JPS59199577A - Heat resistant silicon nitride sintered body and manufacture - Google Patents

Heat resistant silicon nitride sintered body and manufacture

Info

Publication number
JPS59199577A
JPS59199577A JP58071299A JP7129983A JPS59199577A JP S59199577 A JPS59199577 A JP S59199577A JP 58071299 A JP58071299 A JP 58071299A JP 7129983 A JP7129983 A JP 7129983A JP S59199577 A JPS59199577 A JP S59199577A
Authority
JP
Japan
Prior art keywords
sintered body
si3n4
sintering
silicon nitride
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58071299A
Other languages
Japanese (ja)
Other versions
JPH0512297B2 (en
Inventor
幹夫 福原
前川 善孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58071299A priority Critical patent/JPS59199577A/en
Priority to CA000452515A priority patent/CA1223013A/en
Priority to DE8484104449T priority patent/DE3483588D1/en
Priority to EP19840104449 priority patent/EP0123292B1/en
Priority to US06/602,555 priority patent/US4609633A/en
Publication of JPS59199577A publication Critical patent/JPS59199577A/en
Publication of JPH0512297B2 publication Critical patent/JPH0512297B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、耐熱性構造用材料、歳械工作用拐料特に切削
工具、耐摩耗制科及び耐食性刊科に通する耐熱性窒化硅
素及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat-resistant silicon nitride used in heat-resistant structural materials, machining materials, particularly cutting tools, wear-resistant materials, and corrosion-resistant materials, and a method for producing the same.

窒化硅素は、共有結合性の強い化合物であり、高温で分
解及び蒸発したり、儒成原子の自己拡散係数が小さいた
めに反応性が低かったり、史にはイオン結晶及び金属結
晶に比べて粒界エネルギーと表面エネルギーの比が大き
いことから非村に占結し難い材料である。このために窒
化硅索を照加圧晋通焼結法で焼結しても該智な焼結体が
好られず一般にはMgO,Y2O3、Al2O3.Al
N等の焼結助剤を添加して反応焼結もしくは液相焼結を
利用した加圧廃語又は熱間静水圧加圧法(HIP)寺に
よって緻密な焼結体を得ている。このようにMgO,Y
2O3、Al2O3.AlN咎の焼結助剤を添加したS
i3N4焼結体は、Si3N4の粒界目に低級硅酸塩が
生じ、この低級硅酸温が低乙で液相となってSi3N4
の焼結を促進させる反面焼結後も粒界相に残存して焼結
体の高温強度を低下させるという欠点がある。この欠点
を改良したものにSi3N4粒界相に残存している低級
硅酸塩を熱処理こよって結晶化して焼結体の強度金部め
る方法も提案されている。しかし、これらの低級硅酸塩
又はこの低級硅酸塩を熱処理によって結晶化した焼結助
剤を主体とする第2相は、Si3N4焼結体が小さい形
状で試験的に焼結するときにはSi3N4粒界相に割合
均一に分散しているために大きな問題が生じなかったが
工業化を進めるために複雑な形状又は大型の形状のもの
を焼結するとSi3N4が焼結し姦い材料のために焼結
助剤との反応性が悪かつたり、焼結炉の大型化によって
生じる冷却速夏の問題から酸化物系廃語助剤金主体とす
る第2相がSi3N4粒界相に不均一に分布して偏析す
るという問題が生じる。このようにSi3N4と焼結助
剤との反応性の悪さ及び焼結助剤を主体とする第2相の
偏析のためにSi3N4焼結体内の緒特性のバラツキが
大きくなったり、強朕低下の原因になることから工業化
し難いという問題がある。
Silicon nitride is a compound with strong covalent bonding, and it has been known that it decomposes and evaporates at high temperatures, has low reactivity due to the small self-diffusion coefficient of Confucian atoms, and has a history of grain formation compared to ionic crystals and metal crystals. Because the ratio of field energy to surface energy is large, it is a material that is difficult to be occupied by non-concentrations. For this reason, even if nitrided silicon cord is sintered by the irradiated pressure Shintsu sintering method, the sintered body is not preferred, and generally MgO, Y2O3, Al2O3. Al
A dense sintered body is obtained by adding a sintering aid such as N and applying pressure using reactive sintering or liquid phase sintering or hot isostatic pressing (HIP). In this way, MgO,Y
2O3, Al2O3. S with added AlN sintering aid
In the i3N4 sintered body, lower silicate occurs at the grain boundaries of Si3N4, and this lower silicate becomes a liquid phase at a low temperature and becomes Si3N4.
Although it promotes sintering, it has the disadvantage that it remains in the grain boundary phase even after sintering, reducing the high temperature strength of the sintered body. In order to improve this drawback, a method has been proposed in which lower silicates remaining in the Si3N4 grain boundary phase are crystallized by heat treatment to improve the strength of the sintered body. However, when the Si3N4 sintered body is experimentally sintered in a small shape, the second phase, which is mainly composed of these lower silicates or a sintering aid made by crystallizing these lower silicates by heat treatment, becomes Si3N4 grains. There were no major problems because they were dispersed relatively uniformly in the interfacial phase, but when complex or large shapes were sintered to promote industrialization, Si3N4 was sintered and sintered as a material. Due to poor reactivity with the auxiliary agent and problems with cooling speed caused by the enlargement of the sintering furnace, the second phase of the oxide-based auxiliary agent, which is mainly composed of gold, is unevenly distributed in the Si3N4 grain boundary phase. The problem of segregation arises. As described above, due to the poor reactivity between Si3N4 and the sintering aid and the segregation of the second phase, which is mainly composed of the sintering aid, variations in the properties within the Si3N4 sintered body become large and the strength decreases. There is a problem that it is difficult to industrialize because it causes a problem.

