JPS59207879A - High tenacity silicon nitride sintered body and manufacture - Google Patents
High tenacity silicon nitride sintered body and manufactureInfo
- Publication number
- JPS59207879A JPS59207879A JP58081334A JP8133483A JPS59207879A JP S59207879 A JPS59207879 A JP S59207879A JP 58081334 A JP58081334 A JP 58081334A JP 8133483 A JP8133483 A JP 8133483A JP S59207879 A JPS59207879 A JP S59207879A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- sintering
- silicon nitride
- elements
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、耐熱性溝造用材料、機械工作用材料特に切削
工具、耐摩耗材料及び耐食性材料に適する高靭性窒化硅
素焼結体及びその製造方法に関する、
窒化硅素は、共有結合性の強い化合物であり、高温で分
解及び蒸発したり、構成原子の自己拡散係数が小さいた
めに反応性が低かった沙、更にはイオン結晶及び金属結
晶に比べて粒界エネルギーと表面エネルギーの比が大き
いことから非常に焼結し雄い材料である。このために窒
化硅素を無加圧普通焼結法で焼結しても緻密な焼結体が
得られず一般にはMgO、Y2O3、Al 203 、
AIN等の焼結助剤を添加して反応焼結もしくは液相
焼結を利用した加圧焼結又は熱間静水圧加圧法(HIP
)等によって緻密な焼結体を得ている。この内、希土類
元素の酸化物であるY2O3と周期律表のI[a族元素
の酸化物であるMgOとから成る焼結助剤を添加した窒
化硅素焼結体が特開昭49−113803で試みられて
いる。このように焼結助剤としてY2O3とMgOを添
加した窒化硅素との混合粉末から成る圧粉体又は成形体
を小さな形状で試験的に焼結するときにはSi3N4粒
界相に焼結助剤を主体とする第2相が割合均一に分散し
ているために大きな問題が生じないが工業化を進めるた
めに複雑な形状又は大型の形状のものを焼結するとSi
3N4が焼結し難い材料のために焼結助剤との反応性が
悪かったり、焼−結炉の大型化によって生じる冷却速度
の問題から酸化物系焼結助剤を主体とする第2相がSi
3N4粒界相に不均一に分布して偏析するという問題が
生じる。このようにSi3N4と焼結助剤との反応性の
悪さ及び焼結助剤を主体とする第2相の偏析のためにS
i3N4焼結体内の緒特性のバラツキが大きくなったり
、強度低下の原因になることがら工業化し難いという問
題がある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-toughness silicon nitride sintered body suitable for heat-resistant grooving materials, machining materials, particularly cutting tools, wear-resistant materials, and corrosion-resistant materials, and a method for producing the same. , it is a compound with strong covalent bonding, and it decomposes and evaporates at high temperatures, and its reactivity is low because the self-diffusion coefficient of the constituent atoms is small. Furthermore, it has low grain boundary energy and surface properties compared to ionic crystals and metal crystals. It is an extremely sinterable and strong material because of its large energy ratio. For this reason, even if silicon nitride is sintered using a pressureless ordinary sintering method, a dense sintered body cannot be obtained, and generally MgO, Y2O3, Al203,
Pressure sintering using reactive sintering or liquid phase sintering with the addition of a sintering aid such as AIN, or hot isostatic pressing (HIP)
) etc. to obtain a dense sintered body. Among these, a silicon nitride sintered body to which a sintering agent consisting of Y2O3, which is an oxide of a rare earth element, and MgO, which is an oxide of an element of group I [a of the periodic table], was published in JP-A-49-113803. is being attempted. In this way, when a green compact or compact made of a mixed powder of silicon nitride to which Y2O3 and MgO are added as sintering aids is sintered experimentally in a small shape, the sintering aid is mainly contained in the Si3N4 grain boundary phase. Since the second phase is relatively uniformly dispersed, no major problems occur, but in order to promote industrialization, when sintering complex or large shapes, Si
Because 3N4 is a material that is difficult to sinter, it has poor reactivity with sintering aids, and because of problems with cooling speed caused by larger sintering furnaces, a second phase containing oxide-based sintering aids is used. is Si
A problem arises in that it is unevenly distributed and segregated in the 3N4 grain boundary phase. In this way, S
There is a problem that it is difficult to commercialize the i3N4 sintered body because the variation in properties within the i3N4 sintered body becomes large and causes a decrease in strength.
