JPH0439985A - Light beam deflector - Google Patents

Light beam deflector

Info

Publication number
JPH0439985A
JPH0439985A JP14680490A JP14680490A JPH0439985A JP H0439985 A JPH0439985 A JP H0439985A JP 14680490 A JP14680490 A JP 14680490A JP 14680490 A JP14680490 A JP 14680490A JP H0439985 A JPH0439985 A JP H0439985A
Authority
JP
Japan
Prior art keywords
layer
light
optical
conductivity type
guide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14680490A
Other languages
Japanese (ja)
Inventor
Shigenobu Yamagoshi
茂伸 山腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14680490A priority Critical patent/JPH0439985A/en
Publication of JPH0439985A publication Critical patent/JPH0439985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06243Controlling other output parameters than intensity or frequency controlling the position or direction of the emitted beam

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a high-performance deflector which maintains the variability of beam deflection, and simultaneously compensates coupling loss and carrier loss by enabling the change in a refractive index and the amplification degree of light beam to be controlled independently. CONSTITUTION:On a single conductor type semiconductor substrate 11, there are laminated a conductor type optical guide layer 13, an opposite conductor type spacer layer 14, a single conductor type optical amplifier layer 15 where a band gap is either smaller or equivalent to the optical guide layer, a one conductivity type clad layer 16 by way of a secondary or higher-order diffraction grating 12. Then, electric current is independently injected into the layer 13 and the layer 15 with power sources V1 and V1 where input light is arranged to enter from the end face of the laminated layer while output light is plane-discharged from the surface of the clad layer. The band filing effect of the layer 13 by the injection current of the power source V1 with its plasma effect reduces the refractive index and changes an angle theta of discharge beam from its vertical direction. Furthermore, the gain of the optical amplification layer can be controlled with the injection current based on the power supply V2. It is, therefore, possible to obtain a high-performance light beam deflector which compensates coupling loss and carrier loss by controlling the power sources V1 and V2.

Description

【発明の詳細な説明】 〔概要〕 面出対型の光ビーム偏向器に関し。[Detailed description of the invention] 〔overview〕 Concerning surface pair type optical beam deflector.

ビーム偏向の可変性を維持したまま、結合損失。coupling loss while maintaining beam deflection variability.

伝搬損失を補償した高性能の光ビーム偏向器を提供する
ことを目的とし。
The purpose is to provide a high-performance optical beam deflector that compensates for propagation loss.

■)−導電型半導体基板圓上に2次以上の高次の回折格
子α力を介して順に積層されたー導電型光ガイド層(1
39反対導電型スペーサ層α4.バンドギャップが該光
ガイド層より小さいかあるいは等しいい一導電型光増幅
層α阻−導電型りラッド層αGを有し、該光ガイド層及
び該光増幅層に独立に電流注入を行い、入力洸を前記積
層構造の端面より入れ、出力光を該クラッド層表面より
面出射させて取り出すように構成する。
■) - Conductive light guide layer (1
39 Opposite conductivity type spacer layer α4. having one conductivity type optical amplification layer α and one conductivity type rad layer αG having a bandgap smaller or equal to that of the optical guide layer, and injecting current into the optical guide layer and the optical amplification layer independently; The input light is input from the end face of the laminated structure, and the output light is output from the surface of the cladding layer.

2)前記光ガイド層および該光増幅層の内少なくとも1
つは多重量子井戸構造であるように構成する。
2) at least one of the light guide layer and the light amplification layer;
One is configured to have a multiple quantum well structure.

〔産業上の利用分野〕[Industrial application field]

本発明は面出対型の光ビーム偏向器に関する。 The present invention relates to a surface pair type optical beam deflector.

近年の光通信のネットワーク化にともない、光ビームを
空間的に偏向させる偏向器の実現が望まれている。
With the recent development of optical communication networks, it is desired to realize a deflector that spatially deflects a light beam.

