JP2792177B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2792177B2
JP2792177B2 JP2023486A JP2348690A JP2792177B2 JP 2792177 B2 JP2792177 B2 JP 2792177B2 JP 2023486 A JP2023486 A JP 2023486A JP 2348690 A JP2348690 A JP 2348690A JP 2792177 B2 JP2792177 B2 JP 2792177B2
Authority
JP
Japan
Prior art keywords
layer
ridge stripe
cladding layer
cladding
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2023486A
Other languages
Japanese (ja)
Other versions
JPH03227090A (en
Inventor
浩精 宇野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2023486A priority Critical patent/JP2792177B2/en
Publication of JPH03227090A publication Critical patent/JPH03227090A/en
Application granted granted Critical
Publication of JP2792177B2 publication Critical patent/JP2792177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3421Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer structure of quantum wells to influence the near/far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザプリンタ,バーコードリーダ,光デ
ィスク等の光源に用いられる半導体レーザに関し、特
に、発振波長670nm以下の可視光半導体レーザに関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source for laser printers, bar code readers, optical disks, and the like, and more particularly to a visible light semiconductor laser having an oscillation wavelength of 670 nm or less. is there.

〔従来の技術〕[Conventional technology]

半導体レーザは、光通信装置や光ディスク装置等の光
情報処理装置用の光源として、利用されており、各種構
造の半導体レーザが提案されている。
Semiconductor lasers are used as light sources for optical information processing devices such as optical communication devices and optical disk devices, and semiconductor lasers having various structures have been proposed.

従来の可視光半導体レーザの例として、1987年秋応物
講演会予稿集746頁19a−ZR−4,19a−ZR−5に、又、198
9年春応物講演会予稿集886頁,1p−ZC−2,1p−ZC−3,1p
−ZC−4に示されている。
As examples of conventional visible light semiconductor lasers, see pp. 746, 19a-ZR-4, 19a-ZR-5, Proceedings of Autumn 1987, and 198
Proceedings of the Spring Meeting of Spring 2009, 886 pages, 1p-ZC-2, 1p-ZC-3, 1p
-ZC-4.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の半導体レーザの一例を第3図に示す。
従来の半導体レーザは、n−GaAs基板(1)上に、発光
領域となるGa0.5In0.5P活性層(4)をこれよりも禁制
帯幅の大きいAl0.5In0.5Pもしくは(Al0.4Ga0.60.5I
n0.5Pクラッド層(3)および(5)ではさんでなる結
晶積層体を備え、その結晶積層体に隣接して、結晶積層
体の隣接側とは逆導電性の電流ブロック層(7)を備
え、さらに半導体層(コンタクト層)(10)を備えた後
に、電極(11),(12)を設けて構成されている。
FIG. 3 shows an example of the above-described conventional semiconductor laser.
In a conventional semiconductor laser, a Ga 0.5 In 0.5 P active layer (4) serving as a light emitting region is formed on an n-GaAs substrate (1) by Al 0.5 In 0.5 P or (Al 0.4 Ga 0.6 ) having a larger forbidden band width. ) 0.5 I
n 0.5 P cladding layers (3) and (5) are provided, and a current blocking layer (7) having a conductivity opposite to that of the adjacent side of the crystal stack is provided adjacent to the crystal stack. And a semiconductor layer (contact layer) (10), and then electrodes (11) and (12).

しかし、この構造の半導体レーザでは、非点隔差が10
μm前後と大きい。非点隔差は、横方向屈折率差と関係
しており、横方向屈折率差は半導体レーザのリッジサイ
ドのクラッド層(5)の厚さと電流ブロック層(7)の
吸収ロスにより決まっている。また、クラッド層(5)
のリッジサイドの厚さとリッジ幅は、発振しきい値電流
Ithと関係する。したがって、発振しきい値電流Ithと独
立に横方向屈折率差を制御できないという問題があっ
た。
However, in a semiconductor laser having this structure, the astigmatic difference is 10
It is as large as about μm. The astigmatic difference is related to the lateral refractive index difference, and the lateral refractive index difference is determined by the thickness of the cladding layer (5) on the ridge side of the semiconductor laser and the absorption loss of the current blocking layer (7). In addition, the cladding layer (5)
The ridge side thickness and ridge width of the
Related to I th . Therefore, there is a problem that can not be controlled lateral refractive index difference independently of the oscillation threshold current I th.

