JPS6159555B2 - - Google Patents

Info

Publication number
JPS6159555B2
JPS6159555B2 JP13449177A JP13449177A JPS6159555B2 JP S6159555 B2 JPS6159555 B2 JP S6159555B2 JP 13449177 A JP13449177 A JP 13449177A JP 13449177 A JP13449177 A JP 13449177A JP S6159555 B2 JPS6159555 B2 JP S6159555B2
Authority
JP
Japan
Prior art keywords
deflection
electrode
laser
stripe
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13449177A
Other languages
Japanese (ja)
Other versions
JPS5467392A (en
Inventor
Kuniaki Iwamoto
Isao Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13449177A priority Critical patent/JPS5467392A/en
Publication of JPS5467392A publication Critical patent/JPS5467392A/en
Publication of JPS6159555B2 publication Critical patent/JPS6159555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06243Controlling other output parameters than intensity or frequency controlling the position or direction of the emitted beam

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、半導体レーザに他の光機能素子を
組合せた複合半導体装置に関する。 半導体レーザは、小型・軽量・高効率等の長所
を持つため光通信装置や、光情報処理装置の有力
な光源と考えられている。レーザ光をいろいろな
目的に応用するためには、光変調技術と、光ビー
ムの空間的な位置や方向を制御する光偏向技術が
必要となる。半導体レーザはさいわい動作電流を
変調することによつて、容易に光変調を行なうこ
とができる。他方、光偏向については、別個に用
意した光偏向器によらなければならなかつた。光
偏向器はこれまで、機械的な回転や変位を利用す
る方法の他に電気光学効果や音響光学効果等の物
理効果を用いる方法が具体的に提案されており、
それぞれの用途に使われている。ところが、これ
らは外部に光偏向器を設けるため、装置が大きく
なること、半導体レーザと光偏向器との結合損失
が大きいことなどの欠点がある。 本発明は半導体レーザに光偏向機能を内蔵して
上記の欠点を改善した複合半導体装置を提供する
ものである。 すなわち、ストライプ電極をもつたダブルヘテ
ロ構造の半導体レーザの、レーザ共振器の内部に
水平横方向には光導波機構の無い非起起領域を有
し、該非励起領域の一部に複数の偏向用電極を設
け、かつ該偏向用電極の少なくとも一方の極性の
電極は、該半導体レーザの励起用電極から電気的
な隔離された構造の複合半導体装置である。 本発明によれば、半導体レーザにおいて、レー
ザ共振器内部の水平横方向光導波機構をもたない
非励起領域の一部で共振器モード内に吸収損失の
大きい部分を形成しておくと、吸収損失の大きい
部分を避けて、これまでと異なつた横モードでレ
ーザは発振し、非励起領域に電極を設け、この電
極に電流を注入すると、この電極部分を通過する
モードだけでレーザ発振する為、半導体レーザに
光偏向機能を具えることが可能となる。 以下本発明を実施例に基づいて説明する。 本発明は半導体の材料によらず適用できるが、
現段階で、もつとも優れた材料である、GaAs―
AlxGa1‐xAs系からなるダブル・ヘテロ構造で
ストライプ電極をもつた半導体レーザの場合を例
にとり、図面を参照して詳細に説明する。第1図
はこの発明の一実施例を示す模型的斜視図でn―
GaAs基板11の上にn―AlxGa1‐xAs層12、
n―GaAs活性層13、p―AlxGa1‐xAs層1
4、n―GaAs層15が順次多層成長してある。
ここでxは通常0.3位が用いられる。励起領域は
16で示したストライプ部分で、n―GaAs活性
層内に存在する部分である。このストライプ部分
のみn―GaAs層15を通してn―GaAs活性層1
3に達するようにZn等のp形不純物が選択的に
拡散してある。(図示せず。このp形不純物の拡
散領域でn―GaAs活性層以外の部分がストライ
プ電極である)p側電極金属17は励起領域が存
在する側の全面に施されて熱放散をよくしてい
る。つまりp形不純物拡散したストライプ部分1
6のみが電流注入される、いわゆるブレーナ・ス
トライプ構造になつている。共振器内部の非励起
領域18の一部にはそれぞれ電気的に隔離した複
数個の小さな偏向用のp側電極19を形成し、偏
向用電極19の部分には、ストライプ部分16と
同様にn―GaAs層15を通して、n―GaAs活性
層13に達するようにZn等のp形不純物が選択
拡散してある(図示せず)。n―GaAs基板11の
下面にはn側電極20が全面に形成されており、
偏向用電極のもう一方の極性の電極(この場合は
n側電極)も兼ねている。 以上の構造で先ずストライプ電極とn側電極2
0の間に順方向電流を通電すると、あるしきい値
電流I1以上でレーザ発振を示す。非励起領域の偏
向用電極19部分にはn―GaAs活性層13に達
するようにZn拡散されているので、その部分で
の禁制帯巾は等価的に約20〔meV〕狭くなつて
いる。非励起領域18には水平横方向の光導波機
構が無いため、共振器中の最も損失の少ない光路
を選んでレーザ発振が生ずる。従つて、レーザ発
振波長での吸収損失は偏向用電極19部分で大き
くなつているのでレーザ発振の横モードは偏向用
電極19部分を避けるようなモードになる。次に
偏向用電極19の一つの順方向電流を流すと、通
電した一つの偏向用電極部分を通る横モードのレ
ーザ発振が生ずる。このときストライプ部分16
に通電するレーザ発振のしきい値電流I2は、偏向
用電極19に通電しない場合(I1)より一般に小
さくなる。しかしストライプ軸A―B(第2図参
照)から遠ざかつた一つの偏向用電極19を使用
する場合には、I2〓I1となることもある。このよ
うに偏向用電極19によつてレーザ発振の横モー
ドを選択する機構は次のように説明される。つま
りストライプ部分の励起領域の平面方向には、い
わゆるゲイン・ガイデイング機構が存在すると考
えられており、他方非励起領域18にはこれがな
い。従つて、励起領域まで増幅された光が非励起
領域18に入ると、回折によつて、光は拡がる。
レーザ共振器はストライプ部分16と直角になる
ような一対のへき開面で構成されている。従つ
て、偏向用電極19が無ければ回折損失のもつと
も少ないストライプ軸上を通るモードが発振す
る。しかし、回折損失のもつとも少ないモード内
に一定の値以上の吸収損失を有する部分を形成す
ると、回折損失と吸収損失の和がもつとも少なく
なるような横モードで発振する。偏向用電極19
に電流を注入し、回折した光の一部に利得を与え
てやれば回折損失と利得の差がもつとも小さくな
る横モードで発振させることができる。ここで回
折損失は、ストライプ軸からはずれたモード程大
きくなることは周知である。 第2図はこの発明の実施例によつて得られる偏
向角を説明するために第1図の平面図を模型的に
示したものでストライプ軸をA―Bで示す。今偏
向用電極19のうちbにのみ電流を注入した場合
を考える。ストライプ部分16の端から偏向電極
19までの距離をとし偏向用電極19の間隔を
wとすると、結晶内での偏向角θは次のように表
わせる。 θtan-1(w/l) (1) 半導体結晶の屈折率をnとし空気中(n=1と
する)に出た場合の偏向角は次のように表わせ
る。 s1 -1(nsinθ) (2) 偏向角θは任意ではなく、θの増大とともにレ
ーザ発振のしきい値電流は増加し、ある値θc以
上になると、ほとんど発振させることが困難にな
る。θcは次式で与えられる。 θc4tan-1(2λ/ns) (3) ここでsはストライプ部分16の幅、λは発振
波長を示す。λ=8600Å、n=36、s=10μmと
すると、θc11゜となりw/l0.19となる。
そしてこのときの偏向角は43゜である。 一方レーザ光の接合面内の拡がり角は、半値半
