JPS5832481A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS5832481A
JPS5832481A JP13009881A JP13009881A JPS5832481A JP S5832481 A JPS5832481 A JP S5832481A JP 13009881 A JP13009881 A JP 13009881A JP 13009881 A JP13009881 A JP 13009881A JP S5832481 A JPS5832481 A JP S5832481A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
diffusion
type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13009881A
Other languages
Japanese (ja)
Inventor
Shigeo Yamashita
茂雄 山下
Naoki Kayane
茅根 直樹
Kunio Aiki
相木 国男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13009881A priority Critical patent/JPS5832481A/en
Publication of JPS5832481A publication Critical patent/JPS5832481A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture easily a favorable semiconductor laser element having favorable reproducibility by a method wherein at the prescribed conductive type semiconductor multilayer structure containing the laser active region, at least the two mutually independent semiconductor diffusion regions are provided from the upper face. CONSTITUTION:An N type Ga0.5Al0.5As layer 2, an N type Ga0.9Al0.1As active layer 3, an N type Ga0.5Al0.5As layer 4 are made to grow in order on an N type GaAs substrate 1 according to the usual liquid phase growth method. Then an Si3N4 film 6 is formed on the surface of crystal, windows 9 of 3X3mum<2> size are opened at the 12mum pitch on a straight line, and Zn is made to be diffused in the front side of the active layer. The heat treatment is performed to make Zn to be diffused being extended up to make the diffusion front to reach in the layer 3 or the layer 2, and the P type semiconductor regions 5 are formed. After then a Cr-Au electrode 7 is formed on the surface 10, and an Au-Ge-Ni electrode 8 is formed on the back. A cleavage is performed to form a cleavage plane 20, and a chip is formed.

Description

【発明の詳細な説明】 本発明は半導体レーザ素子に関し、更に詳述すれば、ダ
ブル・ヘテロ構造の半導体レーザ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device, and more particularly, to a double heterostructure semiconductor laser device.

半導体レーザは、半導体、例えば砒化ガリウム(GaA
l )等の単結晶を基体とし、ダブル・ヘテロ構造で禁
制帯幅の異なる物質に挾まれた活性層を持っておシ、更
に、電流注入を行なう接合面をヘテロ接合面と交わるよ
うに形成した、所謂トランスバース・ジャンクションや
ストライフ(一般にTy内>レーザは、発振の閾値電流
が低く、かつ、単−縦モード、基本横モード発振が得ら
れ易いという利点を有している。更にこのTJSレーザ
は、発振のスポット・サイズが小さいという特徴ももっ
ている。このスポット・サイズが小さいと共振器端面で
の発振密度が高くなり、連続動作させると鏡面損傷を生
じ、レーザ動作を劣化させることが知られている。
Semiconductor lasers are made of semiconductors, such as gallium arsenide (GaA
The substrate is a single crystal such as 1), has an active layer sandwiched between substances with different forbidden band widths in a double heterostructure, and is further formed so that the junction plane for current injection intersects with the heterojunction plane. The so-called transverse junction and strife (generally within Ty) lasers have the advantage that the threshold current for oscillation is low and single-longitudinal mode and fundamental transverse mode oscillations are easily obtained. TJS lasers are also characterized by a small oscillation spot size.If this spot size is small, the oscillation density at the cavity end face becomes high, and continuous operation will cause specular damage and deteriorate the laser operation. It has been known.

とくに、この光出力に依存する半導体レーザの劣化現象
のうち、最も重要性の高いものは、端面の劣化である。
In particular, among the deterioration phenomena of a semiconductor laser that depend on the optical output, the most important one is the deterioration of the end facet.

このうち、光出力が高くなると、瞬時に端面が破壊され
る現象については、端面付近を透明化すると、その破壊
限界光出力が大幅に増加することが報告されている。こ
の端面を透明化する方法としては、端面付近を除いて活
性層にznを拡散し発振波長を不純物レベルに相当する
分だけ長波長側に移行させて、端面付近(Zrlを拡散
しない場所)を透明化する方法や、端面付近に透明な結
晶で埋め込む方法等がとられているが、いずれも精密な
制御が必要であったり、作製方法が複雑になる等の問題
があり、特性の良い素子を再現性良く作製することが非
常に困難であった。
Regarding the phenomenon in which the end face is instantaneously destroyed when the optical output increases, it has been reported that when the vicinity of the end face is made transparent, the critical optical output for destruction increases significantly. The method of making this end face transparent is to diffuse Zn into the active layer except for the vicinity of the end face, shift the oscillation wavelength to the long wavelength side by an amount corresponding to the impurity level, and make the vicinity of the end face (where Zrl is not diffused) Methods such as making the device transparent or embedding transparent crystal near the end face have been used, but these methods require precise control and the manufacturing method is complicated, making it difficult to create devices with good characteristics. It was extremely difficult to produce with good reproducibility.