また、第4図に示す様なSi3N4を用いる構造では、非
点隔差の低減はできるが、半導体レーザの製造工程が複
雑になり、素子の歩留,信頼性の悪化という欠点があ
る。
Further, in the structure using Si 3 N 4 as shown in FIG. 4, the astigmatism can be reduced, but the manufacturing process of the semiconductor laser becomes complicated, and there is a disadvantage that the yield and reliability of the device are deteriorated. .

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体レーザは、発振しきい値電流Ithにつ
いては、リッジ幅とリッジサイドのクラッド層厚で制御
し、横方向屈折率差ΔNについては、電流ブロック層を
AlzGa1-zAs(0z1)とGaAsで、各々の厚さと組成
比で制御できる構造になっている。すなわち、発光領域
となる活性層をGa0.5In0.5Pと(Al0.4Ga0.60.5In0.5
Pからなる多重量子井戸構造(MQW)で形成し、これら
より禁制帯幅の大きい(AlyGa1-y0.5In0.5P(0.5
y1)クラッド層で前記活性層をはさむダブルヘテロ
構造を有し、前記クラッド層に隣接して、前記クラッド
層と同じ導電性のGa0.5In0.5P層を備え、前記Ga0.5In
0.5P層に隣接して、前記クラッド層と同じ導電性でリ
ッジストライプ状の第2の(AlyGa1-y0.5In0.5P(0.
5y1)クラッド層とGa0.5In0.5P層を有し、前記
リッジストライプの両側に、前記クラッド層とは逆導電
性のAlzGa1-zAs(0z1)とGaAsを順次積層した電
流ブロック層を配置し、さらにGaAsコンタクト層を設け
たことを特徴とする構成になっている。
In the semiconductor laser of the present invention, the oscillation threshold current I th is controlled by the ridge width and the thickness of the ridge side cladding layer, and the lateral refractive index difference ΔN is controlled by the current block layer.
Al z Ga 1 -z As (0z1) and GaAs have a structure that can be controlled by their thickness and composition ratio. That is, the active layer serving as the light emitting region is formed of Ga 0.5 In 0.5 P and (Al 0.4 Ga 0.6 ) 0.5 In 0.5
It is formed of a multiple quantum well structure (MQW) composed of P and has a larger forbidden band width (Al y Ga 1-y ) 0.5 In 0.5 P (0.5
y1) has a double heterostructure sandwiching the active layer in the cladding layer, adjacent the cladding layer comprises a Ga 0.5 In 0.5 P layer having the same conductivity and the clad layer, the Ga 0.5 an In
Adjacent to the 0.5 P layer, a second (Al y Ga 1-y ) 0.5 In 0.5 P (0.
5y1) A current blocking layer having a cladding layer and a Ga 0.5 In 0.5 P layer, and having Al z Ga 1 -z As (0z 1 ) and GaAs having opposite conductivity to the cladding layer sequentially laminated on both sides of the ridge stripe. And a GaAs contact layer is further provided.

〔実施例1〕 次に本発明について図面を参照して説明する。第1図
は本発明の一実施例の断面図である。まず、1回目の結
晶成長をMO−VPE法により、成長温度630℃成長圧力75To
rrの条件下で、GaAs基板(1)上にSiドープ・GaAsバッ
ファ層(2),キャリア濃度1×1018cm-3を0.5μm,Si
ドープn−(Al0.6Ga0.40.5In0.5Pクラッド層
(3),キャリア濃度5×1017cm-3を1μm,アンドープ
Ga0.5In0.5P,達さ40Åのウェル層3層とアンドープ(Al
0.4Ga0.60.5In0.5P,厚さ40Åのバリア層2層から成る
MQW活性層(4),Znドープのp−(Al0.6Ga0.60.5In
0.5P第1クラッド層(5)キャリア濃度6×1017cm-3,
を0.25μm,Znドープp−Ga0.5In0.5Pエッチングストッ
パー層(6),キャリア濃度1×1018cm-3を40Å,Znド
ープp−(Al0.6Ga0.60.5In0.5P第2クラッド層
(8),キャリア濃度6×1017cm-3を0.7μm,Znドープ
p−Ga0.5In0.5Pヘテロバッファ層(9),キャリア濃
度1×1018cm-3を0.2μm順次積層する。
Embodiment 1 Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of one embodiment of the present invention. First, the first crystal growth was performed by MO-VPE method at a growth temperature of 630 ° C. and a growth pressure of 75
Under the condition of rr, a Si-doped GaAs buffer layer (2) was deposited on a GaAs substrate (1) at a carrier concentration of 1 × 10 18 cm -3 at 0.5 μm
Doped n- (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer (3), carrier concentration 5 × 10 17 cm -3 1 μm, undoped
Ga 0.5 In 0.5 P, three well layers of 40Å and undoped (Al
0.4 Ga 0.6 ) 0.5 In 0.5 P, consisting of two barrier layers 40 mm thick
MQW active layer (4), Zn-doped p- (Al 0.6 Ga 0.6 ) 0.5 In
0.5 P first cladding layer (5) Carrier concentration 6 × 10 17 cm -3 ,
0.25 μm, Zn-doped p-Ga 0.5 In 0.5 P etching stopper layer (6), carrier concentration 1 × 10 18 cm -3 at 40 °, Zn-doped p- (Al 0.6 Ga 0.6 ) 0.5 In 0.5 P second cladding layer (8) A 0.7 μm carrier density of 6 × 10 17 cm −3 , a Zn-doped p-Ga 0.5 In 0.5 P heterobuffer layer (9) and a 0.2 μm thickness of 1 × 10 18 cm −3 of carrier density are sequentially stacked.