偏向角可変の光ビーム偏向器はIXNの空間分割型の光
スィッチや、NXNのクロスノくスイ・ソチに不可欠な
素子であり、可変でかつ損失の小さい偏向器が要望され
ている。
A light beam deflector with a variable deflection angle is an essential element for IXN's space division type optical switch and NXN's cross-sectional switch, and there is a demand for a variable deflector with low loss.

本発明はこの要望を実現する偏向器として利用できる。The present invention can be used as a deflector that fulfills this desire.

〔従来の技術〕[Conventional technology]

従来の偏向器としてミラーを機械的に動かす方法が知ら
れているが、この場合は光学系が大きくなり9機械的な
可動部分があることから信頼性にも問題がある。
A method of mechanically moving a mirror is known as a conventional deflector, but in this case, the optical system is large and there are mechanically movable parts, so there are problems with reliability.

このために、半導体を用いた第3図に示される構造の偏
向器が提案されている。
For this purpose, a deflector using a semiconductor and having the structure shown in FIG. 3 has been proposed.

第3図(a)、 (b)は従来の半導体偏向器の断面図
と等価回路図である。
FIGS. 3(a) and 3(b) are a sectional view and an equivalent circuit diagram of a conventional semiconductor deflector.

図において、21はp型(p−)GaAs基板。In the figure, 21 is a p-type (p-) GaAs substrate.

22はp−AlGaAsクラッド層、23はノンドープ
のGaAs層、24はn型(n−)A lGaAs光ガ
イド層、25は回折格子、26はn−AlGaAsクラ
ッド層である。
22 is a p-AlGaAs cladding layer, 23 is a non-doped GaAs layer, 24 is an n-type (n-) AlGaAs optical guide layer, 25 is a diffraction grating, and 26 is an n-AlGaAs cladding layer.

この構造は端面より光入力を入れ、 n−AlGaAs
クラッド層26の表面より垂直方向に光出力を空間に放
出させるもので、出射角を変えるために電流注入により
屈折率を変えている。
This structure inputs light from the end face and is made of n-AlGaAs
Light output is emitted into space in a vertical direction from the surface of the cladding layer 26, and the refractive index is changed by current injection in order to change the emission angle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来構造のものは基本的に、電流注入で屈折率を
変える場合に利得も大きく変化するため実用的でなかっ
た。
Basically, the conventional structure described above was not practical because the gain also changes greatly when the refractive index is changed by current injection.

本発明はビーム偏向の可変性を維持したまま。The present invention maintains the variability of beam deflection.

結合損失、伝搬損失を補償した高性能の光ビーム偏向器
を提供することを目的とする。
The purpose of this invention is to provide a high-performance optical beam deflector that compensates for coupling loss and propagation loss.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は。 What is the solution to the above problem?

■)−導電型半導体基板(11)上に2次以上の高次の
回折格子(12)を介して順に積層された一導電型光ガ
イド層l9反対導電型スペーサ層α4.バンドギャップ
が該光ガイド層より小さいかあるいは等しいい一導電型
光増幅層α9.−導電型クラ・ソド層αGを有し、該光
ガイド層及び該光増幅層に独立に電流注入を行い、入力
光を前記積層構造の端面より入れ、出力光を該クラッド
層表面より面出対させて取り出す光ビーム偏向器、ある
いは2)前記光ガイド層及び該光増幅層の内少な(とも
1つは多重量子井戸構造であることを特徴とする前記l
)記載の光ビーム偏向器により達成される。
(2) - Light guide layer 19 of one conductivity type and spacer layer α4 of opposite conductivity type sequentially laminated on a conductivity type semiconductor substrate (11) via a second-order or higher order diffraction grating (12). One conductivity type optical amplification layer α9 whose bandgap is smaller than or equal to that of the optical guide layer. - having a conductive cladding layer αG, in which current is independently injected into the optical guide layer and the optical amplification layer, input light is input from the end face of the laminated structure, and output light is emitted from the surface of the cladding layer; 2) a light beam deflector for extracting light beams in pairs;
This is achieved by the optical beam deflector described in ).