本発明の目的は、上記の欠点をなくシ、素子作製プロセ
スが簡単で再現性曳く光品質の良好な高出力の半導体レ
ーザ素子が得られる素子構造を提供するものである。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a device structure that enables a high-output semiconductor laser device with a simple device fabrication process, good reproducibility, and good optical quality.

上記目的を達成するため)の、本発明の構成は、レーザ
活性領域を含む所定の導電型(例えばn導電型)の半導
体多層構造において、上面から互いに独立し九少くとも
2個の半導体拡散領域を設けたものである1本発明にお
いては、上記拡散領域は光の進行方向に沿って設けてお
くことが肝要である。とくに、上記拡散領域の平面パタ
ーンの少くとも一辺は上記光進行方向に平行であること
が肝要である。上記拡散領域は進行方向に沿って設けら
れておればよく、拡散領域が一直線上に並んでいなくと
も同様の効果が得られる。また、拡散領域の大きさが異
っていてもよい、さらにまた、拡散領域の平面パターン
は三角形、矩形、多角形をはじめとして、少なくとも一
辺が光進行方向に平行であれば、他の辺が彎曲されてい
ても差違なく適用でき同様の効果が得られる。いずれも
、上述の拡散領域の平面パターンはレーザの出射光端面
(一般Vc臂開面)から離れて設けられていることが肝
要である。
In order to achieve the above objects, the present invention has a structure in which, in a semiconductor multilayer structure of a predetermined conductivity type (for example, n conductivity type) including a laser active region, at least two semiconductor diffusion regions are formed independently from each other from the top surface. In the present invention, it is important to provide the above-mentioned diffusion region along the direction in which light travels. In particular, it is important that at least one side of the planar pattern of the diffusion region is parallel to the light traveling direction. It is sufficient that the diffusion regions are provided along the traveling direction, and the same effect can be obtained even if the diffusion regions are not arranged in a straight line. Further, the size of the diffusion region may be different.Furthermore, the plane pattern of the diffusion region may be triangular, rectangular, polygonal, etc., as long as at least one side is parallel to the light traveling direction, the other side is Even if it is curved, it can be applied without any difference and the same effect can be obtained. In either case, it is important that the plane pattern of the above-mentioned diffusion region is provided away from the laser output light end face (general Vc arm opening face).

本発明は上述の構成になるので、上記拡散領域の周囲で
PNN接合面形形成れる。上述の様にレーザ活性領域を
含む半導体多層構造にお−ては、レーザの端面となる付
近を除いてレーザ活性層中に光の進行方向にそってPN
接合面が多数形成される。そしてこの多数のp−n接合
部で発生した光によりレーザ発振を得る。この構造では
、Z”を不純物拡散させた拡散部にはパントチイルが形
成され、レーザ発振波長が長波長側に移行するため、Z
nを拡散しない端面付近は発振波長に対して透明になり
、端面劣化を軽減できる。他のznが拡散されていない
領域も同様である。この様に、本構造は、レーザ活性領
域への電子の注入が、活性層内圧おける7、n拡散領域
と非拡散領域との全ての境界より行なわれるという特徴
をもっているため%Zn拡散フロントが活性層中に精度
よく止まっている必要がなく、活性層をつきぬけていて
も良い、つまり、拡散制御を行ない易い、そのため、素
子作製プロセスが著しく容易になシ、従って再現性良く
良特性の素子を作製できる。
Since the present invention has the above-described configuration, a PNN junction shape is formed around the diffusion region. As mentioned above, in a semiconductor multilayer structure including a laser active region, there are PNs in the laser active layer along the direction of light propagation, except for the vicinity of the end face of the laser.
A large number of joint surfaces are formed. Laser oscillation is obtained by the light generated at these many p-n junctions. In this structure, a pantotile is formed in the diffusion part where Z" is diffused with impurities, and the laser oscillation wavelength shifts to the long wavelength side, so the Z"
The vicinity of the end face where n is not diffused becomes transparent to the oscillation wavelength, and deterioration of the end face can be reduced. The same applies to other regions where zn is not diffused. In this way, this structure has the characteristic that electrons are injected into the laser active region from all the boundaries between the 7,n diffusion region and the non-diffusion region in the active layer internal pressure, so the %Zn diffusion front is activated. It does not need to stay precisely in the layer and can penetrate through the active layer. In other words, it is easy to control the diffusion, which greatly simplifies the device fabrication process. It can be made.