次に、リッジストライプ(13)形成用のエッチングマ
スク兼、選択成長用マスクとなるSiO2膜を2000Å成膜さ
せ、レジストを塗布し、これをマスクとして[01]
方向にSiO2ストライプを形成し、続いて、臭化水素系エ
ッチャントと硫酸系エッチャントを用いて、エッチング
ストッパー層(6)までエッチングする。リッジ幅W
は、5μmとする、 次に2回目の結晶成長をMO−VPE法により、SiドープA
l0.5Ga0.5As電流ブロック層(71),キャリア濃度1×1
018cm-3を厚さ0.3μm,SiドープGaAs電流ブロック層(7
2),キャリア濃度3×1018cm-3を厚さ0.4μm選択成長
する。
Next, an SiO 2 film serving as an etching mask for forming the ridge stripe (13) and a mask for selective growth is formed to a thickness of 2000 °, and a resist is applied.
An SiO 2 stripe is formed in the direction, and subsequently, etching is performed up to the etching stopper layer (6) using a hydrogen bromide-based etchant and a sulfuric acid-based etchant. Ridge width W
Is 5 μm. Then, the second crystal growth is performed by MO-VPE method using Si-doped A
l 0.5 Ga 0.5 As current blocking layer (71), carrier concentration 1 × 1
0 18 cm -3 is a 0.3 μm thick, Si-doped GaAs current blocking layer (7
2) Selectively grow a carrier concentration of 3 × 10 18 cm -3 with a thickness of 0.4 μm.

次に、SiO2を除去した後、3回目の結晶成長をMO−VP
E法により、ZnドープGaAsコンタクト層(10),キャリ
ア濃度2×1019cm-3を3μm成長させる。続いて、電極
(11),(12)を形成して本発明の半導体レーザができ
る。
Next, after removing SiO 2 , MO-VP
By the E method, a Zn-doped GaAs contact layer (10) and a carrier concentration of 2 × 10 19 cm −3 are grown to 3 μm. Subsequently, the electrodes (11) and (12) are formed to complete the semiconductor laser of the present invention.

本発明における半導体レーザは、MQW活性層にしてあ
るため発振しき値電流Ith=35mA,発振波長650nm,非点隔
差5μmとなった。
Since the semiconductor laser according to the present invention is an MQW active layer, the oscillation threshold current I th = 35 mA, the oscillation wavelength is 650 nm, and the astigmatic difference is 5 μm.

〔実施例2〕 次に実施例2について説明する。半導体レーザの層構
造は、第2図に示す通りで、第1図に示す実施例1と同
じである。異なるのは、リッジストライプ(13)の方向
で、ここでは[0]方向にリッジストライプ(13)
を形成する点である。本実施例では、電流パスが狭くな
っているため、キャリアを効率良く注入できる。この結
果、実施例1よりも発振しきい値電流Ithを数mA低減で
きる。非点隔差については、実施例1と同様に5μm前
後であった。
Second Embodiment Next, a second embodiment will be described. The layer structure of the semiconductor laser is as shown in FIG. 2, and is the same as that of the first embodiment shown in FIG. The difference is in the direction of the ridge stripe (13), here the ridge stripe (13) in the [0] direction.
Is the point that forms In this embodiment, since the current path is narrow, carriers can be injected efficiently. As a result, the oscillation threshold current I th can be reduced by several mA as compared with the first embodiment. The astigmatic difference was about 5 μm as in Example 1.