〔作用〕[Effect]

第1図(a)、 (b)は本発明の原理説明図と等価回
路図である。
FIGS. 1(a) and 1(b) are diagrams explaining the principle of the present invention and an equivalent circuit diagram.

図において、 11はp−1nP基板。In the figure, 11 is a p-1nP substrate.

12は2次以上の高次の回折格子。12 is a high-order diffraction grating of second order or higher.

13はp−1nGaAsP(バンドギャップEl)光ガ
イド層。
13 is a p-1nGaAsP (band gap El) optical guide layer.

14はn−InP スペーサ層。14 is an n-InP spacer layer.

15はp−InGaAsP(バンドギャップE2)光増
幅層。
15 is a p-InGaAsP (band gap E2) optical amplification layer.

(Ez≦E1)。(Ez≦E1).

16はp−1nPクラッド層である。16 is a p-1nP cladding layer.

ここで、上記の条件E2≦E1はつぎようなの理由によ
り採用した。
Here, the above condition E2≦E1 was adopted for the following reason.

光増幅層は入射光を増幅するものであるから。This is because the optical amplification layer amplifies incident light.

入射光の波長λ2に対応するバンドギャップE2にする
The band gap E2 is set to correspond to the wavelength λ2 of the incident light.

一方、光ガイド層は入射光に対してできるだけ損失(光
吸収)を小さ(する必要がある。そのため光ガイド層の
バンドギャップE1をE2より十分太き(する必要があ
るが、このようにすれば電流注入による屈折率変化が少
ないため、多少光吸収は残るが入射光の波長λ2より少
し短波長側。
On the other hand, the light guide layer must have as little loss (light absorption) as possible for the incident light.Therefore, the bandgap E1 of the light guide layer must be made sufficiently thicker than E2. For example, since there is little change in the refractive index due to current injection, some light absorption remains, but at a slightly shorter wavelength than the wavelength λ2 of the incident light.

すなわち入射光の波長λ2に対応するバンドギャップE
2より少し大きめのE+に設定して屈折率変化を太き(
する。
That is, the bandgap E corresponding to the wavelength λ2 of the incident light
Set E+ slightly larger than 2 to make the refractive index change thicker (
do.

図示のように、2つの電源V、、 V、で下側の偏内部
及び上側の増幅部の注入電流を制御する。
As shown in the figure, two power supplies V, , V control the injection currents of the lower partial section and the upper amplifier section.

いま、出射ビームの垂直方向からの角度をθとすると。Now, let θ be the angle of the emitted beam from the vertical direction.

kosinθ=β−K。kosinθ=β−K.

ただし、ko=2π/λ。However, ko=2π/λ.

β=n *t+ k o 、 K= 2 M / A。β = n * t + k o, K = 2 M / A.

ここに λ:入射光の波長 A:回折格子のピッチ に:格子ベクトルの絶対値 β:伝搬定数 na、t:等偏屈折率 である。Here λ: wavelength of incident light A: Diffraction grating pitch : Absolute value of lattice vector β: propagation constant na, t: equal polarized refractive index It is.

電源vlによる注入電流で、光ガイド層のバンドフィリ
ング効果、プラズマ効果で屈折率n*ffが減少し、θ
を変化させることができる。
With the current injected by the power supply vl, the refractive index n*ff decreases due to the band filling effect of the optical guide layer and the plasma effect, and θ
can be changed.

電源v2による注入電流で、光増幅層の利得を制御でき
るので、電源Vll V2を適当に制御することにより
、結合損失、伝搬損失を補償した高性能の光ビーム偏向
器が得られる。
Since the gain of the optical amplification layer can be controlled by the current injected by the power source v2, a high-performance optical beam deflector that compensates for coupling loss and propagation loss can be obtained by appropriately controlling the power source VllV2.

