JPS59181081A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS59181081A
JPS59181081A JP5412483A JP5412483A JPS59181081A JP S59181081 A JPS59181081 A JP S59181081A JP 5412483 A JP5412483 A JP 5412483A JP 5412483 A JP5412483 A JP 5412483A JP S59181081 A JPS59181081 A JP S59181081A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
region
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5412483A
Other languages
Japanese (ja)
Inventor
Kenji Endo
健司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5412483A priority Critical patent/JPS59181081A/en
Publication of JPS59181081A publication Critical patent/JPS59181081A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the element characteristic by forming a semiconductor multilayer layer having an active layer, a waveguide layer and a clad layer on a semiconductor substrate having a slot, forming the waveguide layer corresponding to the slot, and reversing the conductive type of the active layer. CONSTITUTION:An N type AlGaAs clad layer 43 is formed on an N type GaAs substrate 46 formed with a slot 70, and an N type AlGaAs waveguide layer 45 is further formed. The layer 45 has fast growing velocity on the slot 70, and the thickness becomes large. An N type AlGaAs active layer 1, a P type AlGaAs clad layer 2 and an N type GaAs cap layer 4 are sequentially formed thereon. A P type impurity such as Zn is selectively diffused in the regions 9, 10 in response to the position of the slot 70, the conductive type of the layer 1 is converted from N type to P type, thereby forming a striped oscillation region.

Description

【発明の詳細な説明】 本発明は、光フアイバー通信用の光源や、各種の記録媒
体への情報の瞥き込み用の光源あるいは読み出し用の光
源などとして用いられる半導体レーザ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser element used as a light source for optical fiber communication, a light source for viewing information on various recording media, a light source for reading information, and the like.

これらいずれの用途においても半導体素子は閾値電流が
低く、外部量子効率が高いことと、寿命が長いこととが
要求される。ところが、従来技術では閾値電流や外部量
子効率で現わされる素子特性と寿命との両性能に優れた
半導体レーザ素子全得ることは困難であった。
In any of these applications, semiconductor devices are required to have a low threshold current, high external quantum efficiency, and long life. However, with the prior art, it has been difficult to obtain all semiconductor laser devices that are excellent in both device characteristics expressed by threshold current and external quantum efficiency, and lifetime.

まず従来提案されている半導体レーザ素子について説明
し、いずれの点に問題があるのかを明らかにする。
First, conventionally proposed semiconductor laser devices will be explained, and which points have problems will be clarified.

発振領域の体積が微小で、そこへ選択的に電流を注入す
る素子構造によシ、効率よく発振させ。
The volume of the oscillation region is minute, and the device structure selectively injects current into it, allowing for efficient oscillation.

閾値電流値や外部微分量子効率などの素子特性に優れた
半導体レーザ素子が実現されている。しかし、それらの
多くが1発振領域が反射面に露出した構造であp、この
露出した領域に起因する劣化が発生する。この劣化の発
生機構には大別して2種類あって、一つは発振光による
光励起を受けて前記領域の酸化反応が進行し、素子特性
が徐々に劣化するものであり、他の一つは、大きな光出
力で動作させたときに前記領域の反射面結晶が発振光の
高密匿なエネルギーによって損傷を受けて瞬時に起こる
劣化である。発振領域が反射面に露出した構造の各棟の
半導体レーザ素子は、いずれもこれらの劣化の発生によ
って寿命が制限されておシ、また動作可能な光出力の大
きさも限定されている。反射面を透明な防電体膜で保強
することによって劣化の進行が抑制され、鋸台が延長さ
れているが、充分な効果が得られていない。
Semiconductor laser devices with excellent device characteristics such as threshold current value and external differential quantum efficiency have been realized. However, most of them have a structure in which one oscillation region is exposed on the reflective surface, and deterioration occurs due to this exposed region. There are two types of mechanisms for this deterioration. One is that the oxidation reaction progresses in the region upon optical excitation by oscillated light, and the device characteristics gradually deteriorate. This is a deterioration that occurs instantaneously when the reflective surface crystal in the area is damaged by the highly concentrated energy of the oscillation light when operated with a large optical output. The semiconductor laser elements in each building, which have a structure in which the oscillation region is exposed on the reflective surface, have a limited lifetime due to the occurrence of these deteriorations, and are also limited in the amount of optical output that can be operated. The progression of deterioration has been suppressed by reinforcing the reflective surface with a transparent electrically shielding film, and the saw table has been lengthened, but sufficient effects have not been achieved.

これに対して、反射面に発光領域が蕗出していない構造
を採用することによって1反射面に起因する劣化問題全
根本的に解決する提案が行なわれている。第1図に、そ
のような構造の半導体レーザ索子の代表的なものとして
知られているウィンドウ拳ストライン型半導体し−ザ素
子の斜視図を示す。第2図は第1図のA−A’位置での
矢視断面図である。n−AtXoal−XAS活性層1
(OくXく1)と、それを両面からはさむI) Aty
Gal −yAsクラッド層2及びn ’ AtyG 
aニーyA5 クラッド層3 (x<y<1 )とでダ
ブルへテロ接合が形成されておりs  p型不純物例え
はZnを拡散して形成されたストライプ領域9及び10
(第2図においては斜線を互いに異なる向きに入れて区
別しである)によって活性層1の一部へ選択的に電流全
注入し、レーザ発振を実現している。このストライプ領
域9及びIOの端は、反射面から充分隔てて設けておシ
、発振領域は反射面に露出していない。また、ストライ
プ領域10は深さが活性層1にまで達し、その領域の導
電型はnからp型に変換されている。このため、この領
域は、活性層lのうちn型のままである他の領域に比較
して禁制帯幅が狭く、屈折率が大きくなっている。従っ
て、活性層の反射面に蕗出した領域とその近傍は発振光
に対して透明になっておシ11反射の酸化や光学横部に
よる劣化が根本的に改善されている。ところが、この構
造では9発振光が発振領域と反射面との間を往復する間
に発振光の空間分布とくに活性層に平行な面内での分布
が著しく広が9、反射面からの反射光が発振領域に返還
される効率が低下するのは避けられない。それは、横方
向の光導波機能を兼ねていた発振領域が1反射面近傍で
途切れているからでおる。この結果、閾値電流値が大き
くて、外部微分量子効率が低い素子しか得られなかった
In response to this, a proposal has been made to fundamentally solve the problem of deterioration caused by one reflective surface by adopting a structure in which the light emitting region does not protrude on the reflective surface. FIG. 1 shows a perspective view of a window fist line type semiconductor laser element known as a typical semiconductor laser element having such a structure. FIG. 2 is a sectional view taken along the line AA' in FIG. 1. n-AtXoal-XAS active layer 1
(OkuXku1) and sandwich it from both sides I) Aty
Gal-yAs cladding layer 2 and n'AtyG
A double heterojunction is formed with the cladding layer 3 (x<y<1) and the stripe regions 9 and 10 formed by diffusing p-type impurities, for example Zn.
(In FIG. 2, the diagonal lines are placed in different directions to distinguish them.) All of the current is selectively injected into a part of the active layer 1 to realize laser oscillation. The ends of the stripe region 9 and IO are provided at a sufficient distance from the reflective surface, and the oscillation region is not exposed to the reflective surface. Further, the depth of the stripe region 10 reaches the active layer 1, and the conductivity type of the region is converted from n to p type. Therefore, this region has a narrower forbidden band width and a higher refractive index than other regions of the active layer l that remain n-type. Therefore, the protruding region on the reflective surface of the active layer and its vicinity become transparent to the oscillated light, and the oxidation of the reflection of the shield 11 and the deterioration caused by the optical lateral portion are fundamentally improved. However, in this structure9, while the oscillated light travels back and forth between the oscillation region and the reflective surface, the spatial distribution of the oscillated light, especially in the plane parallel to the active layer, expands significantly9, and the reflected light from the reflective surface It is unavoidable that the efficiency with which the light is returned to the oscillation region decreases. This is because the oscillation region, which also served as a lateral optical waveguide function, is interrupted near one reflecting surface. As a result, only devices with large threshold current values and low external differential quantum efficiency were obtained.

第3図は別の構造によシ反射面に起因する劣化問題を解
決したクラ/り争トランスバース・ジャンクション・ス
トライプ型半導体レーザ素子の斜視図である。第4図は
同素子のB−B’位置での矢視断面図である。n−At
Xoal−エA8活性層1と、それケ挾む2つのn−A
z、Ga1−y As層12及び3とが絶縁性GaAs
基板16上に設けられておplそこへp型不純物を選択
的に拡散することによってpn接合を形成している。p
型に変換された領域のうちp濃度の高い領域20は電流
の経路となるだけであるが、21の領域はp濃度を制御
されて作成されておシ、活性層1と交わる領域が発振領
域となる。この領域の禁制帯幅が、活性層1のうちn型
のままである他の領域よシも狭くなっているのはウィン
ドウ・ストライプ型半導体レーザの場合と同じである。
FIG. 3 is a perspective view of a cross-contact transverse junction stripe type semiconductor laser device in which the problem of deterioration caused by a reflective surface is solved by a different structure. FIG. 4 is a cross-sectional view of the same element taken along the line BB'. n-At
Xoal-Air A8 active layer 1 and two n-A
z, Ga1-y As layers 12 and 3 are insulating GaAs
A p-n junction is formed by selectively diffusing p-type impurities into a layer provided on the substrate 16. p
Among the converted regions, the region 20 with a high p concentration serves only as a current path, but the region 21 is created with the p concentration controlled, and the region intersecting with the active layer 1 becomes an oscillation region. becomes. The forbidden band width of this region is narrower than that of other regions of the active layer 1 that remain n-type, as in the case of the window stripe type semiconductor laser.

ただし1反射面近傍でクランク状に折れ曲がっておシ、
折れ曲りた部分は、主たる部分と軸の位置が異なるため
1発振には寄与しない。このクランク状の構造によシ2
2発振光反射面に照射する部分は、透明なn−AtxG
al−XA、活性層1が位置することになり、反射面劣
化が発生しない。ところが、ウィンドウ拳ストライプ型
半導体レーザの場合と同様に9発振光が発振領域と反射
面との間を往復する間に発振光の空間分布が広がシ発振
光の反射面からの返還効率が著しく低下する結果、素子
特性が低下するのは避けられない。
However, it bends into a crank shape near the first reflecting surface.
The bent portion does not contribute to one oscillation because the axis position is different from that of the main portion. Due to this crank-like structure,
The part that irradiates the two-oscillation light reflection surface is transparent n-AtxG.
Al-XA and the active layer 1 are located therein, so that deterioration of the reflective surface does not occur. However, as in the case of the window-fisted stripe type semiconductor laser, the spatial distribution of the 9-oscillated light expands as it travels back and forth between the oscillation region and the reflective surface, and the return efficiency of the oscillated light from the reflective surface is significantly reduced. As a result, it is inevitable that the device characteristics will deteriorate.

本発明の目的は、素子特性に曖れしかも寿命の長い半導
体レーザ素子の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser device that has ambiguous device characteristics and has a long lifetime.

本発明によれば、溝を有する半導体基板と、第1の導電
型の活性層と、この活性層に隣接しこの活性層よシも禁
制帯幅が広くかつ屈折率が小さい導波層と、これらの層
を両側から挾みこれらいずれの層よシも屈折率が小さい
第1と第2のクラッド層とからなシ前記半導体基板の前
記溝のある側に成長させである半導体多層膜と、前記活
性層のうち発振領域に選択的に電流を注入する手段とを
備え、前記溝に対応した位置で少なくとも前記導波層の
厚さが厚く形成してあシ、前記活性層のうち前記溝に対
応した位置にあってかつ共振器を形成する一対の反射面
の近傍を除いた領域の前記活性層が第2の導電型に変換
してあシ、前記発振領域は主として第2の導電型に変換
しである前記領域であることを特徴とする半導体レーザ
素子が得られる。
According to the present invention, a semiconductor substrate having a groove, an active layer of a first conductivity type, a waveguide layer adjacent to the active layer and having a wider forbidden band width and a smaller refractive index than the active layer; a semiconductor multilayer film grown on the grooved side of the semiconductor substrate, comprising first and second cladding layers sandwiching these layers from both sides and having a smaller refractive index than any of these layers; means for selectively injecting a current into an oscillation region of the active layer, the waveguide layer being thicker at least at a position corresponding to the groove; The active layer in a region located at a position corresponding to , excluding the vicinity of a pair of reflective surfaces forming a resonator, is converted to the second conductivity type, and the oscillation region is mainly of the second conductivity type. There is obtained a semiconductor laser device characterized in that the region is converted to .

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第5図は本発明の第1の実施例の斜視図であシ、第6図
は第5図のc−c’位置での矢視断面図である。この層
構造を作成するには、あらかじめ溝7゜を形成したn5
GaA、基板46i用い、その上にまずn −AtyG
ax−y Asり2ツド層43ケ形成し、引続いて’ 
−”ZGal−Z As導波層45を形成する。凹んだ
部分では成長速度が速いから、溝70の上側の位置で層
厚が厚くなった導波層が得られる。さらにn ”XGa
1−XAs活性層1.p−A/!、yG、1−yAsり
2ツド層2、n  G2Asキャップ層4を順次形成す
る(0(x<1.x<Z(y)。溝70の位置に対応さ
せて、第5図中9及び10の領域にp型不純物例えばZ
nを選択的に拡散し。
FIG. 5 is a perspective view of the first embodiment of the present invention, and FIG. 6 is a sectional view taken along the line c-c' in FIG. To create this layered structure, an n5 groove with a 7° groove formed in advance is required.
GaA, substrate 46i is used, and n-AtyG is first deposited on it.
43 ax-y As two-layer layers were formed, followed by '
-"ZGal-Z As waveguide layer 45 is formed. Since the growth rate is faster in the recessed portion, a waveguide layer with a thicker layer is obtained at the position above the groove 70. Furthermore, n"XGa
1-XAs active layer 1. p-A/! , yG, 1-yAs2 bond layer 2, and nG2As cap layer 4 are sequentially formed (0(x<1.x<Z(y). 9 and 9 in FIG. A p-type impurity, for example Z
Selectively diffuse n.

IOの領域は活性層1にまで達して導電型をn型からp
型に変換する。活性層1のうちp型に変換されたストラ
イプ状の領域が発振領域となる。この発振領域の禁制帯
幅はn型のままの活性層よυも小さいことから、反射面
に露出した部分の活性層は発振光に対して透明になシ1
反射面の酸化や光学的な損傷の発生による劣化が起こら
ない。すなわち、鋸台はウィンドウ・ストライプ型半導
体レーザと同程度に改善されている。そればかシでなく
、本実施例の半導体レーザ素子は導波層45の機能によ
って次のような優れた素子特性全実現している。
The IO region reaches the active layer 1 and changes the conductivity type from n type to p type.
Convert to type. The striped region of the active layer 1 converted to p-type becomes an oscillation region. Since the forbidden band width of this oscillation region is υ smaller than that of the active layer which remains n-type, the portion of the active layer exposed to the reflective surface is not transparent to the oscillation light.
No deterioration occurs due to oxidation of the reflective surface or optical damage. In other words, the saw table is improved to the same extent as the window stripe type semiconductor laser. Not only that, but the semiconductor laser device of this embodiment achieves all of the following excellent device characteristics due to the function of the waveguide layer 45.

活性層1の層厚が0.2μm程度以下と薄く作成しであ
るから、発振光は層厚方向にしみ出し、導波層45.り
2ツド層43を含めた平均的な屈折率を感じる。導波層
45の屈折率はクラッド層43よりも大きいから、導波
層45の厚い部分はど発振光が感じる実効的な屈折率が
大きくなる。従って、発振光はクラッド層43の層厚が
最も大きい溝中央部に集光するように導波される。この
導波構造は共振器内全域で連続して存在しておシ9発振
領域と反射面との間でも発振光を導波するので。
Since the active layer 1 is made thin, with a layer thickness of about 0.2 μm or less, the oscillated light seeps out in the layer thickness direction, and the waveguide layer 45. The average refractive index including the double layer 43 is felt. Since the refractive index of the waveguide layer 45 is larger than that of the cladding layer 43, the thicker portion of the waveguide layer 45 has a larger effective refractive index perceived by the oscillation light. Therefore, the oscillated light is guided so as to be focused on the central portion of the groove where the cladding layer 43 has the largest layer thickness. This waveguide structure exists continuously throughout the entire region of the resonator, and also guides the oscillated light between the oscillation region and the reflection surface.

この部分で発振光の空間分布が著しく広がることがなく
なり9反射光が発振領域に効率よく返還される。仁の結
果、閾値電流値が低くて、外部微分量子効率の高い、素
子特性に優れた半導体素子が得られる。
In this part, the spatial distribution of the oscillated light does not spread significantly, and the reflected light is efficiently returned to the oscillation region. As a result, a semiconductor device with a low threshold current value, high external differential quantum efficiency, and excellent device characteristics can be obtained.

第7図は本発明の第2の実施例の斜視図であシ、第8図
は第7図のD−D’位置での矢視断面図でおる。結晶成
長方法・および不純物拡散の方法は前述した第1の実施
例の場合とおおむね同じである。
FIG. 7 is a perspective view of a second embodiment of the present invention, and FIG. 8 is a sectional view taken along line DD' in FIG. The crystal growth method and impurity diffusion method are generally the same as in the first embodiment described above.

G 2 A s基板56が絶縁性であること、基板56
上にエビタキンヤル成長する各層がいずれもn型である
こと、そして、p型不純物の拡散領域の形状がクランク
状でおる点が主な相違点である。反射面近傍の折れ曲が
シ領域を除いて拡散領域21は導波層45の厚さが厚く
なっている部分に対応した位置で活性層1と交わシ、そ
の領域の導電型はn型からp型に変換されている。この
導電型の変換された領域の活性層が発振領域となる。発
振光のエネルギーは活性層1のn型のままである他の領
域の禁制帯幅よりも小さくて1発振光が反射面に照射す
る部分には透明なn −AtxGa、 −x A 、活
性層1が位置するから、反射面劣化が発生しない。
G 2 A s substrate 56 is insulating, substrate 56
The main difference is that each layer that is grown on top of Evita is of n-type, and that the shape of the p-type impurity diffusion region is crank-shaped. The diffusion region 21, except for the region where the bend near the reflecting surface crosses the active layer 1 at a position corresponding to the thicker part of the waveguide layer 45, and the conductivity type of that region is from n-type to n-type. Converted to p-type. The active layer in the region whose conductivity type has been changed becomes the oscillation region. The energy of the oscillation light is smaller than the forbidden band width of the other regions of the active layer 1 that remain n-type, and the part where one oscillation light irradiates the reflective surface has a transparent n -AtxGa, -xA, active layer. 1 is located, no deterioration of the reflective surface occurs.

また、導波層45の機能によって発振光はよく導波され
9発振領域と反射面との間を往復する間にも空間分布が
広がることがないから低閾値電流値。
In addition, the oscillation light is well guided by the function of the waveguide layer 45, and the spatial distribution does not widen even when it travels back and forth between the 9 oscillation region and the reflection surface, resulting in a low threshold current value.

高微分量子効率の素子が得られる。A device with high differential quantum efficiency can be obtained.

以上、本発明を2つの実施例に基づいて詳細に説明した
が、本発明はこれらの実施例に限定されるものではない
。実施例では活性層の厚さは均一で平均である場合を説
明したが、活性層の層厚が、導波層と同様に、溝に対応
した位置で厚くなっている場合、あるいは屈曲している
場合でも同様の効果が得られる。さらに9反射率を任意
の値に設定する目的や、雰囲気による結晶面のゆるやか
な浸蝕反応ケ防止する目的などで9反射面k Sl 0
2 rAt2 oa I s i 3 N 4等の誘電
体膜で保護しても同様の効果が得られる。また、本発明
はAtGaA3の他にも、InGaA、P、InGaP
、などIII族元素と■族元素との組み合わせによって
構成される各種の化合物半導体を活性層とする半導体レ
ーザ電子にも適用できる。
Although the present invention has been described above in detail based on two embodiments, the present invention is not limited to these embodiments. In the examples, the case where the thickness of the active layer is uniform and average has been explained, but the layer thickness of the active layer may be thicker at the position corresponding to the groove, or bent, similar to the waveguide layer. The same effect can be obtained even if In addition, for the purpose of setting the 9 reflectance to an arbitrary value and for the purpose of preventing gradual erosion of crystal surfaces due to the atmosphere, 9 reflective surfaces k Sl 0
A similar effect can be obtained by protecting with a dielectric film such as 2 rAt2 oa I s i 3 N 4 . In addition to AtGaA3, the present invention also applies to InGaA, P, InGaP
The present invention can also be applied to semiconductor laser electrons whose active layers are various compound semiconductors composed of a combination of Group III elements and Group II elements, such as .

以上詳述したように、本発明によれば、素子特性に優れ
しかも寿命の長い半導体素子が提供できる。
As described in detail above, according to the present invention, a semiconductor device with excellent device characteristics and a long life can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のウィンドウ・ストライプ型半導体レーザ
素子の斜視図、第2図は第1図のA−A’矢視断面図、
第3図は従来のクランク・トランスバース・ジャンクシ
ョン・ストライプ型半導体レーザ素子の斜視図、第4図
は第3図のB−B’矢視断面図、第5図は本発明の第1
の実施例の斜視図、第6図は第5図のC−C’矢視断面
図、第7図は本発明の第2の実施例の斜視図、第8図は
第7図のD−D’矢視断面図である(これらの図におい
て斜線部分はp型不純物拡散領域を示す)。 1・・・・・・n−AtxGBl−z As活性層、2
・・・・・・p−AtyGa 1−y Asクラッド層
、3 、12 、43・−・−n−AtyG al−y
 A6クラツド層、4.14−・−・−・n−G aA
 3キャップ層、6146−− n  OBh s基板
、16.56・・・・・・絶縁性G21 A s基板、
7.18・・・・・・n側オーミック性電極、8.19
・・・・・・n側オーミック性電極、9.20・・・・
・・高濃度のp型領域、10゜21・・・・・’p型領
領域45 □・・・・・n  AtzOB 1−2 A
s導波層。 ′−1 −・   ′ 代理人 弁理士  内 原   ヨ 。
FIG. 1 is a perspective view of a conventional window stripe type semiconductor laser device, and FIG. 2 is a sectional view taken along the line A-A' in FIG.
FIG. 3 is a perspective view of a conventional crank transverse junction stripe type semiconductor laser device, FIG. 4 is a sectional view taken along the line B-B' in FIG. 3, and FIG.
6 is a sectional view taken along the line CC' in FIG. 5, FIG. 7 is a perspective view of the second embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view taken along arrow D' (in these figures, the shaded area indicates a p-type impurity diffusion region). 1... n-AtxGBl-z As active layer, 2
......p-AtyGa 1-y As cladding layer, 3, 12, 43...-n-AtyGal-y
A6 cladding layer, 4.14-・-・-・n-Ga aA
3 cap layer, 6146--n OBh s substrate, 16.56...Insulating G21 As s substrate,
7.18...N-side ohmic electrode, 8.19
...N-side ohmic electrode, 9.20...
...High concentration p-type region, 10°21...'p-type region 45 □......n AtzOB 1-2 A
s waveguide layer. '-1 -・' Agent Patent attorney Yo Uchihara.

Claims (1)

【特許請求の範囲】[Claims] 溝を有する半導体基板と、第1の導電型の活性層と、こ
の活性層に隣接しこの活性層よりも禁制帯幅が広くかつ
屈折率が小さい導波層と、これらの層2両側から挾みこ
れらいずれの層よシも屈折率が小さい第1及び第2のり
2ラド層とからなシ前記半導体基板の前記溝のある側に
成長させである半導体多層膜と、前記活性層のうちの発
振領域に選択的に電流全注入する手段とを備え、前記溝
に対応した位置で少なくとも前記導波層の厚さが厚く形
成してあシ、前記活性層のうち前記溝に対応した位置に
あってかつ共振器を形成する一対の反射面の近傍ケ除い
た領域の前記活性層が第2の導電型に変換してアシ、前
記発振領域は主として第2の導電型に変換しである前記
領域であることを特徴とする半導体レーザ素子。
A semiconductor substrate having a groove, an active layer of a first conductivity type, a waveguide layer adjacent to the active layer and having a wider forbidden band width and a lower refractive index than the active layer, and a waveguide layer sandwiched from both sides of these layers 2. Each of these layers consists of a first and second glue layer having a small refractive index, a semiconductor multilayer film grown on the side of the semiconductor substrate with the groove, and one of the active layers. means for selectively injecting all of the current into the oscillation region, the waveguide layer is formed thicker at least at a position corresponding to the groove, and the waveguide layer is formed thicker at least at a position corresponding to the groove in the active layer; The active layer in a region excluding the vicinity of a pair of reflective surfaces forming a resonator is converted to the second conductivity type, and the oscillation region is mainly converted to the second conductivity type. A semiconductor laser device characterized in that it is a region.
JP5412483A 1983-03-30 1983-03-30 Semiconductor laser element Pending JPS59181081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5412483A JPS59181081A (en) 1983-03-30 1983-03-30 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5412483A JPS59181081A (en) 1983-03-30 1983-03-30 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS59181081A true JPS59181081A (en) 1984-10-15

Family

ID=12961844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5412483A Pending JPS59181081A (en) 1983-03-30 1983-03-30 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59181081A (en)

Similar Documents

Publication Publication Date Title
US4740976A (en) Semiconductor laser device
JP5378651B2 (en) Semiconductor laser device and manufacturing method thereof
EP0935319B1 (en) Surface-emitting laser device
JPH0243351B2 (en)
JP2792177B2 (en) Semiconductor laser
JPS59181081A (en) Semiconductor laser element
JP2000244059A (en) Semiconductor laser device
JPH06130236A (en) Cross type optical switch
JPH0474876B2 (en)
JP3234282B2 (en) Semiconductor laser device
JPS61112392A (en) Semiconductor laser and manufacture thereof
JPS6237557B2 (en)
JPS6356977A (en) Semiconductor laser
JPS6159555B2 (en)
JP2550711B2 (en) Semiconductor laser
JP3710195B2 (en) Semiconductor laser
JPS62269373A (en) Semiconductor laser
JPH054832B2 (en)
JPH01166585A (en) Semiconductor laser device
JPS6157718B2 (en)
JPH05343813A (en) Quantum-well-structure semiconductor laser and manufacture thereof
JPS60257583A (en) Semiconductor laser device
JPH07202321A (en) Light semiconductor device
JPS60134489A (en) Semiconductor laser device
JPS5832481A (en) Semiconductor laser element