本発明は、上記のような問題点を解決し、Si3N4と
焼結助剤との反応性を容易にすることによって複雑な形
状品又は大型の形状品における焼結助剤を主とする第2
相の分散をSiN4焼結体内八
で均一にして、焼結体の強度、耐熱性及び靭性を高めた
窒化硅素焼結体及びその製造方法の提供を目的にしたも
のである。The present invention solves the above-mentioned problems and facilitates the reactivity between Si3N4 and the sintering aid, thereby making it possible to use a secondary sintering aid-based product in complex-shaped products or large-sized products.
The object of the present invention is to provide a silicon nitride sintered body and a method for manufacturing the same, in which phase distribution is made uniform within the SiN4 sintered body and the strength, heat resistance, and toughness of the sintered body are improved.
本発明の高靭性窒化硅素焼結体は、希土類元素の酸化物
の少なくとも1 鍾0.5〜25重景%と周期律表のn
a族元素の窒化物及び酸窒化物の少なくともl IN
O,5〜25重量%と残り窒化硅素と不可避不純物から
成る窒化硅素焼結体である。このように窒素を含有した
周期律表のllana族元素合物が焼結助剤中に存在す
ると周期律表のIlana族元素化物Qこ比較して分解
温度が低く、低温で活性化になるために希土類元素の酸
化物及び硬資相であるS i 3N4との反応性を高め
、又この反応ではアニオンイオンの移動が少ないために
Si3N4に部分的(こせよ窒素元素を介在にして焼結
助剤が固溶可能となると共にS i 3N4粒界に焼結
助剤が均一に分散して焼結が促進され、焼結後は焼結助
剤中に含有している窒素が焼結助剤を主体にして形成さ
れる第2相とS i 3N4硬質相との結合強度を高め
るために酸化物からなる焼結助剤にみられる焼結助−剤
の偏析、焼きむら、残留気孔及びSi3N4粒子の異常
成長等の弊害を防止することをできしかも第2相とS
i 3N4との結晶異方性から生じる内部応力も小さく
なるために複雑な形状品又は大型の形状品のものでも容
易に均質に焼結できると共に緻密で寸法精度の高い高靭
、性窒化硅素焼結体の作製が容易となる。ここで使用す
る焼結助剤の内、周期律表のna族元素の窒化物及び酸
窒化物の少なくとも1種は、希土類元素の酸化物と共を
こ焼結過程においてSi3N4粒界を均一に浸透分散し
なからSi3N4粒子を取り囲んで焼結助剤を主体とす
る均質な第2相の形成とこの周期律表のIIa族の化合
物から供給された第2相中の窒素とS i 3N4中の
窒素との相互拡散によすSi3N4&第2相との結合強
化に寄与すると共に焼結の促進と第2相の偏析の防止と
)こよって焼結体の緒特性の向上に寄与している。一方
焼結助剤として使用する希土類元素の酸化物は1.高温
強度の向上を主とする焼結体の緒特性を高めている。The high toughness silicon nitride sintered body of the present invention contains at least 0.5 to 25% of rare earth element oxides and n of the periodic table.