また、本発明は、半導体拡散領域が光進行方向に並んで
配列されているので、レーザ発振は、この内、最も利得
の大きい場所、すなわち、直線部分を含む端面までの延
長上で、直線状に起こる。
Further, in the present invention, since the semiconductor diffusion regions are arranged in parallel in the light traveling direction, laser oscillation is performed in a straight line at a place where the gain is greatest, that is, on an extension to an end face including a straight line part. It happens.

ここで、半導体層内に形成されたp−n接合部で発生す
る光の波長は前述した様にZnのレベルを介しての発光
が主であるため、上記半導体層の非拡散部分のエネルギ
ギャップよりは、小・さいエネルギに相当する波長とな
る。したがって、端面付近の非励起部分は、この波長に
対しほぼ透明であり、吸収の損失なく光は伝播すること
ができる。
Here, since the wavelength of light generated at the p-n junction formed in the semiconductor layer is mainly emitted through the Zn level as described above, the energy gap of the non-diffusion part of the semiconductor layer is The wavelength corresponds to a small amount of energy. Therefore, the unexcited portion near the end face is substantially transparent to this wavelength, allowing light to propagate without loss of absorption.

この結果、端面での光吸収が小さいことKより、従来の
半導体レーザに共通の問題点であった端面損傷による劣
化が起こり難くなシ、大光出力が可能になる。また、本
構造によるとG町−アAtアAl(0≦y≦1)層は一
般に活性領域と呼ばれて□いるが、実際はzn拡散によ
るp0導電型の第1の領域と、上記Znが引伸し拡散に
よシ形成されたp導電型の第2の領域と元のtまのn導
電型の第3の領域に3分され、上記第2と第3−城の境
界、すなわちPN接合領域を狭義の活性領域と呼ぶ場合
もある。上記狭義の活性領域となる1)−Ga、−アA
/、アAs領域では、これを挾むn1高濃度p領域(p
9)に比べ、屈折率がわずか大きくなるために、横モー
ドも安定となる。
As a result, since light absorption at the end face is small, deterioration due to damage to the end face, which is a common problem in conventional semiconductor lasers, is less likely to occur, and a large optical output can be achieved. In addition, according to this structure, the G town-A At A Al (0≦y≦1) layer is generally called the active region, but in reality, it is the first region of p0 conductivity type due to Zn diffusion and the above-mentioned Zn. It is divided into three parts: a second region of p-conductivity type formed by stretching diffusion and a third region of n-conductivity type up to the original t, and the boundary between the second and third regions, that is, the PN junction region. is sometimes called an active region in a narrow sense. 1) -Ga, -A which becomes the active region in the above narrow sense
/, In the As region, the n1 high concentration p region (p
Since the refractive index is slightly larger than that in 9), the transverse mode is also stabilized.

本実施例では、X−翼:0.6.y!0.2とし、発振
波長7501mで、しきい電流値@  150”A%光
出力toomw以上の横基本モード発振のレーザが得ら
れ喪。
In this example, the X-wing: 0.6. Y! 0.2, we were able to obtain a laser with transverse fundamental mode oscillation with an oscillation wavelength of 7501 m and a threshold current value @ 150"A% optical output toomw or more.