本発明は、上記のような欠点及び問題点を解決し、Si
3N4と焼結助剤との反応性を容易にすることによって
複雑な形状又は大型の形状の焼結体内で焼結助剤を主と
する第2相の分散を均一にし、しかも第2相とSi3N
4との結合強度を高めることによって焼結体の緒特性が
向上した窒化硅素焼結体及びその製造方法の提供を目的
にしたものである。
The present invention solves the above-mentioned drawbacks and problems, and
By facilitating the reactivity between 3N4 and the sintering aid, the second phase, which is mainly composed of the sintering aid, can be uniformly dispersed in a sintered body with a complex or large shape, and the second phase Si3N
The object of the present invention is to provide a silicon nitride sintered body in which the properties of the sintered body are improved by increasing the bonding strength with No. 4, and a method for manufacturing the same.

本発明の耐熱性窒化硅素焼結体に、希土類元素の窒化物
及び酸窒化物の少なくとも1棟0.5〜25重量%とB
、Al、Gaの酸化物、窒化物及び酸窒化物の少なくと
も1種0.5〜25屯蛍%と残り窒化硅素と不可避不純
物から成る窒化硅素焼結体である。このように窒素を含
有した焼結助剤の内、特に希土類元素の窒素含有化合物
は、酸化物を主体にした焼結助剤に比較して分解温度が
低く、低温で活性化になるために硬質相であるSi3N
4との反応性を高め、又この反応ではアニオンイオンの
移動が非常に少ないためにSi3N4中に部分的にせよ
窒素含有焼結助剤が固溶可能となると共にSi3N4流
界に焼結助剤が均一に分散して焼結が促進され、焼結後
は焼結助剤中に含有している窒素が焼結助剤を主体にし
て形成される第2相とSi3N4硬買相との結合強度を
高めるために酸化物系焼結助剤にみられる焼結助剤の偏
析、焼きむら、残留気孔及びSi3N4粒子の異常成艮
等の弊害を防止することができしかも第2相とSi3N
4との精品異方性から生じる内部応力も小さくなるため
に複雑な形状又は大型の形状のものでも容易に均質に焼
結できると共に緻密で寸汰梢度の高い耐熱性窒化硅累焼
結体の作製が容易となる。ここで使用する焼結助剤の内
、布土漬元素の窒化物及び酸窒化物は、B、At、Ga
の酸化物、窒化物及び酸窒化物の化合物と共に焼鮎過程
においてSi3N4粒界を均一に浸透分散しながらSi
3N4粒子を散り囲んで焼結助剤を主体とする均質な第
2相の形成とこの第2相中の堅木とSi3N4中の宣素
との相互拡散によりSi3N4と第2相との結合強化に
寄与すると共に第2相の偏析を防止し、焼結後は焼結体
の高温強度の向上を言めた緒特性を筒めている。一方焼
結助剤として開用するB、Al、Gaの酸化物、窒化物
及び酸室化物の少なくとも1蝋は、赦相の生成を容易に
してSi3N4の廃結を促進し、焼結助剤を主体とする
均質な第2相の形成とこの第2相甲の希土類元素とSi
3N4中の硅素との結合媒介旧作用として焼結体の緒特
性の同上に寄与している。
The heat-resistant silicon nitride sintered body of the present invention contains 0.5 to 25% by weight of at least one of a nitride and an oxynitride of a rare earth element and B.
The silicon nitride sintered body is made of 0.5 to 25 tons of at least one of oxides, nitrides, and oxynitrides of Al, Ga, and the remainder silicon nitride and unavoidable impurities. Among these nitrogen-containing sintering aids, nitrogen-containing compounds of rare earth elements in particular have a lower decomposition temperature than oxide-based sintering aids, and are activated at low temperatures. Hard phase Si3N
In addition, since the movement of anion ions is very small in this reaction, the nitrogen-containing sintering aid can be partially dissolved in Si3N4, and the sintering aid can be added to the Si3N4 flow field. is uniformly dispersed to promote sintering, and after sintering, the nitrogen contained in the sintering aid combines the second phase formed mainly with the sintering aid and the Si3N4 hard phase. In order to increase strength, it is possible to prevent problems such as segregation of sintering aids, uneven firing, residual pores, and abnormal formation of Si3N4 particles that occur with oxide-based sintering aids, and to improve the strength of the second phase and Si3N.
A heat-resistant silicon nitride composite sintered body that is dense and has a high degree of sizing, and can be easily sintered homogeneously even with complex or large shapes because the internal stress caused by the anisotropy is small. It becomes easy to manufacture. Among the sintering aids used here, the nitrides and oxynitrides of fudozuke elements include B, At, and Ga.
During the baking process, Si3N4 grain boundaries are uniformly penetrated and dispersed together with oxides, nitrides, and oxynitride compounds.
The bond between Si3N4 and the second phase is strengthened by the formation of a homogeneous second phase mainly composed of sintering aids surrounding the 3N4 particles, and the mutual diffusion of the hardwood in this second phase and the grains in Si3N4. It also contributes to the properties of the sintered body, prevents segregation of the second phase, and improves the high-temperature strength of the sintered body after sintering. On the other hand, at least one wax of oxides, nitrides, and acid oxides of B, Al, and Ga, which is used as a sintering aid, facilitates the formation of a phase-free phase and promotes the abolition of Si3N4. Formation of a homogeneous second phase mainly consisting of rare earth elements and Si of this second phase
The bond-mediated effect with silicon in 3N4 contributes to the same properties of the sintered body.