また、本発明の半導体レーザの製造は、MO−VPE法に
限らず、MBE法、MO−MBE法、ガス、MBE法においても可
能である。
Further, the semiconductor laser of the present invention can be manufactured not only by the MO-VPE method but also by the MBE method, the MO-MBE method, the gas and the MBE method.

〔発明の効果〕〔The invention's effect〕

本発明において、注入された電流は、電流ブロック層
(71),(72)間のストライプ状の窓からp−第1クラ
ッド層(8)を通って、MQW活性層(4)に注入され
る。活性層(4)に注入されたキャリアは、活性層
(4)横方向に拡散して、利得分布を形成し、レーザ発
振を開始する。このとき活性層(4)のキャリア密度が
1〜2×1018cm-3と高いので、活性層(4)内のキャリ
ア拡散長が短くなり、利得分布は、主にリッジストライ
プ(13)下の活性層(4)の部分に形成され、その形状
は、急峻になり、その結果、リッジストライプ(13)下
の部分のみが利得が高くなり、その外部は損失領域とな
る。
In the present invention, the injected current is injected into the MQW active layer (4) through the p-first cladding layer (8) from the striped window between the current blocking layers (71) and (72). . The carriers injected into the active layer (4) diffuse in the lateral direction of the active layer (4) to form a gain distribution and start laser oscillation. At this time, since the carrier density of the active layer (4) is as high as 1 to 2 × 10 18 cm −3 , the carrier diffusion length in the active layer (4) is shortened, and the gain distribution mainly depends on the ridge stripe (13). Is formed in the portion of the active layer (4), and the shape becomes steep. As a result, only the portion below the ridge stripe (13) has a high gain, and the outside becomes a loss region.

一方、レーザ光は、活性層(4)からはみ出し垂直方
向に広がる。このときp−第1クラッド層(5)にはみ
出した光は、p−第1クラッド層(5)の上にあるAlzG
a1-zAs電流ブロック層(71)、さらに電流ブロック層
(71)に隣接して、GaAs電流ブロック層(72)がある
が、電流ブロック層(71)は、Al組成により、レーザ光
に対する吸収係数が変化し、電流ブロック層(72)は、
吸収層として働く。その結果、リッジストライプ(13)
下の活性層近傍には、正の屈折率差ΔNが生じ、基本横
モード発振が維持される。この様な、吸収損失による導
波機構における光の波面は、CooK and Nash(J.Applied
Physics;46・p1660(1975))により近似解析がなされ
ており、波面の曲率半径Rは、複素屈折率を用いて次の
様に示される。
On the other hand, the laser beam protrudes from the active layer (4) and spreads in the vertical direction. At this time, the light that has protruded into the p-first cladding layer (5) is reflected by Al z G on the p-first cladding layer (5).
a 1-z As current blocking layer (71), and next to the current blocking layer (71), there is a GaAs current blocking layer (72). The absorption coefficient changes and the current blocking layer (72)
Works as an absorption layer. As a result, the ridge stripe (13)
A positive refractive index difference ΔN occurs near the lower active layer, and the fundamental transverse mode oscillation is maintained. The wavefront of light in the waveguide mechanism due to absorption loss is described by CooK and Nash (J. Applied
Physics; 46p1660 (1975)), and the radius of curvature R of the wavefront is expressed as follows using the complex refractive index.

ここでRe(Δeff)=Re(eff0eff1) =Neff0−Neff1≡ΔN Imag(Δeff)=Imag(eff0eff1) =Imag(eff1)=α/2k k=2π/λ リッジストライプ下部 eff0=Neff0(実部の
み) リッジストライプ外部 eff1=Neff1+i(α/
2k) この様な光の波面の曲率の存在が非点隔差の発生の原
因となっている。すなわち、非点隔差の低減は、リッジ
外部の複素屈折率の虚部を小さくすれば良い。虚部を小
さくするためには、吸収損失を小さくすれば良いわけ
で、電流ブロック層(71)のAl組成と厚さの変更によ
り、吸収損失は小さくでき、その変化幅も広く認定でき
る。
Here, Re (Δ eff) = Re ( eff0 - eff1) = N eff0 -N eff1 ≡ΔN Imag (Δ eff) = Imag (eff0 - eff1) = Imag (eff1) = α / 2k k = 2π / λ ridge stripe Lower eff0 = N eff0 (only the real part) Ridge stripe outer eff1 = N eff1 + i (α /
2k) The existence of such a curvature of the wavefront of light causes astigmatism. That is, the astigmatic difference can be reduced by reducing the imaginary part of the complex refractive index outside the ridge. In order to reduce the imaginary part, it is only necessary to reduce the absorption loss. By changing the Al composition and the thickness of the current blocking layer (71), the absorption loss can be reduced, and the change width can be widely recognized.