以下、本発明を実施例を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明の一実施例としての半導体レーザ素子の
レーザ光の進行方向に対する概略断面図である。1はn
形Ga人1基板(Siドープ、n〜2X10”i)で、
通常の液相成長法によって、n  oa、、、Aム、、
AI  層(’reドープ、n〜5×10″13− ”
、厚さ3膜m)2、”−G”o、 @ At6.I A
 I活性層(Tlドープ、n−1X I O” an−
一厚さ〜0゜2/Jm)3、”−G”o、sA4+、B
Am層(Teドープ、n−5x10m?tM−’、厚さ
〜2μm)4を順次成長させた。
FIG. 1 is a schematic cross-sectional view of a semiconductor laser device according to an embodiment of the present invention in the direction in which laser light travels. 1 is n
With a type Ga substrate (Si doped, n~2X10"i),
By the usual liquid phase growth method, noa, , Am, ,
AI layer ('re doped, n ~ 5 x 10''13-''
, thickness 3 films m)2, "-G"o, @ At6. IA
I active layer (Tl doped, n-1X IO" an-
1 thickness ~ 0゜2/Jm) 3, "-G"o, sA4+, B
An Am layer (Te doped, n-5x10m?tM-', thickness ~2 μm) 4 was grown sequentially.

次に結晶表面にS輸N、6膜を形成し、3膜3μmlの
窓9を12μmピッチで第2図に示す様に一線上にあけ
て、znを活性層の手前で拡散した。なお、レーザ素子
の端面付近は約107!m非拡散領域となるようにした
1次に熱処理を行ない、zn拡散7 o 7 ) カ活
性層3中か、”−G”o−s AtO,s A”層2中
に達するまで引伸し拡散(一般にドライブ・イン又は単
に拡散と称す)してp導電型中導体領域5を形成する。
Next, six films of S-N were formed on the crystal surface, and windows 9 of three films and 3 μml were opened in a line at a pitch of 12 μm as shown in FIG. 2, and Zn was diffused in front of the active layer. In addition, the area near the end face of the laser element is approximately 107! A first heat treatment is performed to form a non-diffusion region, and then the zn diffusion (7 o 7) is stretched and diffused until it reaches the active layer 3 or the "-G" o-s AtO,s A" layer 2. (generally referred to as drive-in or simply diffusion) to form a p-type medium conductor region 5.

その後、表面10VcC1r−ALI電極7を形成し、
裏面にはAu −()e−N’i電極8を形成する。つ
ぎにへき開を行って労開面20を形成し、共振器長30
0μmのチップを作製した。
After that, a 10VcC1r-ALI electrode 7 is formed on the surface,
An Au-()e-N'i electrode 8 is formed on the back surface. Next, cleavage is performed to form a cleavage plane 20, and a resonator length 30 is formed.
A 0 μm chip was fabricated.

なお、第1図は光の進行方向、すなわち、第2図x−x
’における断面図である。
In addition, Fig. 1 shows the traveling direction of the light, that is, Fig. 2 x-x.
' is a sectional view at '.

本構造においては、活性層中においてznを拡散した部
分5の屈折率が少し大きくなるため、活性層3に対して
水平面内にも光の導波作用が生じ、レーザ発振モードも
安定化される。本レーザはしきい電流値約150mAで
おり、100mW以上まで安定な発振モードが得られた
。tた端面が透明化されているため、信頼性も著しく向
上した。
In this structure, the refractive index of the part 5 where Zn is diffused in the active layer becomes a little larger, so a light waveguide effect also occurs in the horizontal plane with respect to the active layer 3, and the laser oscillation mode is also stabilized. . This laser has a threshold current value of about 150 mA, and a stable oscillation mode up to 100 mW or more was obtained. Reliability has also been significantly improved because the exposed end faces are transparent.

また本構造では、半導体拡散領域5の深さが、活性層3
を突き抜けておればよく、znの拡散深さを精密に制御
する必要がない丸め、素子作製歩留りが著しく向上した
In addition, in this structure, the depth of the semiconductor diffusion region 5 is equal to the depth of the active layer 3.
It is only necessary to penetrate the ZN diffusion depth, and it is not necessary to precisely control the ZN diffusion depth.The device manufacturing yield has been significantly improved.

第3図は本発明の他の実施例としての半導体レーザ素子
の概略平面図である。光の進行方向に対する断面図は前
記第1図と同様である1本発明ではzn拡散窓9が1つ
置きに交互にずらしである。
FIG. 3 is a schematic plan view of a semiconductor laser device as another embodiment of the present invention. The cross-sectional view in the direction of light propagation is the same as that of FIG. 1. In the present invention, the ZN diffusion windows 9 are alternately staggered.