本発明の耐熱性窒化硅素焼結体の製造方法は、出発原料
として出来るだけ倣厄なSi3N4粉末を便用すること
が望ましく、このSi3N4粉末に希土類元素の窒化物
及び酸窒化物の少なくとも1種の粉末0.5〜25重量
%とB、Al、Gaの酸化物、窒化物及び酸窒化物の少
なくとも1種の初木0.5〜25重量%とを配合しても
よく、又は希土類元素の窒化物及び酸窒化物の少なくと
も1重とB、Al、Gaの酸化物、窒化物及び酸窒化物
の少なくとも1種とから成る複合化合物粉末とSi3N
4粉木とを配合して出発原料としてもよく、更には希土
類元素の窒化物及び酸窒化物の少なくとも1棟とB、A
l、Gaの酸化物、窒化物及び酸窒化物の少なくとも1
独とSi3N4とから成る複合化合物粉末とSi3N4
とから成る複合化合物粉末とSj3N4粉末を出発原料
として配合してもよく、背に酵素含有量を少なくした複
合化合物粉末を出発原料として便用すると焼箱坏の組織
が柱状化又は針状化するのを抑制してアスペクト比の小
さい粒子を形成する唄回にあり、アスペクト比の小さい
粒子形状の焼結坏は、土熱性が向上するので切削工具の
ような局部的に苛酷な熱価撃が加わる用途に使用する場
合には夏苗化合物粉末を出発原料とするのが望ましい。
In the method for producing a heat-resistant silicon nitride sintered body of the present invention, it is desirable to use Si3N4 powder, which is difficult to imitate as much as possible, as a starting material. 0.5 to 25% by weight of powder of B, Al, Ga, and 0.5 to 25% of first wood of at least one of oxides, nitrides, and oxynitrides of B, Al, Ga, or rare earth elements may be blended. A composite compound powder consisting of at least one of nitrides and oxynitrides of B, Al, and Ga, and at least one of oxides, nitrides, and oxynitrides of B, Al, and Ga, and Si3N
It may be used as a starting material by blending B and A with at least one of nitrides and oxynitrides of rare earth elements.
l, at least one of Ga oxides, nitrides, and oxynitrides;
Composite compound powder consisting of Germany and Si3N4 and Si3N4
A composite compound powder consisting of and Sj3N4 powder may be blended as a starting material, and if a composite compound powder with a reduced enzyme content is used as a starting material, the structure of the baked box will become columnar or acicular. Sintered clay with a small aspect ratio particle shape has improved soil heat resistance, so it can be used to prevent locally severe thermal shocks such as cutting tools. When used for additional purposes, it is desirable to use summer seedling compound powder as a starting material.