At least l IN of nitrides and oxynitrides of group a elements
It is a silicon nitride sintered body consisting of 5 to 25% by weight of O, and the remainder silicon nitride and unavoidable impurities. In this way, when a nitrogen-containing compound of the llana group elements of the periodic table is present in the sintering aid, the decomposition temperature is lower than that of the llana group element compounds of the periodic table, and it becomes activated at low temperatures. In addition, since the movement of anion ions is small in this reaction, Si3N4 is partially oxidized (with nitrogen element intervening to aid sintering). At the same time, the sintering aid is uniformly dispersed in the S i 3N4 grain boundaries, promoting sintering, and after sintering, the nitrogen contained in the sintering aid becomes a sintering aid. In order to increase the bonding strength between the second phase formed mainly of Si3N4 and the hard phase of Si3N4, the segregation of the sintering aid, uneven firing, residual pores, and Si3N4 found in the sintering aid made of oxide are used. It is possible to prevent harmful effects such as abnormal growth of particles, and the second phase and S
The internal stress caused by the crystal anisotropy with i3N4 is also reduced, so even products with complex or large shapes can be sintered easily and homogeneously. It becomes easy to produce a body. Among the sintering aids used here, at least one of nitrides and oxynitrides of elements in the group NA of the periodic table is used together with oxides of rare earth elements to uniformly form Si3N4 grain boundaries during the sintering process. Without penetrating and dispersing, a homogeneous second phase mainly composed of the sintering aid is formed surrounding the Si3N4 particles, and the nitrogen in the second phase supplied from the compound of group IIa of the periodic table and the nitrogen in the Si3N4 It contributes to strengthening the bond between Si3N4 and the second phase through interdiffusion with nitrogen, promotes sintering, prevents segregation of the second phase, and thereby contributes to improving the properties of the sintered body. . On the other hand, rare earth element oxides used as sintering aids are 1. It improves the properties of the sintered body, mainly improving high-temperature strength.
本発明の高強度窒化硅素焼結体の製造方法は、出発原料
として出来るだけ微細なS i 3N4粉末を使用する
ことが望ましく、このSi3N4粉末に希土類元素の酸
化物の少なくとも1種の粉末0.5〜25重量%と周期
律表のIlana族元素化物〆及び酸窒化物の少なくと
(1種の粉末0.5〜25重量%とを配合してもよく、
又は希土類元素の酸化物の少なくとも1種と周期律表の
na族元素の窒化物及び酸窒化物の少なくとも1種とか
らなる複合化合物粉末とSi3N4粉末とを配合して出
発原料としてもよく、更には希土類元素の酸化物の少な
くともI鍾と周期律表のllana族元素化物及び酸窒
化物の少なくとも1種とSi3N4とからなる複合化合
物粉末とSi3N4粉末を出発原料として配合して゛も
よく、特に複合化合物粉末を出発原料として使用すると
焼結体の組織が柱状化又は針状化するのを抑制し、窒素
を含有した周期律表のIlana族元素合物を焼結助剤
とすると焼結体の組成が板状化してアスペクト比の小さ
い粒子を形成する傾向にあり、アスペクト比の小さい粒
子形状の焼結体は耐熱箭♀性が向上するので切削工具の
ような局部的に苛酷な熱衝撃が加わる用途で使用する場
合(こ適している。In the method for producing a high-strength silicon nitride sintered body of the present invention, it is desirable to use as fine a Si3N4 powder as possible as a starting material. 5 to 25% by weight and at least 0.5 to 25% by weight of one type of powder of an Ilana group element of the periodic table and an oxynitride,
Alternatively, a composite compound powder consisting of at least one oxide of a rare earth element and at least one nitride or oxynitride of an element in the Na group of the periodic table and Si3N4 powder may be blended as a starting material, and may be blended as starting materials with Si3N4 powder and a composite compound powder consisting of at least an oxide of a rare earth element, at least one of an llana group element of the periodic table and an oxynitride, and Si3N4 powder. When powder is used as a starting material, the structure of the sintered body is prevented from becoming columnar or acicular, and when a nitrogen-containing compound of the Ilana group of the periodic table is used as a sintering aid, the composition of the sintered body is improved. tends to become plate-like and form particles with a small aspect ratio, and sintered bodies with a particle shape with a small aspect ratio have improved heat resistance, so they are subjected to locally severe thermal shock such as with cutting tools. When used for purposes (this is suitable.