幅でα4゜くらいにできるので、この偏向器の
分解能をp≡/αで定義すればp10が得られ
る。本発明の複合半導体装置の用途は、例えば接
合面内に一列に並べたガラスフアイバ束の任意の
一つのフアイバに信号を導入することができる。
また別の用途としては、光集積回路のスイツチン
グ素子または偏向素子としても使える。 以上詳細に説明したように、半導体レーザのレ
ーザ共振器内に水平横方向光導波機構の無い非励
起領域を設け、この非励起領域に電極を形成する
ことにより、半導体レーザに光偏向機能を持たす
ことができる。尚本発明の詳細な説明ではGaAs
―AlxGa1‐xAs系からなる半導体レーザの場合
について説明したが、他の半導体材料からなる半
導体レーザにも容易に適用でき、同様の効果る有
する複合半導体装置が得られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite semiconductor device in which a semiconductor laser is combined with other optical functional elements. Semiconductor lasers have advantages such as small size, light weight, and high efficiency, and are therefore considered to be a powerful light source for optical communication devices and optical information processing devices. In order to apply laser light for various purposes, light modulation technology and light deflection technology to control the spatial position and direction of the light beam are required. Fortunately, semiconductor lasers can easily perform optical modulation by modulating the operating current. On the other hand, for optical deflection, it was necessary to use a separately prepared optical deflector. In addition to methods using mechanical rotation and displacement, methods using physical effects such as electro-optic effects and acousto-optic effects have been specifically proposed for optical deflectors.
used for each purpose. However, since these devices are provided with an external optical deflector, they have drawbacks such as an increase in the size of the device and a large coupling loss between the semiconductor laser and the optical deflector. The present invention provides a composite semiconductor device that improves the above-mentioned drawbacks by incorporating a light deflection function into a semiconductor laser. That is, a semiconductor laser with a double heterostructure with striped electrodes has a non-exciting region in the horizontal lateral direction without an optical waveguide mechanism inside the laser resonator, and a part of the non-exciting region has multiple polarization devices. The composite semiconductor device is provided with electrodes and has a structure in which at least one polarity electrode of the deflection electrode is electrically isolated from the excitation electrode of the semiconductor laser. According to the present invention, in a semiconductor laser, if a portion with large absorption loss is formed in the cavity mode in a part of the non-excited region that does not have a horizontal lateral optical waveguide mechanism inside the laser cavity, absorption The laser oscillates in a different transverse mode by avoiding areas with large losses, and when an electrode is provided in the non-excited region and current is injected into this electrode, the laser oscillates only in the mode that passes through this electrode. , it becomes possible to provide a semiconductor laser with an optical deflection function. The present invention will be explained below based on examples. Although the present invention can be applied regardless of the material of the semiconductor,
At present, GaAs is an excellent material.
A detailed explanation will be given with reference to the drawings, taking as an example a semiconductor laser having a double heterostructure consisting of AlxGa 1 -xAs and having stripe electrodes. FIG. 1 is a schematic perspective view showing one embodiment of the present invention.
n-AlxGa 1 -xAs layer 12 on GaAs substrate 11,
n-GaAs active layer 13, p-AlxGa 1 -xAs layer 1
4.N-GaAs layers 15 are sequentially grown in multiple layers.
Here, 0.3 is usually used as x. The excitation region is a striped portion indicated by 16, which exists within the n-GaAs active layer. The n-GaAs active layer 1 is passed through the n-GaAs layer 15 only in this stripe portion.