以上の様なことにより、非点隔差5μmが実現でき
る。
As described above, an astigmatic difference of 5 μm can be realized.

また、活性層をMQW構造にしているので、低い発振し
き値電流,温度特性の改善が、実現できる。
Further, since the active layer has the MQW structure, a low oscillation threshold current and an improvement in temperature characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、[01]方向にリッジストライプを有する
本発明の半導体レーザの断面図、第2図は[0]方
向にリッジストライプを有する本発明の半導体レーザの
断面図である。第3図,第4図は、従来の半導体レーザ
の断面図である。 第1図〜第4図において、 1……n−GaAs基板、2……n−GaAsバッファ層、3…
…n−(AlyGa1-y0.5In0.5Pクラッド層(0.5y
1)、4……MQW活性層(ウェル層:Ga0.5In0.5P、バリ
ア層:(Al0.4Ga0.60.5In0.5P)、5……p−(AlyG
a1-y0.5P第1クラッド層、6……p−Ga0.5In0.5
エッチングストッパー層、71……n−AlzGa1-zAs電流ブ
ロック層(0.5z1)、72……n−GaAs電流ブロッ
ク層、8……p−(AlyGa1-y0.5In0.5P第2クラッド
層、9……p−Ga0.5In0.5Pヘテロバッファ層、10……
p−GaAsコンタクト層、11,12……電極、13……リッジ
ストライプ。
FIG. 1 is a sectional view of a semiconductor laser of the present invention having a ridge stripe in the [01] direction, and FIG. 2 is a sectional view of a semiconductor laser of the present invention having a ridge stripe in the [0] direction. 3 and 4 are cross-sectional views of a conventional semiconductor laser. 1 to 4, reference numerals 1... N-GaAs substrate, 2... N-GaAs buffer layer, 3.
... n- (Al y Ga 1-y ) 0.5 In 0.5 P cladding layer ( 0.5 y
1), 4... MQW active layer (well layer: Ga 0.5 In 0.5 P, barrier layer: (Al 0.4 Ga 0.6 ) 0.5 In 0.5 P), 5... P- (Al y G
a 1-y ) 0.5 P first cladding layer, 6 p-Ga 0.5 In 0.5 P
An etching stopper layer, 71 ...... n-Al z Ga 1-z As current blocking layer (0.5z1), 72 ...... n- GaAs current blocking layer, 8 ...... p- (Al y Ga 1-y) 0.5 In 0.5 P second cladding layer, 9 ... p-Ga 0.5 In 0.5 P hetero buffer layer, 10 ...
p-GaAs contact layers, 11, 12,... electrodes, 13.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01S 3/18──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01S 3/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発光領域となる活性層をGa0.5In0.5Pと
(Al0.4Ga0.60.5In0.5Pからなる多重量子井戸構造
(MQW)で形成し、これらより禁制耐幅の大きい(AlyGa
1-y0.5In0.5P(0.5≦y≦1)クラッド層で前記活性
層をはさむダブルヘテロ構造を有し、前記クラッド層に
隣接して、前記クラッド層と同じ導電性のGa0.5In0.5
層を備え、前記Ga0.5In0.5P層に隣接して、前記クラッ
ド層と同じ導電性でリッジストライプ状の第2の(AlyG
a1-y0.5In0.5P(0.5≦y≦1)クラッド層とGa0.5In
0.5P層を有し、前記リッジストライプの両側に、前記
クラッド層とは逆導電性のAlzGa1-zAs(0<z≦1)と
吸収層として働くGaAsとを順次積層した電流ブロック層
を配置し、さらにGaAsコンタクト層を設け、前記AlzGa
1-zAs電流ブロック層のAl組成と厚さの制御により前記
リッジストライプ下の活性層近傍に正の屈折率差を生ぜ
しめ、前記リッジストライプ外部の吸収損失を小さくし
たことを特徴とする半導体レーザ。
1. A formed in the active layer becomes a light emitting region and the Ga 0.5 In 0.5 P (Al 0.4 Ga 0.6) 0.5 In 0.5 consists P multiple quantum well structure (MQW), larger than these forbidden耐幅(Al y Ga
1-y ) 0.5 In 0.5 P (0.5 ≦ y ≦ 1) having a double hetero structure sandwiching the active layer with a cladding layer, and adjacent to the cladding layer, having the same conductivity as the cladding layer, Ga 0.5 In 0.5 P
A second ridge stripe-shaped (Al y G) layer having the same conductivity as the cladding layer and a ridge stripe adjacent to the Ga 0.5 In 0.5 P layer.
a 1-y ) 0.5 In 0.5 P (0.5 ≦ y ≦ 1) cladding layer and Ga 0.5 In
A current block having a 0.5 P layer and sequentially laminating Al z Ga 1 -z As (0 <z ≦ 1) having opposite conductivity to the cladding layer and GaAs acting as an absorption layer on both sides of the ridge stripe. the layers were arranged, further provided GaAs contact layer, the Al z Ga
A semiconductor characterized in that a positive refractive index difference is generated near the active layer below the ridge stripe by controlling the Al composition and thickness of the 1-z As current blocking layer, thereby reducing absorption loss outside the ridge stripe. laser.
JP2023486A 1990-01-31 1990-01-31 Semiconductor laser Expired - Fee Related JP2792177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023486A JP2792177B2 (en) 1990-01-31 1990-01-31 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023486A JP2792177B2 (en) 1990-01-31 1990-01-31 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH03227090A JPH03227090A (en) 1991-10-08
JP2792177B2 true JP2792177B2 (en) 1998-08-27