したがって光の進行方向に見て上記拡散窓相互が重なっ
ている部分の利得が最も大きくなる。しかし、一般に、
不純物拡散領域は上記拡散窓9よりも大きく形成される
ので、やはり重なる部分で発振モードが安定化される1
本発明ではsZ”の横方向拡散がさらに大きい場合にも
同様に安定な発振モードが得られる。
Therefore, the gain is greatest in the portion where the diffusion windows overlap when viewed in the direction of light travel. However, in general,
Since the impurity diffusion region is formed larger than the diffusion window 9, the oscillation mode is stabilized in the overlapping area.
In the present invention, a stable oscillation mode can be similarly obtained even when the lateral diffusion of sZ'' is even larger.

第4図は本発明のさらに他の実施例を示す、前記第1図
と同様光の進行方向にそっての断面図である。同図で1
〜8は第1図の実施例と同様である。11はP−GJl
o 、 s A4 、 t A1層(Geドープ、1)
〜5X1G”mす、厚さ約0.6膜m)、12はn−Q
IAI層(Sflドープn〜5X10”cm−”、厚さ
約0.4μm)である0本構造においてはs 、Z ”
を拡散しない部分は、層4一層11間の障壁電位の大き
いp−n接合、および層11一層12間のp−n逆バイ
アスの効果によって電流が阻止されるため、第1の実施
例の場合のような誘電帯膜6が不要となる。したがって
本構造によれば、熱放散がさらに良好になり、信頼性が
いっそう向上する。その他は、第1図と同様なので詳細
説明を割愛する。
FIG. 4 is a cross-sectional view along the direction of light propagation, similar to FIG. 1, showing still another embodiment of the present invention. 1 in the same figure
8 are similar to the embodiment shown in FIG. 11 is P-GJl
o, s A4, t A1 layer (Ge doped, 1)
~5X1G"m, thickness approximately 0.6m), 12 is n-Q
In the zero-strand structure, which is an IAI layer (Sfl doped n~5X10"cm-", thickness about 0.4μm), s, Z''
In the case of the first embodiment, the current is blocked in the part where the diffusion is not done by the effect of the p-n junction with a large barrier potential between layer 4 and layer 11 and the p-n reverse bias between layer 11 and layer 12. The dielectric band film 6 as shown in FIG. Therefore, according to the present structure, heat dissipation is further improved, and reliability is further improved. The rest is the same as in FIG. 1, so detailed explanation will be omitted.

本実施例においても、拡散窓の配列は前記実施例と同様
の配列をとり得、差違なく供され、同等の効果が得られ
た。tた、上述の実施例においては、上記拡散窓の平面
パターンは正方形であったが、少くとも拡散窓の1辺が
光進行方向に平行であれば、長方形であることは勿論、
三角形あるいは他の多角形であっても同様に供され同等
の効果が得られた。
In this example as well, the diffusion windows could be arranged in the same manner as in the previous example, and the same effect could be obtained without any difference. In addition, in the above embodiment, the planar pattern of the diffusion window was a square, but it can of course be rectangular if at least one side of the diffusion window is parallel to the light traveling direction.
Triangles or other polygons could also be used in the same manner with the same effect.

以上説明したごとく本発明によれば、光進行方向に沿っ
て互いに独立した複数個のZn拡散領域を設ければよく
、7.nの拡散深さ等を精密に制御する必要なしに、高
出力、高信頼性の半導体レーザが得られる。また、本発
明の電流流入方法は他の材料や、他の構造の半導体レー
ザとの組み合わせ等、個々の変形は可能であるが、いず
れも本発明の権利範囲を逸脱するものでなく、本発明の
技術的効果は大である。また拡散幅を制御することによ
シ、縦モードの制御屯可能である。・
As explained above, according to the present invention, it is sufficient to provide a plurality of mutually independent Zn diffusion regions along the light traveling direction, and 7. A high output, highly reliable semiconductor laser can be obtained without the need to precisely control the diffusion depth of n, etc. Further, although the current inflow method of the present invention can be modified individually by combining it with other materials or semiconductor lasers with other structures, these do not depart from the scope of the present invention. The technical effects of this are significant. Furthermore, by controlling the diffusion width, it is possible to control the longitudinal mode.・