不発明の耐熱性窒化硅糸焼結体の製造方法において、焼
結体の績面組域をアスペクト比の小さい構造にするため
に出来るだけ出発原料として使用するSi3N4紛未は
、冒純匿のものが望ましいがSi3N4 粉末の不可避不純物として含有しているAl、Fe青又
はSi3N4粉末粒子の表面に改素が吸着してSiO2
に形成していたす、更には配合した粉末を容器に入れて
Al2O3ホール、スチールボール玄は超裳合金ボール
等で混合粉砕するときに容器及びこれらのボールから混
入してぐる不純物の量が5重量%以下ならば焼結助剤と
して使用する出発原料の窒素含冒市及び焼砧過程での堅
木分圧の調整によって充分に不発明の耐熱性璽化硅素焼
結体の緒特性を保持することかできる。例えは混合粉砕
どきに使用する超硬合金ボール等から混入する周期律表
のIVa族元素、Va族元系及びVIa族元素の炭化物
、窒化物及び炭窒化物等は、本発明の焼結体において耐
摩耗性の向上に役立つ順回があり、出発原料から混入す
るSiO2は硬買相でめるSi3N4本来の分解温度を
低下させ低温側でSi3N4と焼結助剤との反応を生じ
させることにより焼結の促進と緻密化に寄与し、出発原
料と混合粉砕どきの容器及びボールから混入するAl及
びFe族元素はSi3N4中の硅素と家系の相互拡散反
応を促進させて焼結助剤の分散を補助する傾向にめる。
In the uninvented method for producing a heat-resistant silicon nitride yarn sintered body, Si3N4 powder, which is used as a starting material in order to make the rough surface area of the sintered body a structure with a small aspect ratio, is used as a raw material that is free of taint. It is desirable that Si3N4 powder contains Al, Fe blue, or Si3N4 powder as an unavoidable impurity.
The amount of impurities mixed in from the container and these balls when mixed and crushed with Al2O3 holes and superalloy balls etc. when the blended powder is placed in a container is 5. If it is less than 1% by weight, the properties of the heat-resistant silica sintered body can be sufficiently maintained by adjusting the hardwood partial pressure during the nitrogen incorporation of the starting material used as a sintering aid and the sintering process. I can do something. For example, carbides, nitrides, carbonitrides, etc. of group IVa elements, group Va elements, and group VIa elements of the periodic table that are mixed in from cemented carbide balls used during mixing and pulverization are used in the sintered compact of the present invention. There is a sequential process that is useful for improving wear resistance, and SiO2 mixed in from the starting raw material lowers the original decomposition temperature of Si3N4 in the hard buying phase, causing a reaction between Si3N4 and the sintering aid at the low temperature side. Al and Fe group elements mixed in from the starting materials and the container and ball during mixing and pulverization promote the interdiffusion reaction between silicon in Si3N4 and become sintering aids. It tends to support dispersion.

又周期律表のIIa族元素であるBe、Mg、Ca。Also, Be, Mg, and Ca are group IIa elements of the periodic table.

Sr、Ba、Ra及びIa族元素である。Li、Na。These are Sr, Ba, Ra and group Ia elements. Li, Na.

Kの酸化物、窒化物、酸窒化物は欣相生成を促進させて
緻密化に寄与するので不発明の血熱性窒化硅素焼結体の
緒特性を低下させない範囲で研加することもできる。こ
こで更用する出発原料としてのSi3N4は、α−Si
3N4.β−Si3N4.非晶賀のSi3N4又はこれ
らの結晶構造の異なるSi3N4を任意の比率に混合し
たものを使用してもよい。又、焼結助剤としての希土類
元素の窒化物及び酸窒化物の少なくとも1楓とB、Al
.Gaの酸化物、窒化物及び酸屋化物の少なくとも1独
の円、窒素含有化合物は定地化合物又は不定比化合物を
使用してもよく、この日時に希土類元素の窒素含有化合
物は大気中で目化され易いので窒素ガス等の不活土ガス
封入の状凸で取扱う必安があるがB、Al、Ga元素を
官有した複合化合物にするのが望ましい。
Since K oxides, nitrides, and oxynitrides promote the formation of a crystalline phase and contribute to densification, they can be polished to the extent that the properties of the non-inventive hemorrhagic silicon nitride sintered body are not deteriorated. Si3N4 as a starting material used here is α-Si
3N4. β-Si3N4. Amorphous Si3N4 or a mixture of these Si3N4 having different crystal structures in any ratio may be used. In addition, at least one of nitrides and oxynitrides of rare earth elements as a sintering aid, B, Al
.. At least one of the oxides, nitrides and acid oxides of Ga, the nitrogen-containing compound may be a stoichiometric compound or a non-stoichiometric compound, and at this time the nitrogen-containing compound of rare earth elements is visible in the atmosphere. Since it is easily oxidized, it is necessary to handle it in a state filled with an inert gas such as nitrogen gas, but it is preferable to use a composite compound containing B, Al, and Ga elements.

本発明の製貨方法において、各信の出発原料を混合扮砕
した扮床を混合粉末の状態で焼結用モールドに詰めて万
人圧粉体にしたり、成形モールドで、成形率にしたり、
成形モールドで成形体にした後規結温度より低い温度で
予備焼結したり又は予価滉結後成形加工した成形体を真
空を含めた非敵化注雰囲気中で晋通虎剣(無加圧焼結も
含む)、尚周波加圧洸粕、通市加圧涜結、ガス加圧焼結
及びホットプレス等の方法により焼結したり又はこれら
の焼結方法と静水圧加圧法を組合せて焼結体の緻密化を
促進する方法もできる。焼結温度は、焼結方法又は配合
成分によっても異なるが1500℃〜1900℃の温度
内で充分に酸化な焼結体が得られる。
In the coin making method of the present invention, the starting materials of various materials are mixed and crushed and packed in a sintering mold in the state of mixed powder to make a universal compact, or in a forming mold to a compacting rate,
The molded body is made into a molded body by pre-sintering at a temperature lower than the pre-forming temperature, or the molded body is molded after pre-sintering in a non-containing atmosphere including vacuum. (including sintering), sintering by methods such as frequency pressure sintering, toichi pressure sintering, gas pressure sintering, and hot pressing, or by combining these sintering methods with isostatic pressing. A method of promoting densification of the sintered body can also be used. Although the sintering temperature varies depending on the sintering method or the ingredients, a sufficiently oxidized sintered body can be obtained within a temperature range of 1500°C to 1900°C.

ここで使用してきた希土類元素とま、Sc、Y。The rare earth elements used here are Toma, Sc, and Y.

、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb及びLuの17元
素を総称したものである。
, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
It is a general term for 17 elements: Tb, Dy, Ho, Er, Tm, Yb, and Lu.

ここで畝直限足した理由について尻切する。Here I will explain why I added the ridge straight limit.

希土類元素の窒化物及び酸窒化物の少なくとも1棟が0
.5重量%未満では焼結助剤を主体にして形成される第
2相の篩温頻度が世く、とのために焼結体自体の強度も
低下し、25重量%を越えて多くなると相対的にSi3
N4の重が少なくなって焼結体の硬さが低下して耐摩耗
性及び耐熱性が低下するために0.5〜25重量%とし
た。
At least one of rare earth element nitrides and oxynitrides is 0
.. If it is less than 5% by weight, the sieve temperature frequency of the second phase formed mainly from the sintering aid will be too high, and the strength of the sintered body itself will decrease, and if it exceeds 25% by weight, the relative strength will increase. Si3
Since the weight of N4 decreases, the hardness of the sintered body decreases, and the wear resistance and heat resistance decrease, so the content was set at 0.5 to 25% by weight.

B、Al、Gaの酸化物、屋化物及び酸窒化物の少なく
とも1独が0.5徂鼠%禾満ではSi3N4の焼結促進
効果が弱いのとSi3N4粒子と布土知元木との結合媒
介的作用が弱くなり、25重量%を越えて多くなると相
対的にSi3N4の量が少なくなるのと尻詰助剤を生体
にして形成される第2相中に瓜級肛酸塙が庄じ易くて尻
鈷体の硬さ低下及び強度低下となるこめに0.5〜25
亜虚%とした。
The sintering promotion effect of Si3N4 is weak when at least one of the oxides, oxides, and oxynitrides of B, Al, and Ga is present at 0.5%, and the bond between Si3N4 particles and Futochi Motoki. The mediating effect becomes weak, and when the amount exceeds 25% by weight, the amount of Si3N4 becomes relatively small, and melon-grade anal acid walls are formed in the second phase formed by using the filler as a living body. 0.5 to 25, which easily reduces the hardness and strength of the buttock body.
It was expressed as ``death %''.

次に実施例に従って具体的に説明する。Next, a detailed description will be given according to an example.

実施例1 平均径径1μmのSi3N4(約40%アモルファスS
i3N4とα−Si3N4とβ−Si3N4の混在)、
平均靭性2μmのSi3N4(約95%α−Si3N4
とβ−Si3N4の混在)、平均粒径5ttmのSi3
N4(約70%α−Si3N4とβ−Si3N4の昆在
)とYN。
Example 1 Si3N4 (approximately 40% amorphous S) with an average diameter of 1 μm
mixture of i3N4, α-Si3N4, and β-Si3N4),
Si3N4 with an average toughness of 2 μm (approximately 95% α-Si3N4
and β-Si3N4), Si3 with an average particle size of 5ttm
N4 (approximately 70% α-Si3N4 and β-Si3N4) and YN.

Y3O3N、B2O3、BN、B3O3N、Al2O3
AlN、Al3O3N及びGa2O3の各粉床全便用し
て第1表に示しこ割合に各試料を配合し、已合したそれ
ぞれの試會をヘキサン浴媒甲WC基超便合金製ボールと
共にステンレス製容器の中で混合粉砕した。倚られた屁
合膀床をBN粉末で被抜した100×100mmの角形
カーボンモールド中に充填し、N2ガスで炉内を置換宏
150〜400Kz/cm3の成形圧力1700C〜1
900℃の温度、60〜120分の保付峙間で加圧焼結
した。各試料の製造栄件を第1人に示し、得られた焼結
体を中心部と外周部に分けて 約13×13×5mmに切断し、切断した各試料の品物
性を従来のY2O3−Al2O3−Si3N4禾況結坏
を比較にして求め、その結果を第2表に示した。
Y3O3N, B2O3, BN, B3O3N, Al2O3
Using the entire powder bed of AlN, Al3O3N, and Ga2O3, each sample was mixed in the proportions shown in Table 1, and the combined samples were placed in a stainless steel container along with a hexane bath medium WC-based superalloy ball. It was mixed and ground in a . The crushed bladder bed was filled into a 100 x 100 mm square carbon mold punched with BN powder, and the inside of the furnace was replaced with N2 gas.
Pressure sintering was carried out at a temperature of 900° C. for 60 to 120 minutes. The manufacturing quality of each sample was shown to the first person, and the obtained sintered body was divided into the center and the outer periphery and cut into approximately 13 x 13 x 5 mm. The Al2O3-Si3N4 bond was determined by comparison, and the results are shown in Table 2.

躬2表の結果、不発明の耐熱性窒化硅素焼結体は、鴎宏
宣で耐熱衝撃性及び破壊靭註値(KiC)が高く、比収
品であるY2O3−Al2O3−Si3N4系焼結本に
比べて焼結体の中心部と外周部の諸時性のパンツキが少
なく大型の決結坏でも均質に焼結できることが准認でき
た。ここで行った熱倫撃試験は、試料を容温度で2分間
保持後約20℃(常温)の水中に試桁を浸直して試料に
クランクが発生しないで耐える温度を示し、破壊靭性値
は30Kg荷厘でのビッカース圧痕から発生するクラッ
ク長さと圧痕の大きさ及びビッカース硬さから求めた。
As a result of Table 2, the uninvented heat-resistant silicon nitride sintered body has high thermal shock resistance and fracture toughness (KiC), and is superior to the Y2O3-Al2O3-Si3N4-based sintered body, which is a proprietary product. In comparison, we were able to confirm that there was less variation between the center and the outer periphery of the sintered body, and that even a large sintered piece could be sintered homogeneously. The thermal impact test conducted here shows the temperature at which the sample can withstand without cranking by holding the sample at the volume temperature for 2 minutes and then immersing the sample in water at approximately 20℃ (room temperature), and the fracture toughness value is It was determined from the crack length, the size of the indentation, and the Vickers hardness caused by the Vickers indentation with a 30 kg loader.

又とこで侍られた試料番号2の外周部をX祿回折及び螢
光X腺によって確認したところCo及びWが含有してい
ることが明らかになり、しかもWはタングステン硅化物
を形成していると考えられた。
When the outer periphery of sample number 2 was confirmed by X-ray diffraction and fluorescent X-rays, it was found that it contained Co and W, and W formed tungsten silicide. It was considered.

実施例2 実施例1で使用した1μmSi3N4とYSjO2N、
AlYN2、Al2YO3N、YSi4O2N5及びY
Al2Si3O3N5の複合化合物分用いて第3衣のよ
うに配合し、実施例1と同用にして各試料の混合粉末を
調整した。
Example 2 1 μm Si3N4 and YSjO2N used in Example 1,
AlYN2, Al2YO3N, YSi4O2N5 and Y
A composite compound of Al2Si3O3N5 was mixed as in the third coating, and mixed powder of each sample was prepared in the same manner as in Example 1.

この混合粉末を実施例1の製造条件に従って貌結し、得
られた焼結体の諸特注を実施例1と同様にして求め、そ
の結果を第4衣に示した。
This mixed powder was compacted according to the manufacturing conditions of Example 1, and various custom orders for the obtained sintered body were obtained in the same manner as in Example 1, and the results are shown in the fourth column.

実施例3 実施例1で使用した1μmSi3N4と各捗希土類化合
物とB、Al、Gaの化合物を用いて第5表のように配
合し、実流例1と同様にして各試料の混合粉末を調整し
た。この混合粉木を実施例1の製造条件に従って涜結し
、得られた焼結体の呟特性を第6表に示した。焼結体の
諸符注は、実施例1と同様にして求めた。
Example 3 Using the 1 μm Si3N4 used in Example 1, various rare earth compounds, and compounds of B, Al, and Ga, the mixture was blended as shown in Table 5, and the mixed powder of each sample was prepared in the same manner as Actual Example 1. did. This mixed wood powder was sintered according to the manufacturing conditions of Example 1, and the molding properties of the obtained sintered body are shown in Table 6. The notes for the sintered body were obtained in the same manner as in Example 1.

実施例4 芙励例1で使用した1μmSi3N4と不定比化合物の
YN0.85、Y3(03N)0.95及びAlN0.
90とAl2O3を用いて第7衣のように化合し、芙施
例1と同様にして各試料の混合例木を調整した。この混
合粉本を実施例1の表輩栄件で焼結条件は約10Kg/
cm3N2カス加圧焼結又はその後ArカスによるHI
P処月によって焼百し、得られた況紹体の諸特性を第8
衣に示しこ。睨結仮の請隆生は、実施例1と同用にして
永めた。
Example 4 The 1 μm Si3N4 used in Example 1 and the non-stoichiometric compounds YN0.85, Y3(03N)0.95 and AlN0.
90 and Al2O3 were combined as in Example 7, and a mixed example tree of each sample was prepared in the same manner as in Example 1. This mixed powder was sintered under the same condition as in Example 1, and the sintering conditions were approximately 10 kg/
cm3N2 gas pressure sintering or subsequent HI using Ar gas
8.
Show it on your clothes. Takao Uke's glaring kimono was used in the same way as in Example 1 and was made longer.

実流例5 実施例1の舐科奇岩2、芙占例2の試料番号13、実施
例3の試料町号22及び夾施例4の試料奇岩25の不己
力占古体こ比代用として実施例1と同用に成績したY2
O3−Al2O3−Si3N4焼結体を用い、それぞれ
の脱活体を中心部と外局部に切断した後CIS基準SN
P432及びSNCN54ZTNに成形して次の(A)
及び(B)乗件にて切削試涙を行って、その酌米を第9
六に示した。
Actual flow example 5 Implemented as a substitute for Fukiryokusenkotaikohi of Nashinina strange rock 2 of Example 1, sample number 13 of Fusen example 2, sample town number 22 of Example 3, and sample strange rock 25 of Example 4 Y2 achieved the same results as Example 1.
Using an O3-Al2O3-Si3N4 sintered body, each deactivated body was cut into a central part and an outer part, and then CIS standard SN
Molded into P432 and SNCN54ZTN and next (A)
and (B) perform a cutting test at the vehicle, and use the 9th cup of rice.
As shown in 6.

(A)旋例による拭妖采件 慴削材   FC35(350ψmm×1500mm)
切削速度     600m/min 切り込み       1.5mm 込り        0.7mm/rev切削時間  
     30min チップ形状      SNP432 (B)フライスによる切削試練末件 伝削材   肌坑鏑(HRC45)黒皮つき切削速度 
    270m/min 切り込み       4.5mm テーブル送り   600mm/min一刃車りの送り
 0.20mm/revチップ形状    SNCN5
4ZTN第9表の結果、本発明の耐熱団屋化硅素跣粕俸
は、旋削による耐厚耗注及びフライス切削による耐久頂
注において比戟品であるY2O3−Al2O3−Sj3
N4焼績体より置れでおり、しかも大きな形状に虎珀し
た屍結体の中心部と外周部との切削性能及び諸特性共に
殆んど差がなく品質的にも非宮に女足したものであるこ
とから大型の形状及び俵雑な形状が多い皿熱吐構造用材
料並びに多数個生腫を安水される機械工作用材料の工未
的生産に通ずる栃科及びその製造方法でめることが確認
できた。
(A) FC35 (350ψmm x 1500mm)
Cutting speed 600m/min Depth of cut 1.5mm Depth 0.7mm/rev Cutting time
30min Chip shape SNP432 (B) Cutting test with milling cutter High quality cutting material Hadako Kabura (HRC45) Cutting speed with black skin
270m/min Depth of cut 4.5mm Table feed 600mm/min Single blade wheel feed 0.20mm/rev Chip shape SNCN5
As a result of Table 9 of 4ZTN, the heat-resistant Danya-formed silicon hemlock of the present invention is Y2O3-Al2O3-Sj3, which is a comparable product in terms of wear resistance by turning and durability by milling.
It is better placed than the N4 fired body, and there is almost no difference in cutting performance and various characteristics between the center and the outer periphery of the corpse body, which has a large shape. Because of this, Tochishina and its manufacturing method lead to the unconventional production of dish-heated structural materials, which often have large shapes and irregular shapes, and materials for mechanical work, which are made with a large number of individual tumors. This was confirmed.

特許出頒人 東乏タンガロイ株式会社Patent distributor: Toho Tungaloy Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)布土頬元糸(Sc、Y及びランタニド元素を含む
)の水化物及び酸窒化物の少なくとも1埜0.5〜25
車量%とB、Al、Ga の酸化勿、釜化物及び酵菫化
物の少なくとも1橿0.5〜25重量%と残り屋化硅系
と不可避不純物から成ることを特徴とする耐熱性窒化硅
素焼結体。
(1) At least one hydride and oxynitride of cloth cheek yarn (containing Sc, Y and lanthanide elements) 0.5 to 25
A heat-resistant silicon nitride characterized by comprising: 0.5 to 25% by weight of at least one oxidized product of B, Al, and Ga, 0.5 to 25% by weight of an oxidized product of B, Al, and Ga, a residual silicon compound, and unavoidable impurities. Unglazed sintered body.
(2)布土類元素(Sc、Y及びランタニド元索全會む
)の室化吻及び戚輩化物の少なくとも1稚0、5〜25
重示%とB、At、Gaの酸化物、屋化物及びは窒化物
の少なくとも1種0,5〜25重量%と残り窒化硅素と
不可避不純物から成る混合粉末を粉末圧粉体又は成形体
にして非酸化性雰囲気中1500℃〜1900℃で加熱
焼結することを特徴とする耐熱江窒化硅累焼紹体の製造
方法。
(2) At least 1 year old 0, 5 to 25 of the pharyngeal proboscis and relatives of the earthen elements (Sc, Y and lanthanide originals)
A mixed powder consisting of 0.5% to 25% by weight of at least one of the oxides, oxides, and nitrides of B, At, and Ga, and the remainder silicon nitride and unavoidable impurities is made into a powder compact or compact. 1. A method for producing a heat-resistant silicon nitride sintered body, comprising heating and sintering it at 1500° C. to 1900° C. in a non-oxidizing atmosphere.
JP58071299A 1983-04-22 1983-04-22 Heat resistant silicon nitride sintered body and manufacture Granted JPS59199577A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58071299A JPS59199577A (en) 1983-04-22 1983-04-22 Heat resistant silicon nitride sintered body and manufacture
CA000452515A CA1223013A (en) 1983-04-22 1984-04-19 Silicon nitride sintered body and method for preparing the same
DE8484104449T DE3483588D1 (en) 1983-04-22 1984-04-19 Sintered silicon nitride molded body and process for its manufacture.
EP19840104449 EP0123292B1 (en) 1983-04-22 1984-04-19 Silicon nitride sintered body and method for preparing the same
US06/602,555 US4609633A (en) 1983-04-22 1984-04-20 Silicon nitride sintered body and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071299A JPS59199577A (en) 1983-04-22 1983-04-22 Heat resistant silicon nitride sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS59199577A true JPS59199577A (en) 1984-11-12
JPH0512297B2 JPH0512297B2 (en) 1993-02-17

Family

ID=13456638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071299A Granted JPS59199577A (en) 1983-04-22 1983-04-22 Heat resistant silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS59199577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247665A (en) * 1985-04-25 1986-11-04 東芝タンガロイ株式会社 Beta silicon nitride base oxynitride sintered body and manufacture
JPH03504959A (en) * 1989-01-17 1991-10-31 アライド―シグナル・インコーポレーテッド Ultra-tough monolithic silicon nitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175777A (en) * 1981-04-23 1982-10-28 Ube Industries Manufacture of silicon nitride sintered body
JPS58204874A (en) * 1982-05-20 1983-11-29 日産自動車株式会社 Silicon nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175777A (en) * 1981-04-23 1982-10-28 Ube Industries Manufacture of silicon nitride sintered body
JPS58204874A (en) * 1982-05-20 1983-11-29 日産自動車株式会社 Silicon nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247665A (en) * 1985-04-25 1986-11-04 東芝タンガロイ株式会社 Beta silicon nitride base oxynitride sintered body and manufacture
JPH0529630B2 (en) * 1985-04-25 1993-05-06 Toshiba Tungaloy Co Ltd
JPH03504959A (en) * 1989-01-17 1991-10-31 アライド―シグナル・インコーポレーテッド Ultra-tough monolithic silicon nitride

Also Published As

Publication number Publication date
JPH0512297B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
JPS59199579A (en) Abrasion resistant sialon base ceramics
JPS60502244A (en) Coated silicon nitride cutting tools
JP2001521874A (en) Platelet reinforced sintered compact
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPS59199581A (en) Abrasion resistant sialon base ceramics
AU603135B2 (en) An improved method for producing composite ceramic structures
JPS6256110B2 (en)
JPS6335589B2 (en)
JP2546709B2 (en) High strength cubic boron nitride containing sintered body
JPS59199577A (en) Heat resistant silicon nitride sintered body and manufacture
JP4111469B2 (en) WC-containing cemented carbide reinforced by intragranular dispersion with oxide and method for producing the same
EP0123292B1 (en) Silicon nitride sintered body and method for preparing the same
US5130279A (en) Silicon nitride based sintered material and process of manufacturing same
JP4110338B2 (en) Cubic boron nitride sintered body
JP4110339B2 (en) Cubic boron nitride sintered body
JPS59213676A (en) High strength silicon nitride sintered body and manufacture
JPH07172919A (en) Titanium-compound sintered material
JPS59207879A (en) High tenacity silicon nitride sintered body and manufacture
JPH07172924A (en) Highly tough sintered compact for tool and its production
JPH0379308B2 (en)
JPH0451512B2 (en)
JPH0537944B2 (en)
JP2840696B2 (en) Method for producing alumina fiber reinforced ceramics
JPH07172906A (en) Ceramic sintered compact
JPS6232151B2 (en)