本発明の高強度窒化硅素焼結体の製造方法(こおいて、
出発原料として使用するSi3N4粉末番よ、高純度の
ものが望ましいがSi3N4粉末の不純q勿として含有
しているAl、Fe等が2重量%以下混在していたり、
又はS i 3N4粉末粒子の表面暑こ酸素力;吸着し
てS i02を形成して(・たり、更4こ番よ6己・き
した粉末を容器に入れてAl2O3ポール、ヌチールボ
ール又は超硬合金ボール等で混合粉砕するとき※こ容器
及びこれらのボー/しから混入してくる不糸屯1勿力;
5重量%以下ならば焼結助剤の量及び焼週1吉助剤「]
1の窒素含有量を調整すること4こより充分を二本発明
の高強度窒化硅素焼結体の諸特性を保持することができ
る。例えば混合粉砕どきをこ使用する超硬合金ボール等
から混入する周期律表のIa族元素、■a族元素及び■
a族元素の炭化物及び窒化物等は、本発明の焼結体にお
(・て耐摩耗性の1向上を′−役立つ傾向にあり、出発
原料と混合粉砕どきの容器及びボールから混入する5i
02.AI及びFe族元素は、硬質相である5iaN4
中の硅素と窒素のオ目互拡散反応を促進し、特にS i
Ozは343N4本来の分解温度を低下させるためにS
i3N4と焼結助剤との反応を低温側で生じさせて焼結
の促進と緻密化に寄与する傾向にある。又、周期律表の
Ia族元素であるLi、Na、にの酸化物、窒化物、酸
窒化物は、液相生成の促進によって焼結の向上と緻密化
に寄与した後一部は分解除去されて、周期律表のI[a
族化合物の一部の役割を補助するので本発明の高強度窒
化硅素焼結体の諸特性を低下させない範囲内で添加させ
ることもできる。ここで使用する出発原料としてのSi
3N4は、α−3i3N4.β−3i3N4゜非晶質の
Si3N4又はこれ゛ら・の結晶構造の異なるS i
3N4を任意の比率に混合したものを使用してもよい。Method for manufacturing a high-strength silicon nitride sintered body of the present invention (herein,
It is desirable that the Si3N4 powder used as a starting material be of high purity, but it may contain less than 2% by weight of Al, Fe, etc., which are contained as impurities in the Si3N4 powder.
Or, the surface heat of Si3N4 powder particles can be adsorbed to form Si02. When mixing and pulverizing with a bowl, etc., there will be a lot of waste mixed in from the container and these bowls.
If it is less than 5% by weight, the amount of sintering aid and sintering aid 1.
By adjusting the nitrogen content (1), the various properties of the high-strength silicon nitride sintered body of the present invention can be more fully maintained. For example, Group Ia elements of the periodic table, ■ Group A elements, and ■
Carbides, nitrides, etc. of Group A elements tend to help improve the wear resistance of the sintered body of the present invention.
02. AI and Fe group elements are hard phase 5iaN4
It promotes the interdiffusion reaction between silicon and nitrogen in Si
Oz is S to lower the original decomposition temperature of 343N4.
There is a tendency for the reaction between i3N4 and the sintering aid to occur on the low temperature side, contributing to the promotion of sintering and densification. In addition, oxides, nitrides, and oxynitrides of Li, Na, and other Group Ia elements of the periodic table contribute to improved sintering and densification by promoting liquid phase formation, and then some of them are decomposed and removed. I[a of the periodic table
Since it assists some of the roles of group compounds, it can be added within a range that does not reduce the various properties of the high-strength silicon nitride sintered body of the present invention. Si as the starting material used here
3N4 is α-3i3N4. β-3i3N4゜Amorphous Si3N4 or these Si with different crystal structures
A mixture of 3N4 in any ratio may be used.
又焼結助剤として使用する周期律表のIa族元素の窒化
物及び酸窒化物は重比化合物又は不定比化合物でもよい
。これらの窒素含有化合物は、大気中で酸化され易いの
で出来れば窒素ガス等の不活性ガス封入の状態で取扱う
のがよいが複合化合物の状態にするのが更によい。Further, the nitrides and oxynitrides of Group Ia elements of the periodic table used as sintering aids may be polymeric compounds or non-stoichiometric compounds. Since these nitrogen-containing compounds are easily oxidized in the atmosphere, it is preferable to handle them in a state filled with an inert gas such as nitrogen gas, but it is even better to handle them in the state of a composite compound.
