon sintered body
JPS6236068A (en) Manufacture of composite ceramics