P-type impurities such as Zn are selectively diffused to reach 3. (Not shown. The part of this p-type impurity diffusion region other than the n-GaAs active layer is a stripe electrode.) The p-side electrode metal 17 is applied to the entire surface of the side where the excitation region exists to improve heat dissipation. ing. In other words, the stripe portion 1 where p-type impurities are diffused
It has a so-called Brenna stripe structure in which only 6 is injected with current. A plurality of electrically isolated small p-side electrodes 19 for deflection are formed in a part of the non-excitation region 18 inside the resonator, and in the part of the deflection electrode 19 , like the stripe part 16, - P-type impurities such as Zn are selectively diffused through the GaAs layer 15 to reach the n-GaAs active layer 13 (not shown). An n-side electrode 20 is formed entirely on the lower surface of the n-GaAs substrate 11.
It also serves as the other polarity electrode (in this case, the n-side electrode) of the deflection electrode. In the above structure, first the stripe electrode and the n-side electrode 2
When a forward current is applied between 0 and 0, laser oscillation occurs when the current exceeds a certain threshold current I1 . Since Zn is diffused in the deflection electrode 19 portion in the non-excited region so as to reach the n-GaAs active layer 13, the forbidden band width in that portion is equivalently narrowed by about 20 [meV]. Since there is no optical waveguide mechanism in the horizontal and lateral directions in the non-excitation region 18, laser oscillation occurs by selecting the optical path with the least loss in the resonator. Therefore, since the absorption loss at the laser oscillation wavelength is large in the deflection electrode 19 portion, the transverse mode of laser oscillation becomes a mode that avoids the deflection electrode 19 portion. Next, when a forward current is applied to one of the deflection electrodes 19 , transverse mode laser oscillation occurs through the energized portion of the one deflection electrode. At this time, the stripe portion 16
The threshold current I 2 for laser oscillation that is energized is generally smaller than when the deflection electrode 19 is not energized (I 1 ). However, when using one deflection electrode 19 that is distant from the stripe axis AB (see FIG. 2), I 2 〓I 1 may occur. The mechanism for selecting the transverse mode of laser oscillation by the deflection electrode 19 will be explained as follows. In other words, it is thought that a so-called gain guiding mechanism exists in the plane direction of the excitation region of the stripe portion, while the non-excitation region 18 does not have this mechanism. Therefore, when the light that has been amplified to the excitation region enters the non-excitation region 18, the light spreads due to diffraction.
The laser resonator is composed of a pair of cleavage planes perpendicular to the stripe portion 16. Therefore, without the deflection electrode 19 , a mode passing along the stripe axis with the least diffraction loss will oscillate. However, if a portion having an absorption loss of a certain value or more is formed in a mode with least diffraction loss, oscillation occurs in a transverse mode in which the sum of diffraction loss and absorption loss is at least as small as possible. Deflection electrode 19
By injecting a current into the beam and giving gain to a portion of the diffracted light, it is possible to cause it to oscillate in a transverse mode in which the difference between diffraction loss and gain becomes smaller. It is well known that the diffraction loss increases as the mode deviates from the stripe axis. FIG. 2 schematically shows the plan view of FIG. 1 in order to explain the deflection angle obtained by the embodiment of the present invention, and the stripe axis is indicated by AB. Now consider the case where current is injected only into b of the deflection electrodes 19 . If the distance from the end of the stripe portion 16 to the deflection electrode 19 is taken and the interval between the deflection electrodes 19 is w, then the deflection angle θ within the crystal can be expressed as follows. θtan -1 (w/l) (1) Letting the refractive index of a semiconductor crystal be n, the deflection angle when the semiconductor crystal is exposed to air (n=1) can be expressed as follows. s 1 -1 (nsin θ) (2) The deflection angle θ is not arbitrary; the threshold current for laser oscillation increases as θ increases, and when it exceeds a certain value θc, it becomes almost difficult to oscillate. θc is given by the following equation. θc4tan −1 (2λ/ns) (3) Here, s is the width of the stripe portion 16, and λ is the oscillation wavelength. If λ=8600 Å, n=36, and s=10 μm, θc11° and w/l0.19.
The deflection angle at this time is 43°. On the other hand, the spread angle of the laser beam within the junction plane can be approximately α4° at half width at half maximum, so if the resolution of this deflector is defined as p≡/α, p10 can be obtained. The composite semiconductor device of the present invention can be used, for example, to introduce a signal into any one fiber of a bundle of glass fibers arranged in a line within a bonding surface.
In addition, it can be used as a switching element or a deflection element for optical integrated circuits. As explained in detail above, by providing an unexcited region without a horizontal lateral optical waveguide mechanism in the laser resonator of a semiconductor laser and forming an electrode in this unexcited region, the semiconductor laser can be provided with an optical deflection function. be able to. In the detailed description of the present invention, GaAs
Although the case of a semiconductor laser made of -AlxGa 1 -xAs has been described, it can be easily applied to a semiconductor laser made of other semiconductor materials, and a composite semiconductor device having similar effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す模型的斜
視図、第2図は、この発明の実施例によつて得ら
れる偏向角を説明するための図である。 図中11はn―GaAs基板、12はn―
AlxGa1‐xAs層、13はn―GaAs活性層、14
はp―AlxGa1‐xAs層、15はn―GaAs層、1
6はストライプ部分、17はp側電極金属、18
は非励起領域、19は偏向用電極、20はn側電
極をそれぞれ示す。
FIG. 1 is a schematic perspective view showing an embodiment of the present invention, and FIG. 2 is a diagram for explaining the deflection angle obtained by the embodiment of the present invention. In the figure, 11 is an n-GaAs substrate, 12 is an n-
AlxGa 1 -xAs layer, 13 is n-GaAs active layer, 14
is p-AlxGa 1 -xAs layer, 15 is n-GaAs layer, 1
6 is a stripe part, 17 is a p-side electrode metal, 18
19 represents a non-excited region, 19 represents a deflection electrode, and 20 represents an n-side electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ストライプ電極をもつたダブル・ヘテロ構造
半導体レーザにおいて、レーザ共振器の内部に水
平横方向光導波機構の無い非励起領域を有し、こ
の非励起領域の一部に複数の偏向用電極を有し、
かつ複数の偏向用電極の少なくとも1方の極性の
電極が半導体レーザの励起用の電極から電気的に
隔離されている構造を有することを特徴とする複
合半導体装置。
1 A double heterostructure semiconductor laser with striped electrodes has a non-excited region without a horizontal lateral optical waveguide mechanism inside the laser cavity, and a plurality of deflection electrodes in a part of this non-excited region. death,
A composite semiconductor device having a structure in which at least one polarity electrode of the plurality of deflection electrodes is electrically isolated from an excitation electrode of a semiconductor laser.
JP13449177A 1977-11-08 1977-11-08 Composite semiconductor device Granted JPS5467392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13449177A JPS5467392A (en) 1977-11-08 1977-11-08 Composite semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13449177A JPS5467392A (en) 1977-11-08 1977-11-08 Composite semiconductor device

Publications (2)

Publication Number Publication Date
JPS5467392A JPS5467392A (en) 1979-05-30
JPS6159555B2 true JPS6159555B2 (en) 1986-12-17

Family

ID=15129554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13449177A Granted JPS5467392A (en) 1977-11-08 1977-11-08 Composite semiconductor device

Country Status (1)

Country Link
JP (1) JPS5467392A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912398Y2 (en) * 1980-07-18 1984-04-14 四国化成工業株式会社 Fall prevention device for telescoping gates
JPS5727086A (en) * 1980-07-25 1982-02-13 Toshiba Corp Wavelength controlled laser wherein wave guide and grating lens are applied
JPS61159785A (en) * 1985-01-08 1986-07-19 Canon Inc Semiconductor device

Also Published As

Publication number Publication date
JPS5467392A (en) 1979-05-30

Similar Documents

Publication Publication Date Title
US6075801A (en) Semiconductor laser with wide side of tapered light gain region
JPH08186330A (en) Light amplification device and semiconductor laser apparatus using it as well as their driving method
JPS6254489A (en) Semiconductor light emitting element
US5311534A (en) Semiconductor laser devices
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JP3183683B2 (en) Window type semiconductor laser device
US5321714A (en) Reflection suppression in semiconductor diode optical switching arrays
JP2539368B2 (en) Semiconductor laser device
JPH05341242A (en) Optical modulating element
US4809290A (en) Opto-electronic directional switch
JPS6159555B2 (en)
JPH0542148B2 (en)
JPS606119B2 (en) Composite semiconductor device
JP3006797B2 (en) Semiconductor laser
JPWO2006011370A1 (en) Polarization modulation laser device
JPH06188510A (en) Semiconductor laser element
JP2671317B2 (en) Semiconductor laser
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP3043797B2 (en) Semiconductor optical device
JP3211330B2 (en) Semiconductor laser array device
JP3761130B2 (en) Surface emitting laser device
JP3710195B2 (en) Semiconductor laser
JPH07321395A (en) Self oscillation semiconductor laser element
JPH01287980A (en) Semiconductor laser device
JPH0525192B2 (en)