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての半導体レーザ素子の
光の進行方向に対する概略断面図、第2図は第1図の概
略平面図、第3図は本発明の他の実施例としての半導体
レーザ素子の概略平面図、第4図は本発明のさらに他の
実施例としての半導¥J 1 図 児 2  図 [X しλ′ ¥J 3 図
FIG. 1 is a schematic cross-sectional view of a semiconductor laser device according to an embodiment of the present invention in the direction of propagation of light, FIG. 2 is a schematic plan view of FIG. 1, and FIG. FIG. 4 is a schematic plan view of a semiconductor laser device as yet another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、半導体基板と、該基板上に形成された第1導電型の
第1半導体層と、該層上に形成された該層より禁制帯巾
の狭い第1導電型の第2半導体層と、上記第2半導体層
上に形成された上記第2層より禁制帯巾の広い第1導電
屋の第3半導体層と、上記第3半導体層の表面から上記
第1半導体層に達する如く連続的に形成された第2導電
型の半導体領域と、上記第1および第2導電屋領域に接
して形成された電極とを有した半導体レーザ素子におい
て、上記半導体領域は独立した少くとも2個の領域であ
って、かつ、光進行方向に配列せしめてなることを特徴
とした半導体レーザ素子。 2、特許請求の範囲第1項において、上記半導体領域は
少くとも一辺が上記光進行方向に平行になっている平面
パターンを有してなることを特徴とした半導体レーザ素
子。
[Claims] 1. A semiconductor substrate, a first semiconductor layer of a first conductivity type formed on the substrate, and a semiconductor layer of a first conductivity type formed on the layer having a narrower forbidden band width than that of the layer. a second semiconductor layer, a third semiconductor layer of a first conductive layer having a wider forbidden band width than the second layer formed on the second semiconductor layer, and a third semiconductor layer formed on the second semiconductor layer; In the semiconductor laser device, the semiconductor region has a second conductivity type semiconductor region formed continuously so as to reach the second conductivity type, and an electrode formed in contact with the first and second conductivity type regions. What is claimed is: 1. A semiconductor laser device comprising two regions arranged in the direction of light propagation. 2. The semiconductor laser device according to claim 1, wherein the semiconductor region has a planar pattern in which at least one side is parallel to the light traveling direction.
JP13009881A 1981-08-21 1981-08-21 Semiconductor laser element Pending JPS5832481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009881A JPS5832481A (en) 1981-08-21 1981-08-21 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009881A JPS5832481A (en) 1981-08-21 1981-08-21 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS5832481A true JPS5832481A (en) 1983-02-25

Family

ID=15025894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009881A Pending JPS5832481A (en) 1981-08-21 1981-08-21 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS5832481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933301A (en) * 1989-01-27 1990-06-12 Spectra Diode Laboratories, Inc. Method of forming a semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933301A (en) * 1989-01-27 1990-06-12 Spectra Diode Laboratories, Inc. Method of forming a semiconductor laser

Similar Documents

Publication Publication Date Title
US4282494A (en) Stripe-geometry double heterojunction laser element
JPS60192379A (en) Semiconductor laser device
JPS5832481A (en) Semiconductor laser element
US4581743A (en) Semiconductor laser having an inverted layer in a stepped offset portion
US4520485A (en) Semiconductor device
JPS63144589A (en) Semiconductor laser element
JPS59227177A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS6148277B2 (en)
JPH0423378A (en) Semiconductor laser
JPS61242091A (en) Semiconductor light-emitting element
JPH0325037B2 (en)
JPS6076184A (en) Semiconductor laser
JPS6373682A (en) Semiconductor laser
JPS6112399B2 (en)
JPS609187A (en) Semiconductor light-emitting device
JPS5923585A (en) Semiconductor laser element
JPH04370993A (en) Semiconductor laser device
JPS63287080A (en) Manufacture of semiconductor laser
JPS6223189A (en) Semiconductor laser element
JPS6310580A (en) Semiconductor laser
JPS5994485A (en) Semiconductor laser device
JPS61247086A (en) Semiconductor laser element
JPS60163483A (en) Semiconductor laser
JPH02191388A (en) Manufacture of semiconductor laser