本発明の製造方法において、各種の出発原料を混合又は
混合粉砕した粉末を混合粉末の状態で焼結用モールドに
詰めて、粉末圧粉体にしたり、成形モールドで成形体に
したり、成形モールドで成形体にして後焼結温度より低
い温度で予備焼結したり又は予備焼結後成形加工した成
形体を真空を含めた非酸化性雰囲気中で普通焼結(無加
圧焼結も含む)、高周波加圧焼結、通電加圧焼結、ガス
加圧焼結及びホットプレス等の方法をこより焼結したり
又はこれらの焼結方法と静水圧加圧法を組合せて焼結体
の緻密化を促進する方法もできる。焼結温度は、焼結方
法又は配合成分によっても異なるが1500〜1900
℃の温度内で充分に緻密な焼結体が得られる。In the manufacturing method of the present invention, various starting materials are mixed or mixed and pulverized, and the powder is packed in a mixed powder state into a sintering mold to form a powder green compact, or a molded body is formed into a compact, or The compact is pre-sintered at a temperature lower than the post-sintering temperature, or the compact is formed after pre-sintering and is normally sintered in a non-oxidizing atmosphere including vacuum (including pressureless sintering). , high-frequency pressure sintering, current pressure sintering, gas pressure sintering, hot press, etc., or by combining these sintering methods with hydrostatic pressing to densify the sintered body. There are also ways to promote this. The sintering temperature varies depending on the sintering method or blended ingredients, but is between 1500 and 1900.
A sufficiently dense sintered body can be obtained within a temperature range of .
ここで使用して5きた希土類元素とは、Sc T Y
+L a r Ce + P r + N d + P
mt Sm+ E u * G d + T b +
D y tHo、Er、Tm、Yb及びLuの177元
素総称し、周期律表のIa族元素とはBe 、Mg 、
Ca 、 Sr 。The rare earth elements used here are Sc T Y
+L a r Ce + P r + N d + P
mt Sm+ E u * G d + T b +
D y tHo, Er, Tm, Yb, and Lu are the 177 elements, and group Ia elements of the periodic table are Be, Mg,
Ca, Sr.
Ba及びRa の6元素を総称したものである。It is a general term for six elements: Ba and Ra.
ここで数値限定した理由について説明する。The reason for limiting the numerical value will be explained here.
希土類元素の酸化物の少な(とも1種が0.5重、量%
未満では焼結助剤を主体にして形成される第2相の高温
強度が低く、このために焼結体自体の強度も低下し、2
5重量%を超えて多くなると相対的にS i 3N4量
が少なくなって焼結体の硬さが低下して耐摩耗性及び耐
熱性が低下するために0.5〜25重量%とした。Low amount of oxides of rare earth elements (0.5% by weight for each type)
If the temperature is less than 2, the high-temperature strength of the second phase formed mainly from the sintering aid will be low, and the strength of the sintered body itself will also decrease.
If the amount exceeds 5% by weight, the amount of S i 3N4 becomes relatively small and the hardness of the sintered body decreases, resulting in a decrease in wear resistance and heat resistance.
周期律表のIIaIa族元素化物及び酸窒化物の少なく
とも1孤が0.5重量%未満ではS i 3N4の焼結
促進効果が弱く、25重量%を超えて多くなると相対的
にS i 3N4量が少なくなるのと焼結助剤を主体に
して形成される第2相中に低級硅酸塩が残存し易く焼結
体の硬さ低下及び強度低下となるたl/)に0.5〜2
5重量%とした。If at least one group IIaIa element compound and oxynitride of the periodic table is less than 0.5% by weight, the effect of promoting sintering of Si 3N4 is weak, and if it exceeds 25% by weight, the relative amount of Si 3N4 decreases. 0.5 to 0.5 to l/), and lower silicates tend to remain in the second phase formed mainly from the sintering aid, resulting in a decrease in the hardness and strength of the sintered body. 2
The content was 5% by weight.
実施例1
平均粒径1μmの5isN4(約40%アモルファスS
i3N4とα−3i 3N4とβ−3i3N4の混在)
、平均粒径2μmの5iaN4(約95%(! −Si
3N4とβ−3i3N4の混在)、平均粒径5μmの、
5i3N4(約70%α−3i 3N4とβ−8i3N
4 の混在)とY2O3、MgaN2及びMg 4 O
N 2 の各粉末を使用して第1表(こ示した割合に
各試料を配合し、配合したそれぞれの試料をヘキサン溶
媒中WC基超硬合金製ボールと共にヌテンレス製容器の
中で混合粉砕した。得られた混合粉末なりN粉末で被覆
した1 00mm×100+++mの角形カーボンモー
ルド中に充填し、N2ガヌで炉内を置換後150〜40
0′Mの成形圧力、1700℃〜1850℃の温度、6
0〜120分の保持時間で加圧焼結した。各試料の製造
条件を第1表に示し、得られた焼結体を中心部(内部)
と外周部に分けて約13X13X5si4こ切断し、Y
2O3−MgO−S i 3N4系焼結体を比較にして
切断した各試料の緒特性を求めてその結果を第2表に示
した。Example 1 5isN4 (approximately 40% amorphous S) with an average particle size of 1 μm
i3N4 and α-3i 3N4 and β-3i3N4 mixture)
, 5iaN4 (approximately 95% (!-Si
3N4 and β-3i3N4), with an average particle size of 5 μm,
5i3N4 (approximately 70% α-3i 3N4 and β-8i3N
4) and Y2O3, MgaN2 and Mg4O
Using each powder of N2, each sample was blended in the ratio shown in Table 1 (Table 1), and each blended sample was mixed and ground in a Nutenless container with WC-based cemented carbide balls in a hexane solvent. The obtained mixed powder was filled into a 100mm x 100+++m square carbon mold coated with N powder, and after replacing the inside of the furnace with N2 gas,
Molding pressure of 0'M, temperature of 1700°C to 1850°C, 6
Pressure sintering was performed with a holding time of 0 to 120 minutes. The manufacturing conditions for each sample are shown in Table 1, and the obtained sintered body is
Cut approximately 13X13X5si4 pieces into the outer periphery, and
The characteristics of each cut sample of the 2O3-MgO-S i 3N4 based sintered body were determined and the results are shown in Table 2.
以下余白
第2表の結果、本発明の高靭性窒化硅素焼結体は、高硬
度で耐熱筒qP性及び破壊靭性値(Kic)が高く、比
較品であるY2O3−Mg O−Si 3N4系焼結体
に比べて焼結体の中心部と外周部の緒特性のバラツキが
少なく大型の形状品でも均質に焼結できることが確認で
きた。ここで行った熱衝撃試験は、試料を各温度で2分
保持後約20℃(常温)の水中に試料を浸漬して試料に
クラックが発生しないで耐える温度を示し、破壊靭性値
は301cg荷重でのビッカース圧痕から発生するクラ
ック長さと圧痕の大きさ及びビツカーヌ硬さから求めた
。The results shown in Table 2 below show that the high-toughness silicon nitride sintered body of the present invention has high hardness, heat-resistant cylinder qP properties, and fracture toughness (Kic), and is superior to the Y2O3-Mg O-Si 3N4-based sintered body, which is a comparative product. It was confirmed that there was less variation in the properties of the core and outer periphery of the sintered body compared to the solid body, and that even large-sized products could be sintered homogeneously. In the thermal shock test conducted here, the sample was held at each temperature for 2 minutes and then immersed in water at approximately 20℃ (room temperature), and the sample showed the temperature it could withstand without cracking, and the fracture toughness value was 301cg load. It was determined from the length of the crack generated from the Vickers indentation, the size of the indentation, and the Vickers hardness.
又ここで得られた試着番+j−2の外周部をXa回折及
び蛍光X 8kによって確認したところCo及びWが含
有していることが明らかになり、しかもWはタングステ
ン硅化物を形成していると考えられた。Furthermore, when the outer periphery of the trial fitting number +j-2 obtained here was confirmed by Xa diffraction and fluorescence It was considered.
実施例2
実施例1で使用したI tt m Si3N4とMgS
iN2゜Y2Mg303N2. Y2O3、Mg5N2
.Mg4ON2と他の希土類酸化物及び周期律表のna
族の化合物を用いて第3表のように配合し、実゛流側1
と同様にして各試料の混合粉末を調整した。この混合粉
末を実施例1の製造条件に従って焼結し、得られた焼結
体の開時性を実施例1と同様にして測定I−て、その測
定結果を第4表に示した。Example 2 I tt m Si3N4 and MgS used in Example 1
iN2゜Y2Mg303N2. Y2O3, Mg5N2
.. Mg4ON2 and other rare earth oxides and periodic table na
Compounds according to Table 3 are used, and the actual flow side 1
A mixed powder of each sample was prepared in the same manner as above. This mixed powder was sintered according to the manufacturing conditions of Example 1, and the opening property of the obtained sintered body was measured in the same manner as in Example 1. The measurement results are shown in Table 4.
以下余白
実施例3
実施例1の試料番号2及び3と実施例2の試料番号IO
及び11の本発明の焼結体に比較用として第2表に示し
たY2O3−Mg O−S 13N4系焼結体を用いて
、それぞれのuQ結体を中心部と外周部に切断した後C
IS基準5NP432及び5NCN54ZTNに成形し
て次の(イ)及び0条件(こて切削試験を行い、その結
果を第5表Oこ示した。Below is the margin Example 3 Sample numbers 2 and 3 of Example 1 and sample number IO of Example 2
The Y2O3-Mg O-S 13N4-based sintered bodies shown in Table 2 were used for comparison in the sintered bodies of the present invention and No. 11, and each uQ body was cut into the center and the outer periphery.
It was molded into IS standard 5NP432 and 5NCN54ZTN and subjected to trowel cutting tests under the following conditions (A) and 0, and the results are shown in Table 5.
(イ)旋削による切削試験条件
被削材 Fe25 (350ψX 1500)切削速
度 600 rr7m i n
切り込み 1.5 +、フ1,1
送 リ Q、8 、、/ revチ
ップ形状5NP432
切削時間 30m1n
(ト) フライスによる切削試験条件
被削材 肌焼鋼(HRc40) 黒皮付き切削速度
250 m/min
切り込み 4.5 rr、rtt
テーブル送り600mm/m i n
−刀当りの送り 0.20my’revチップ形状
5NCN54ZTN
第5表の結果、本発明の高靭性窒化硅素焼結体は、旋削
による耐摩耗性及びフライス−による耐欠損性共に安定
した性能を示し、特にY2O3−MgO−3i3N4系
焼結体に比べて焼結体の中心部と外周部との差が殆んど
ないことから大型の形状及び複雑な形状が多い耐熱性構
造用材料並びに多数個の生産を要求される機械工作用材
料の工業的年産に適する材料及びその製造方法であるこ
とが確認できた。(a) Cutting test conditions by turning Work material Fe25 (350ψ Cutting test conditions with milling cutter Work material Case hardened steel (HRc40) Cutting speed with black scale 250 m/min Depth of cut 4.5 rr, rtt Table feed 600 mm/min - Feed per knife 0.20 my'rev Chip shape
5NCN54ZTN As shown in Table 5, the high-toughness silicon nitride sintered body of the present invention exhibits stable performance in both wear resistance by turning and chipping resistance by milling, and is particularly superior to Y2O3-MgO-3i3N4-based sintered body. Because there is almost no difference between the center and the outer periphery of the sintered body, it is suitable for industrial use in heat-resistant structural materials, which often have large and complex shapes, and materials for mechanical work, which require production in large numbers. It was confirmed that the material and manufacturing method are suitable for annual production.
以下余白 45iMargin below 45i
Claims (2)
)の酸化物の少なくとも1種0.5〜25重量%と周期
律表のla族元素(Be、Mg、Ca、Sr。 Ba及びRa)の窒化物及び酸窒化物の少なくとも1種
0.5〜25重量%と残り窒化硅素と不可避不純物から
成ることを特徴とする高靭性窒化硅素焼結体。(1) 0.5 to 25% by weight of at least one kind of oxide of rare earth elements (including Sc, Y and lanthanide elements) and elements of Group I of the periodic table (Be, Mg, Ca, Sr, Ba and Ra) A high toughness silicon nitride sintered body comprising 0.5 to 25% by weight of at least one of nitrides and oxynitrides, and the remainder silicon nitride and unavoidable impurities.
)の酸化物の少なくとも1種0.5〜25重景%と周期
律表の[a族元素(Be、Mg、Ca、Sr、Ba及び
Ra )の窒化物及び酸窒化物の少なくとも1種0.5
〜25重量%と残り窒化硅素と不可避不純物から成る混
合粉末を粉末圧粉体又は成形体にして非酸化性雰囲気中
1500℃〜1900℃ で加熱焼結することを特徴と
する高靭性窒化硅素焼結体の製造方法。(2) 0.5 to 25% of at least one oxide of rare earth elements (including Sc, Y, and lanthanide elements) and group a elements (Be, Mg, Ca, Sr, Ba, and At least one of nitrides and oxynitrides of Ra) 0.5
High-toughness silicon nitride sintering, characterized in that a mixed powder consisting of ~25% by weight, the remainder silicon nitride, and unavoidable impurities is made into a powder compact or molded body and heated and sintered at 1500°C to 1900°C in a non-oxidizing atmosphere. Method for producing solids.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58081334A JPS59207879A (en) | 1983-05-10 | 1983-05-10 | High tenacity silicon nitride sintered body and manufacture |
EP19840104449 EP0123292B1 (en) | 1983-04-22 | 1984-04-19 | Silicon nitride sintered body and method for preparing the same |
DE8484104449T DE3483588D1 (en) | 1983-04-22 | 1984-04-19 | Sintered silicon nitride molded body and process for its manufacture. |
CA000452515A CA1223013A (en) | 1983-04-22 | 1984-04-19 | Silicon nitride sintered body and method for preparing the same |
US06/602,555 US4609633A (en) | 1983-04-22 | 1984-04-20 | Silicon nitride sintered body and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58081334A JPS59207879A (en) | 1983-05-10 | 1983-05-10 | High tenacity silicon nitride sintered body and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59207879A true JPS59207879A (en) | 1984-11-26 |
JPH0379309B2 JPH0379309B2 (en) | 1991-12-18 |
Family
ID=13743477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58081334A Granted JPS59207879A (en) | 1983-04-22 | 1983-05-10 | High tenacity silicon nitride sintered body and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59207879A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114949001A (en) * | 2012-08-29 | 2022-08-30 | 加州理工学院 | Diagnosis and treatment of autism spectrum disorders |
-
1983
- 1983-05-10 JP JP58081334A patent/JPS59207879A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0379309B2 (en) | 1991-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001521874A (en) | Platelet reinforced sintered compact | |
US5439855A (en) | Silicon nitride ceramics containing a dispersed pentamolybdenum trisilicide phase | |
EP0035777A1 (en) | Abrasion resistant silicon nitride based articles | |
JPS59199581A (en) | Abrasion resistant sialon base ceramics | |
US4433979A (en) | Abrasion resistant silicon nitride based articles | |
JPH0777986B2 (en) | Manufacturing method of silicon carbide sintered body | |
JPS6335589B2 (en) | ||
EP0185224A2 (en) | Abrasion resistant silicon nitride based articles | |
EP0441316B1 (en) | Silicon nitride based sintered material and process of manufacturing same | |
JPS59207879A (en) | High tenacity silicon nitride sintered body and manufacture | |
JP3145470B2 (en) | Tungsten carbide-alumina sintered body and method for producing the same | |
EP0123292B1 (en) | Silicon nitride sintered body and method for preparing the same | |
JP3146803B2 (en) | Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance | |
JPS59199584A (en) | Silicon nitride base sintered body | |
EP0095129B1 (en) | Composite ceramic cutting tool and process for making same | |
JPH0512297B2 (en) | ||
JPS59213676A (en) | High strength silicon nitride sintered body and manufacture | |
JPH0451512B2 (en) | ||
JP2742620B2 (en) | Boride-aluminum oxide sintered body and method for producing the same | |
JP2794122B2 (en) | Fiber reinforced ceramics | |
JP2997334B2 (en) | Fiber reinforced ceramics | |
JPH07172906A (en) | Ceramic sintered compact | |
JPS6232151B2 (en) | ||
JPS6257598B2 (en) | ||
JPH05170520A (en) | Fiber-reinforced ceramics |