〔実施例〕〔Example〕

第2図は本発明の一実施例の光ビーム偏向器を説明する
斜視図である。
FIG. 2 is a perspective view illustrating a light beam deflector according to an embodiment of the present invention.

ここでは、光入力および光出力の波長が1.55μmの
光ビーム偏向、増幅器を説明する。
Here, an optical beam deflector and amplifier in which the optical input and optical output wavelengths are 1.55 μm will be described.

以下、その構造を製造工程の概要とともに説明する。The structure will be explained below along with an overview of the manufacturing process.

図において。In fig.

まず、 p−InP基板ll上にA〜5000人の2次
の回折格子を形成する。
First, a second-order diffraction grating of A to 5000 is formed on a p-InP substrate II.

その上に。in addition.

p−1nGaAsP光ガイド層 (λPL−1,3μm、 厚さ 0.2.czm) 1
3゜n−InPスペーサ層(厚さ0.5 μm)14゜
p−1nGaAsP光増幅層 (λPL〜1.55μm、厚さ0.2μm )15゜p
−1nPクラッド層(厚さ0.5 μm) 16を成長
する。
p-1nGaAsP light guide layer (λPL-1, 3μm, thickness 0.2.czm) 1
3゜n-InP spacer layer (thickness 0.5 μm) 14゜p-1nGaAsP optical amplification layer (λPL~1.55μm, thickness 0.2μm) 15゜p
-1nP cladding layer (thickness 0.5 μm) 16 is grown.

ここで、4元化合物1nGaAsPの組成はフォトルミ
ネセンス波長λ、Lで表示した。
Here, the composition of the quaternary compound 1nGaAsP is expressed by the photoluminescence wavelength λ and L.

次に、 SiO□膜をエツチングマスクにして3幅1.
5〜10μmのストライプ状にp−InP基板11に届
くまでメサエッチングする。
Next, using the SiO□ film as an etching mask, 3 widths of 1.
Mesa etching is performed until it reaches the p-InP substrate 11 in a stripe shape of 5 to 10 μm.

その後、 n−InP層17. p−1nP層18゜p
”−InGaAsPコンタクト層19の順に埋込成長を
行う。
After that, the n-InP layer 17. p-1nP layer 18゜p
”-InGaAsP contact layer 19 is buried in this order.

その後、ストライプの片側のp”−1nGaAsPコン
タクト層19. p−InP層18をエツチング除去し
Thereafter, the p''-1nGaAsP contact layer 19 and p-InP layer 18 on one side of the stripe were removed by etching.

n−1nP層17上に電極2としてn電極(AuGe/
Au)を形成する。
An n electrode (AuGe/
Au) is formed.

ストライプの他の側のp”−InGaAsPコンタクト
層19上に電極3としてp電極(AuZn/Au又はT
i/Pt/Au)を形成する。
A p electrode (AuZn/Au or T
i/Pt/Au).

p−InP基板11の裏面にも電極1としてp電極を形
成する。
A p-electrode is also formed on the back surface of the p-InP substrate 11 as the electrode 1 .

なお、端面はAR膜(SiN膜)を被覆する。Note that the end face is covered with an AR film (SiN film).

電極1,2で光ガイド層に電流を注入し、屈折率n1.
、を制御する。他方、電極3,2で光増幅層に電流を注
入し利得を制御することが可能である。
A current is injected into the light guide layer using electrodes 1 and 2, and the refractive index n1.
, to control. On the other hand, it is possible to control the gain by injecting current into the optical amplification layer using the electrodes 3 and 2.

上記の実施例では、 p−InGaAsP  (λpt
、〜1.3μm)光ガイド層13.  p−InGaA
sP (λPL−1,55μm)光増幅層15に単層を
用いたが、その内の少なくとも1つに1例えば次の多重
量子井戸構造を用いてもよい。
In the above example, p-InGaAsP (λpt
, ~1.3 μm) light guide layer 13. p-InGaA
Although a single layer is used for the sP (λPL-1, 55 μm) optical amplification layer 15, at least one of them may have a multi-quantum well structure, for example, as shown below.

光ガイド層: 厚さ70人のI)−InGaAsP(λPL〜1.4 
μm )層を10層と。
Light guide layer: thickness 70 μm)-InGaAsP (λPL ~ 1.4
μm) layer with 10 layers.

厚さioo人の叶InP層を9層 とを各層交互に積層する。9 layers of IOO thick InP layer Each layer is laminated alternately.

光増幅層: 厚さ70人のp−1nGaAs層を10層と。Light amplification layer: 10 p-1nGaAs layers with a thickness of 70 mm.

厚さ100人のp−1nGaAsP(λPL−1,1、
czm)層を9層 とを各層交互に積層する。
100 nm thick p-1nGaAsP (λPL-1,1,
czm) layers are laminated alternately.

ここで9層数は3〜20程度が望ましい。Here, the number of nine layers is desirably about 3 to 20.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、屈折率の変化(光
ビームの出射角の変化)と光ビームの増幅度を独立に制
御することが可能となり、従来のようにビームを偏向さ
せると出力が変化することを防ぐことが可能となる。
As explained above, according to the present invention, it is possible to independently control the change in the refractive index (change in the emission angle of the light beam) and the amplification degree of the light beam, and when the beam is deflected as in the past, the output This makes it possible to prevent changes in the

この結果、ビーム偏向の可変性を維持したまま。As a result, the beam deflection remains variable.

結合損失、伝搬損失を補償した高性能の光ビーム偏向器
を得ることができる。
A high-performance optical beam deflector that compensates for coupling loss and propagation loss can be obtained.

15はp−1nGaAsP(バンドギャップE2)光増
幅層。
15 is a p-1nGaAsP (band gap E2) optical amplification layer.

(E2≦E1)。(E2≦E1).

16はp−InPクラッド層16 is p-InP cladding layer

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は本発明の原理説明図と等他回
路図。 第2図は本発明の一実施例の光ビーム偏向器を説明する
斜視図。 第3図(a)、 (b)は従来の半導体偏向器の断面図
と等他回路図である。 図において。 11はp−InP基板。 12は2次以上の高次の回折格子。 13はp−InGaAsP(バンドギャップB+)光ガ
イド層。 14はn−1nPスペ一サ層。 (CA) (b) 本発明の涼理説用図と等他回路図 第1図 実施4り弓の凛斗硯図 第 2 図 損づくイ列の断面図と答イ面回路日 清  3  閃
FIGS. 1(a) and 1(b) are diagrams explaining the principle of the present invention and other circuit diagrams. FIG. 2 is a perspective view illustrating a light beam deflector according to an embodiment of the present invention. FIGS. 3(a) and 3(b) are a sectional view and other circuit diagrams of a conventional semiconductor deflector. In fig. 11 is a p-InP substrate. 12 is a high-order diffraction grating of second order or higher. 13 is a p-InGaAsP (bandgap B+) optical guide layer. 14 is an n-1nP spacer layer. (CA) (b) Diagram for explaining the present invention and other circuit diagrams Figure 1 Practical Rinto inkstone diagram of the 4th bow Figure 2 Cross-sectional view of the damaged row A and answers A surface circuit Nissin 3 Flash

Claims (1)

【特許請求の範囲】 1)一導電型半導体基板(11)上に2次以上の高次の
回折格子(12)を介して順に積層された一導電型光ガ
イド層(13)、反対導電型スペーサ層(14)、バン
ドギャップが該光ガイド層より小さいかあるいは等しい
い一導電型光増幅層(15)、一導電型クラッド層(1
6)を有し、 該光ガイド層及び該光増幅層に独立に電流注入を行い、
入力光を前記積層構造の端面より入れ、出力光を該クラ
ッド層表面より面出射させて取り出すことを特徴とする
光ビーム偏向器。 2)前記光ガイド層および該光増幅層の内少なくとも1
つは多重量子井戸構造であることを特徴とする請求項1
記載の光ビーム偏向器。
[Claims] 1) A light guide layer (13) of one conductivity type laminated in order on a semiconductor substrate (11) of one conductivity type via a diffraction grating (12) of a second or higher order, and a light guide layer (13) of an opposite conductivity type. a spacer layer (14), an optical amplification layer (15) of one conductivity type whose bandgap is smaller or equal to that of the optical guide layer, and a cladding layer (15) of one conductivity type.
6), injecting current into the optical guide layer and the optical amplifying layer independently;
A light beam deflector, characterized in that input light enters from the end face of the laminated structure, and output light is emitted from the surface of the cladding layer to be taken out. 2) at least one of the light guide layer and the light amplification layer;
Claim 1, characterized in that one has a multiple quantum well structure.
The optical beam deflector described.
JP14680490A 1990-06-05 1990-06-05 Light beam deflector Pending JPH0439985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14680490A JPH0439985A (en) 1990-06-05 1990-06-05 Light beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14680490A JPH0439985A (en) 1990-06-05 1990-06-05 Light beam deflector

Publications (1)

Publication Number Publication Date
JPH0439985A true JPH0439985A (en) 1992-02-10

Family

ID=15415907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14680490A Pending JPH0439985A (en) 1990-06-05 1990-06-05 Light beam deflector

Country Status (1)

Country Link
JP (1) JPH0439985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536264A (en) * 2000-06-02 2003-12-02 アジリティー コミュニケイションズ インコーポレイテッド High power, manufacturable extraction grating distributed Bragg reflector laser
US7843020B2 (en) * 2006-09-26 2010-11-30 Sharp Kabushiki Kaisha High withstand voltage transistor and manufacturing method thereof, and semiconductor device adopting high withstand voltage transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536264A (en) * 2000-06-02 2003-12-02 アジリティー コミュニケイションズ インコーポレイテッド High power, manufacturable extraction grating distributed Bragg reflector laser
US7843020B2 (en) * 2006-09-26 2010-11-30 Sharp Kabushiki Kaisha High withstand voltage transistor and manufacturing method thereof, and semiconductor device adopting high withstand voltage transistor

Similar Documents

Publication Publication Date Title
JP2817769B2 (en) Optical amplifying device, semiconductor laser device using the same, and driving method thereof
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
EP0836255A1 (en) Laser diode array and fabrication method thereof
JP3238727B2 (en) Optical amplifier
EP0533485B1 (en) Semiconductor device and method of making it
US8179592B2 (en) Semiconductor optical amplifier, method for manufacturing the same, and semiconductor optical integrated device
JPH065975A (en) Semiconductor laser
JP3183683B2 (en) Window type semiconductor laser device
US9912122B2 (en) Semiconductor optical device
JP2539368B2 (en) Semiconductor laser device
JPS61191093A (en) Semiconductor device
JPH0439985A (en) Light beam deflector
US20030017662A1 (en) High power single mode laser and method of fabrication
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JPH08307014A (en) Optical semiconductor device
JPS6332985A (en) Semiconductor laser
US6668002B2 (en) Semiconductor laser device including ARROW structure formed without P-As interdiffusion and Al oxidation
JPS6159555B2 (en)
JPH04282883A (en) Light amplifying device
JP2683092B2 (en) Semiconductor laser device
JPH07325328A (en) Semiconductor optical modulator
JPH03288489A (en) Distribution feedback semiconductor laser device
JPS60124982A (en) Bi-stable laser
Lammert et al. Dual-channel strained-layer InGaAs-GaAs-AlGaAs WDM source with integrated coupler by selective-area MOCVD
JPS6381305A (en) Optical integrated circuit