Family

ID=12111854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023486A Expired - Fee Related JP2792177B2 (en) 1990-01-31 1990-01-31 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2792177B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862726B2 (en) * 1992-04-24 1999-03-03 シャープ株式会社 Semiconductor light emitting device
JPH06268334A (en) * 1993-03-16 1994-09-22 Mitsubishi Kasei Corp Laser diode and fabrication thereof
JPH07193313A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor laser
JPH07240562A (en) * 1994-02-28 1995-09-12 Nec Corp Semiconductor laser and its manufacture
JP2002374040A (en) * 2001-06-15 2002-12-26 Sharp Corp Semiconductor laser device and production method therefor
JP2003060306A (en) 2001-08-13 2003-02-28 Rohm Co Ltd Ridge semiconductor laser element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603178A (en) * 1983-06-21 1985-01-09 Toshiba Corp Semiconductor laser device
JPS60126880A (en) * 1983-12-13 1985-07-06 Hitachi Ltd Semiconductor laser device
JPS62142387A (en) * 1985-12-17 1987-06-25 Furukawa Electric Co Ltd:The Semiconductor laser
JP2555282B2 (en) * 1986-08-08 1996-11-20 株式会社東芝 Semiconductor laser device and method of manufacturing the same
JPS63236384A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Manufacture of semiconductor laser
JPH01286479A (en) * 1988-05-13 1989-11-17 Toshiba Corp Semiconductor laser device
JPH01286381A (en) * 1988-05-11 1989-11-17 Nec Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH03227090A (en) 1991-10-08

Similar Documents

Publication Publication Date Title
JP2778178B2 (en) Semiconductor laser
JP3183683B2 (en) Window type semiconductor laser device
JP2792177B2 (en) Semiconductor laser
JP2975473B2 (en) Semiconductor laser device
JPH09205249A (en) Semiconductor laser
JP3326283B2 (en) Semiconductor laser device
JP3133579B2 (en) Semiconductor laser device
JP2002141610A (en) Semiconductor laser element and its fabricating method
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JP2001257431A (en) Semiconductor laser
JP2792169B2 (en) Semiconductor laser
JP3249291B2 (en) Self-excited oscillation type semiconductor laser device
JP3109481B2 (en) Semiconductor laser device and method of manufacturing the same
JP2946781B2 (en) Semiconductor laser
JP3403180B2 (en) Semiconductor laser
JP2794743B2 (en) Quantum well semiconductor laser device
JPH01170082A (en) Double-hetero structure semiconductor laser with device
JP3908471B2 (en) Manufacturing method of semiconductor laser device
JPH08274403A (en) Semiconductor laser
JP3096419B2 (en) Semiconductor laser device
JP3422365B2 (en) Ridge stripe type semiconductor laser device
JPH04127595A (en) Semiconductor laser
JPH01181492A (en) Semiconductor laser element
JP2000228564A (en) Self-oscillation semiconductor laser
JPH0125238B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees