JPS6381305A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPS6381305A
JPS6381305A JP22785086A JP22785086A JPS6381305A JP S6381305 A JPS6381305 A JP S6381305A JP 22785086 A JP22785086 A JP 22785086A JP 22785086 A JP22785086 A JP 22785086A JP S6381305 A JPS6381305 A JP S6381305A
Authority
JP
Japan
Prior art keywords
layer
algaas
gaas
mqw
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22785086A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Mitsukazu Kondo
充和 近藤
Yoshinori Ota
太田 義徳
Isatake Sawano
沢野 驍武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22785086A priority Critical patent/JPS6381305A/en
Publication of JPS6381305A publication Critical patent/JPS6381305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical integrated circuit which permits easy manufacture and has high coupling efficiency between passive waveguide and active elements by forming waveguide layers so as to be larger in band gap and higher in refractive index than multiple quantum well structure. CONSTITUTION:An n<+>-GaAs buffer layer 2, n<+>-AlGaAs clad layer 3, an n- AlGaAs guide layer 4, an i-GaAs/AlAs multiple quantum well (MQW) clad layer 5, a p-AlGaAs layer 6, and p<+>-GaAs cap layer 7 are continuously grown on an n<+>-GaAs substrate 1 and after an ohmic electrode 8 is formed on the p side, an optical circuit pattern 9 is formed as the rib shape arriving at the middle of the n-AlGaAs guide layer 4. The layers are then removed down to the n<+>-AlGaAs clad layer 3 so as to form a reflection surface 10 in the bent parts of the respective optical circuit parts. The ohmic electrode 8, the p<+>-GaAs cap layer 7, the p-AlGaAs layer 6 and the MQW clad layer 5 are thereafter removed in the parts except switches 11a, 11d at the center, and an n side ohmic electrode 12 is formed on the rear surface of the substrate; finally, inlet and exit end faces are formed by cleavage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体材料による光集積回路に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to optical integrated circuits made of semiconductor materials.

(従来の技術) 光集積回路は1つの基板上に種々の光素子を集積し、機
能を実現するものであり、近年の光通信システムの高遊
化にともないその実現が期待されるものである。特にG
aAQAs、 InGaAsP系等の■−v族化合物半
導体材料は、発光、受光、スイッチ、導波等の機能を総
て実現できるためモノリシックな光集積回路用材料とし
て優れている。
(Prior art) Optical integrated circuits integrate various optical elements on one substrate to realize functions, and are expected to be realized as optical communication systems become more popular in recent years. . Especially G
■-V group compound semiconductor materials such as aAQAs and InGaAsP are excellent as materials for monolithic optical integrated circuits because they can realize all functions such as light emission, light reception, switching, and waveguide.

従来の半導体材料による光集積回路では発光、受光、ス
イッチ等のアクティブな素子と受動光導波路とを結合す
る方法として、 (1)方向性結合によるもの(特開昭50−15928
7 )(2)もれ結合によるもの(11誌「アイ・イー
・イー・イー・ジャーナル・オプ・カンタム・エレクト
ロニクス(IEEE Journal of Quan
tum Elect−ronics )第QE−15巻
1979年、72−82頁)(3)直接結合によるもの
(ls誌「アプライド・7(ジクス・レターズ(App
lied Physics Lette−rs)第27
巻、1975年、241〜243頁)が知られている。
In conventional optical integrated circuits using semiconductor materials, methods for coupling active elements such as light emitting, light receiving, and switching devices with passive optical waveguides include (1) Directional coupling (Japanese Patent Laid-Open No. 50-15928
7) (2) Due to leakage coupling (11 journals ``IEEE Journal of Quantum Electronics (IEEE Journal of Quantum Electronics)
tum Electronics) Vol. QE-15, 1979, pp. 72-82)
Lied Physics Letter-rs) No. 27
Vol., 1975, pp. 241-243).

(発明が解決しようとする問題点) これらの方法のうち、(1)は層厚、屈折率の設定条件
が厳しくまた(3)は活性、受動導波路の位置が合うよ
うに埋込成長する必要がありそれぞれ製作が難しい、こ
れに対して、(2)は受動導波路上に部分的に活性導波
路を形成するもので比較的製作は容易であるが、活性導
波路の方が屈折率が高く、活性導波路から受動導波路へ
の光のもれを利用しているため結合の効率が低い。
(Problems to be solved by the invention) Among these methods, (1) has strict conditions for setting the layer thickness and refractive index, and (3) uses buried growth so that the positions of the active and passive waveguides match. On the other hand, in (2), an active waveguide is partially formed on a passive waveguide and is relatively easy to manufacture, but the active waveguide has a higher refractive index. is high, and the coupling efficiency is low because it utilizes light leakage from the active waveguide to the passive waveguide.

本発明の目的は、このような問題点を除去し、製作が容
易でかつ受動導波路とアクティブ素子間の結合効率の高
い光集積回路を提供することにある。
An object of the present invention is to eliminate such problems and provide an optical integrated circuit that is easy to manufacture and has high coupling efficiency between a passive waveguide and an active element.

(問題点を解決するための手段) 本発明による光集積回路は:多重量子井戸構造とこの多
重量子井戸構造に電界を印加し又は電流を注入する手段
とが、半導体基板に形成された導波路層の上に部分的に
形成してあり;前記多重量子井戸構造は、ドブロイ波長
程度の厚みの第1の半導体層をこの第1の半導体層より
バンドギャップの大きな第2の半導体層によりはさんだ
量子井戸を層厚方向に多着に重ねてなり;前記導波路層
は前記多重量子井戸構造よりバンドギャップが大きくか
つ屈折率の高いことを特徴とする。
(Means for Solving the Problems) The optical integrated circuit according to the present invention includes: a multiple quantum well structure and a means for applying an electric field or injecting a current to the multiple quantum well structure, which is a waveguide formed on a semiconductor substrate. The multi-quantum well structure has a first semiconductor layer having a thickness of approximately the de Broglie wavelength sandwiched between second semiconductor layers having a larger band gap than the first semiconductor layer. It is composed of multiple quantum wells stacked in the layer thickness direction; the waveguide layer is characterized by having a larger band gap and higher refractive index than the multiple quantum well structure.

(作用) 本発明は多重量子井戸(MQW)構造の■バンドギャッ
プと屈折率を独立に制御可能■電界の印加により複素屈
折重石−n−jkの実部、虚部が共に変化という特徴を
利用したものである。ここでまず、この点について説明
する。
(Function) The present invention utilizes the characteristics of the multiple quantum well (MQW) structure: ■ The band gap and refractive index can be controlled independently. ■ Both the real and imaginary parts of the complex refracting weight n-jk change by applying an electric field. This is what I did. First, this point will be explained.

第2図を参照してMQW構造のバンドギャップについて
説明する。第2図(a)はMQWのうち1つの量子井戸
のエネルギ・バンド図を示したものである。MQWの場
合もバリアの層厚を充分厚くすれば各井戸は孤立した状
態と考えることができ第2図(a)と同じエネルギ・バ
ンド図で考えることができる。この量子井戸は伝導帯の
電子、価電子帯の正孔に対してそれぞれ深きΔE3、Δ
E7の量子井戸として働き、それぞれに不連続なエネル
ギー準位を形成する。ここでは簡単のため電子、重い正
孔()1.H,)、軽い正孔(L、H,)にそれぞれ1
つずつ準位が形成されるとした。第2図(b)は状態密
度を示したものでバルク状態では1点鎖線で示したよう
な放物線関数で示されたものが量子井戸化することによ
り実線のような階段状の分布となる。これに従いバンド
ギャップもプルク状態のE、からE、。Wへ変化する。
The bandgap of the MQW structure will be explained with reference to FIG. FIG. 2(a) shows an energy band diagram of one quantum well of the MQW. In the case of MQW as well, if the barrier layer thickness is made sufficiently thick, each well can be considered as an isolated state, and can be considered using the same energy band diagram as in FIG. 2(a). This quantum well has a depth of ΔE3 and Δ for electrons in the conduction band and holes in the valence band, respectively.
It acts as a quantum well for E7, forming discontinuous energy levels in each. For simplicity, we will use electrons and heavy holes ()1. H,) and light holes (L, H,), respectively.
It is assumed that levels are formed one by one. FIG. 2(b) shows the density of states, and in the bulk state, what is represented by a parabolic function as shown by the dashed-dotted line becomes a step-like distribution as shown by the solid line when it becomes a quantum well. According to this, the band gap also changes from E, which is in the pulck state, to E,. Changes to W.

このバンドギャップの変化の大きさは量子井戸の深さΔ
Eg。
The magnitude of this bandgap change is determined by the quantum well depth Δ
Eg.

ΔE、と、ウェル内での正孔、電子の有効質量、及びウ
ェル厚により制御できる。つまりバリア、ウェルの材料
が決まった場合、主としてウェル厚により制御すること
ができる。
It can be controlled by ΔE, the effective mass of holes and electrons in the well, and the well thickness. In other words, once the barrier and well materials are determined, they can be controlled primarily by the well thickness.

一方、MQW構造の屈折率は、MQWを構成する全原子
による混晶の屈折率により近似できる。
On the other hand, the refractive index of the MQW structure can be approximated by the refractive index of a mixed crystal composed of all atoms constituting the MQW.

つまり、バリア、ウェル材料及びその厚みの比により屈
折率は制御できる。従ってMQW構造ではバンドギャッ
プと屈折率を独立に制御すとことができる。通常の混晶
ではバンドギャップが大きい稈屑折率が低いが、MQW
ではバンドギャップが小さくかつ屈折率が低い層を得る
ことができる。
That is, the refractive index can be controlled by the ratio of barrier and well materials and their thicknesses. Therefore, in the MQW structure, the band gap and refractive index can be controlled independently. Normal mixed crystals have a large bandgap and a low culm refractive index, but MQW
With this method, a layer with a small band gap and a low refractive index can be obtained.

次にMQWの電界による複素屈折重石の変化について説
明する。
Next, changes in the complex refraction weight due to the electric field of the MQW will be explained.

第3図はGaAs/ AQGaAsM Q W構造に電
界EをQWに垂直に印加した際の光吸収スペクトルの変
化を測定して得た特性図である。電界EによりQWのポ
テンシャル構造が傾き、量子準位の移動、電子・正孔波
動関数のウェル内でのかたよりが生じるため吸収端より
長波長側では吸収係数の増大、吸収端より短波長側では
逆に吸収係数の減少が生じる。一方、複素屈折重石−n
−jkのkは吸収係数αとに一λα/4π(但しλは波
長)の関係があり、更にnとkはクラマース・クローニ
ツヒの関係により関係付けられている。このため、上述
のような吸収係数αの変化は屈折率実部nの変化ももた
らる。
FIG. 3 is a characteristic diagram obtained by measuring changes in the optical absorption spectrum when an electric field E is applied perpendicularly to the QW structure in a GaAs/AQGaAsM QW structure. The electric field E tilts the potential structure of the QW, causing quantum level movement and electron/hole wave functions to shift within the well, resulting in an increase in the absorption coefficient at wavelengths longer than the absorption edge, and an increase in the absorption coefficient at wavelengths shorter than the absorption edge. Conversely, a decrease in the absorption coefficient occurs. On the other hand, complex refractometer -n
-jk has a relationship with the absorption coefficient α of -λα/4π (where λ is the wavelength), and n and k are related by the Kramers-Kronig relationship. Therefore, a change in the absorption coefficient α as described above also brings about a change in the real part n of the refractive index.

第4図はこのような関係をもとにある電界強度に於ける
吸収係数変化(Δα)、屈折率変化(Δn)のスペクト
ルの概要を示したものである。尚、λ、はMQWのバン
ドギャップ波長である、これよりλ、より長波長側では
屈折率、吸収係数共に正に変化つまり増加することがわ
かる。
FIG. 4 shows an outline of the spectrum of absorption coefficient change (Δα) and refractive index change (Δn) at a certain electric field intensity based on such a relationship. Note that λ is the bandgap wavelength of the MQW, and it can be seen that both the refractive index and the absorption coefficient positively change or increase on the wavelength side longer than λ.

以上のようなMQWの特性を考えると、MQWはより屈
折率が高くバンドギャップが大きい導波路層に対して電
界を印加しない時にはクラッドとして用いることができ
電界を印加した際には吸収型光ゲート・スイッチ若しく
は光検出器として用いることができる。
Considering the characteristics of MQW as described above, MQW can be used as a cladding when no electric field is applied to a waveguide layer with a higher refractive index and a larger band gap, and when an electric field is applied, it can be used as an absorption type optical gate. - Can be used as a switch or photodetector.

また、光導波層上のMQWは、その上にMQWよりバン
ドギャップが広く光導波層と異なる導電型の層を積層す
れば、ダブル・ヘテロp−n構造となり、順方向電流の
注入によりMQW部に利得を与えることができる。光の
パワーの大部分は光導波層中に有るため通常のLDに比
べ所要電流は大きくなるがこの構造によりレーザ発振、
アンプ動作を得ることができる。
Furthermore, if a layer with a wider band gap than the MQW and a conductivity type different from that of the optical waveguide layer is laminated on top of the MQW on the optical waveguide layer, a double hetero p-n structure can be formed, and the MQW can be formed by injecting forward current. can give a gain. Most of the power of the light is in the optical waveguide layer, so the required current is larger than that of a normal LD, but this structure allows laser oscillation,
Amplifier operation can be obtained.

本発明はこのようなMQWの特性を利用したものであり
、以下実施例により詳細に説明する。
The present invention utilizes such characteristics of MQW, and will be explained in detail below with reference to Examples.

(実施例) 第1図(a)は本発明による光集積回路の一実施例を示
す斜視図であり、2人力、2出力の分岐ゲート型マトリ
クス・スイッチに適用した例を示している。ここでは例
としてGaAQAs/ GaAs系材料を用いた場合に
ついて説明する。まず、本実施例の製作方法について説
明する。
(Embodiment) FIG. 1(a) is a perspective view showing an embodiment of the optical integrated circuit according to the present invention, and shows an example applied to a two-manpower, two-output branch gate type matrix switch. Here, a case where GaAQAs/GaAs-based material is used will be explained as an example. First, the manufacturing method of this embodiment will be explained.

n ” −GaAs基板1上にn ” −GaAsバッ
ファ層2、n ” −AQGaAsクラッド層3(A1
1モル比x=0.31屈折率n=3.43)、n−AQ
GaAsガイド層4(x−0,21,n=3.46)、
i −GaAs/ AQAsM Q Wクラッド層5(
Gaasウェル:厚み115人、AQAsバリア:厚み
115人×30周期)、p−AQGaAs層6(xwO
,31,n=3.43)、p4″−GaAsキャ’yブ
層7をMBE法により連続成長する0次にp側にオーミ
ンク電極8を形成した後、フォトリソグラフィ法及び反
応性イオンビーム・エツチング(RIBE )により第
1図(b)に示すような光回路パターン9をn −A1
lGaAsガイド層4の途中進達するリプ形状として形
成する0次に再びRIBEにより各光回路部の折れ曲り
部に反射面(例えば10)を形成するように第1図(b
)の針線部分をn ” −AQGaAsクラッド層3に
達する迄除去する。 RIBE法ではA1モル比によら
ずほぼ等速で高い垂直性を持つエツチング面が得られる
。この後で中心のスイッチ11a。
An n ”-GaAs buffer layer 2 and an n ”-AQGaAs cladding layer 3 (A1
1 molar ratio x = 0.31 refractive index n = 3.43), n-AQ
GaAs guide layer 4 (x-0, 21, n=3.46),
i-GaAs/AQAsM QW cladding layer 5 (
Gaas well: 115 people thick, AQAs barrier: 115 people thick x 30 cycles), p-AQGaAs layer 6 (xwO
, 31, n=3.43), a p4''-GaAs cavity layer 7 is continuously grown by the MBE method, and an ohmink electrode 8 is formed on the zero-order p side. By etching (RIBE), an optical circuit pattern 9 as shown in FIG.
1(b) to form a reflective surface (for example, 10) at the bent portion of each optical circuit section by RIBE.
) is removed until it reaches the n''-AQGaAs cladding layer 3. In the RIBE method, an etching surface with high perpendicularity is obtained at almost constant speed regardless of the A1 molar ratio. After this, the central switch 11a is etched.

11b 、 lie 、 lid以外の部分でオーミッ
ク電極8、p ” −GaAsキ’vyブ層7 p−A
QGaAs層6、MQWクラッド層5を除去し、基板裏
面にn側オーミック電極12を形成、最後にへき開によ
り入出射端面を形成した。
11b, lie, lid, ohmic electrode 8, p''-GaAs skive layer 7 p-A
The QGaAs layer 6 and the MQW cladding layer 5 were removed, an n-side ohmic electrode 12 was formed on the back surface of the substrate, and finally, input and output end surfaces were formed by cleaving.

次に本実施例の動作について説明する。光回路パターン
はn−AQGaAsガイド層4にリプガイドとして残っ
ている。第1図(a)の左側より2本の入力側リプガイ
ド20a 、 20bに入射した光はミラー面を利用し
た2つの光分岐13a 、 13bによりそれぞれ分岐
され、中央のスイッチlla 、 llb 、 llc
 、 lidに入射する。各スイッチは電界を印加しな
い際にはMQWクラッド層5への光のしみ出しは小さく
、吸収係数も小さいのでほとんに吸収されず、そのまま
入射光が出力される。
Next, the operation of this embodiment will be explained. The optical circuit pattern remains on the n-AQGaAs guide layer 4 as a lip guide. The light incident on the two input-side lip guides 20a and 20b from the left side of FIG. 1(a) is branched by two light branches 13a and 13b using mirror surfaces, respectively, and the central switches lla, llb, llc
, enters the lid. When no electric field is applied to each switch, the light leaking into the MQW cladding layer 5 is small and the absorption coefficient is also small, so almost no light is absorbed, and the incident light is output as is.

一方電界を印加すると、先に説明したように、MQWク
ラッド層5の吸収係数及び屈折率が増加し光は出射され
なくなる。各スイッチlla 、 llb 。
On the other hand, when an electric field is applied, the absorption coefficient and refractive index of the MQW cladding layer 5 increase and no light is emitted, as described above. Each switch lla, llb.

11c、lidから出射した光はミラーを利用した合流
器14a 、 14bにより合流され出力側リプガイド
20c 、 20dに出力きれる。ここで各スイッチ1
1a。
The lights emitted from the light beams 11c and 11c and the lid are combined by merging units 14a and 14b using mirrors, and output to output side lip guides 20c and 20d. Here each switch 1
1a.

11b 、 lie 、 lidの動作状態の組合せを
変えることにより入力側、出力側ガイド20a 、 2
0b 、 20c 、 20d間の任意の接続状態が実
現できる。
By changing the combination of operating states of 11b, lie, and lid, the input side and output side guides 20a, 2
Any connection state between 0b, 20c, and 20d can be realized.

本実施例の製作には埋込成長や、方向性結合器の製作に
必要なような層厚、屈折率の厳しい制御は必要でない、
またスイッチ部とそれ以外の部分で導波路内の光分布は
多少異なるが、光はn−GaAQAsガイド層4を中心
に分布しており接続部での損失は小さく抑えることがで
きる。
The production of this example does not require buried growth or strict control of layer thickness and refractive index, which is required for the production of directional couplers.
Furthermore, although the light distribution within the waveguide differs somewhat between the switch portion and other portions, the light is distributed around the n-GaAQAs guide layer 4, and loss at the connection portion can be suppressed to a small level.

本実施例ではGaAs/ AQGaAs系材料を用いた
場合について説明したが、他の材料系についても本発明
が適用可能なことは明らかである。
In this embodiment, a case using GaAs/AQGaAs-based materials has been described, but it is clear that the present invention is applicable to other material systems as well.

本実施例の光スィッチはp−1−n構造を持っており電
界印加時には光検出器としても用いることができ、その
場合には光信号に対応した電気信号を取り出すことがで
きる。
The optical switch of this embodiment has a p-1-n structure and can also be used as a photodetector when an electric field is applied, and in that case, an electrical signal corresponding to the optical signal can be extracted.

また、i−MQWクラッド居5はそれよりバンドギャッ
プが広く、導電型の異なるAl1GaAs層4゜6には
さまれたダブルへテロp−n構造であるから、電極8,
12間に順バイアスを印加することにより光信号に利得
を与えることができる。この場合MQW層5は光の分布
の中心にはなく注入電流を大きくしないと利得が得られ
ないが、MQW構造ではレーザ発振しない値が低下する
ことが知られており、電流値の増加はMQWを活性層と
しない場合に比べ小さく抑えることが可能である。また
光スィッチの人、出力部にこのような構造のMQWクラ
ッド光アンプを設置して損失を補償することも可能であ
る。この場合も光アンプ部の製作は先に述べた光スィッ
チlla 、 llb 、 lie 、 lidと同様
であり、光アンプ集稜のために大きな困難は生じない。
In addition, the i-MQW cladding layer 5 has a wider bandgap than that and has a double hetero pn structure sandwiched between Al1GaAs layers 4.6 of different conductivity types, so the electrode 8,
By applying a forward bias between 12 and 12, gain can be given to the optical signal. In this case, the MQW layer 5 is not located at the center of the light distribution, and gain cannot be obtained unless the injection current is increased. However, it is known that in the MQW structure, the value at which laser oscillation does not occur decreases; can be kept smaller than when it is not used as an active layer. It is also possible to compensate for loss by installing an MQW clad optical amplifier having such a structure in the output section of the optical switch. In this case as well, the manufacturing of the optical amplifier section is the same as that of the optical switches lla, llb, lie, and lid described above, and no major difficulties arise due to the optical amplifier convergence.

本実施例では2×2の光分岐/ゲート型スイッチを実現
するのに本発明を利用したが、他の光回路、機能を実現
するのにも応用可能なことはいう迄もない。
In this embodiment, the present invention was used to realize a 2×2 optical branch/gate type switch, but it goes without saying that it can also be applied to realize other optical circuits and functions.

(発明の効果) 以上詳細に説明したように、本発明によれば、製作が容
易で受動光導波路と能動素子部の結合効率の高い光集積
回路が得られる。
(Effects of the Invention) As described above in detail, according to the present invention, it is possible to obtain an optical integrated circuit that is easy to manufacture and has a high coupling efficiency between a passive optical waveguide and an active element portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明による光集積回路の一実施例を示
す斜視図、同図(b)はこの実施例の製造工程において
形成する回路パターンを示す図、第2図(a)はMQW
のうちの1つの量子井戸のエネルギ・バンド図、第2図
(b)はその量子井戸における状態密度とエネルギの関
係を示す図、第3図および第4図は本発明に用いるMQ
W層の特性を示す特性図である。 図に於て、1,2,3,4,5,6.7は半導体、8.
12は電極、lla 、 llb 、 lie 、 l
idはスイッチ、10はミラー、13a、13bは光分
岐、14a 、 14bは合流器、20a 、 20b
 、 20c 、 20dはガイド、9は光回路パター
ンである。 (b) 第1図 第2図(b) 第4図
FIG. 1(a) is a perspective view showing an embodiment of the optical integrated circuit according to the present invention, FIG. 1(b) is a diagram showing a circuit pattern formed in the manufacturing process of this embodiment, and FIG. MQW
The energy band diagram of one of the quantum wells, FIG. 2(b) is a diagram showing the relationship between the density of states and energy in the quantum well, and FIGS. 3 and 4 are the MQs used in the present invention.
FIG. 3 is a characteristic diagram showing the characteristics of a W layer. In the figure, 1, 2, 3, 4, 5, 6.7 are semiconductors, 8.
12 are electrodes, lla, llb, lie, l
id is a switch, 10 is a mirror, 13a, 13b are optical branches, 14a, 14b are combiners, 20a, 20b
, 20c, and 20d are guides, and 9 is an optical circuit pattern. (b) Figure 1 Figure 2 (b) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 多重量子井戸構造とこの多重量子井戸構造に電界を印加
し又は電流を注入する手段とが、半導体基板に形成され
た導波路層の上に部分的に形成してあり;前記多重量子
井戸構造は、ドブロイ波長程度の厚みの第1の半導体層
をこの第1の半導体層よりバンドギャップの大きな第2
の半導体層によりはさんだ量子井戸を層厚方向に多層に
重ねてなり;前記導波路層は前記多重量子井戸構造より
バンドギャップが大きくかつ屈折率の高いことを特徴と
する光集積回路。
A multiple quantum well structure and means for applying an electric field or injecting a current to the multiple quantum well structure are partially formed on a waveguide layer formed on a semiconductor substrate; , a first semiconductor layer having a thickness of approximately the de Broglie wavelength is replaced with a second semiconductor layer having a larger band gap than this first semiconductor layer.
1. An optical integrated circuit comprising quantum wells sandwiched between semiconductor layers stacked in multiple layers in the layer thickness direction; said waveguide layer having a larger band gap and higher refractive index than said multi-quantum well structure.
JP22785086A 1986-09-26 1986-09-26 Optical integrated circuit Pending JPS6381305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22785086A JPS6381305A (en) 1986-09-26 1986-09-26 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22785086A JPS6381305A (en) 1986-09-26 1986-09-26 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPS6381305A true JPS6381305A (en) 1988-04-12

Family

ID=16867351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22785086A Pending JPS6381305A (en) 1986-09-26 1986-09-26 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPS6381305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370278B1 (en) * 2000-06-28 2003-01-29 한국과학기술원 Optical Path Controlling two by two Optical Switch
JP2006338017A (en) * 2005-05-31 2006-12-14 Avago Technologies General Ip (Singapore) Private Ltd Semiconductor optical modulator having quantum well structure for increasing effective photocurrent generating capability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260017A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulation element
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
JPS6247620A (en) * 1985-08-27 1987-03-02 Nec Corp Waveguide type optical switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260017A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulation element
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
JPS6247620A (en) * 1985-08-27 1987-03-02 Nec Corp Waveguide type optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370278B1 (en) * 2000-06-28 2003-01-29 한국과학기술원 Optical Path Controlling two by two Optical Switch
JP2006338017A (en) * 2005-05-31 2006-12-14 Avago Technologies General Ip (Singapore) Private Ltd Semiconductor optical modulator having quantum well structure for increasing effective photocurrent generating capability

Similar Documents

Publication Publication Date Title
US5825047A (en) Optical semiconductor device
US5457569A (en) Semiconductor amplifier or laser having integrated lens
US5165105A (en) Separate confinement electroabsorption modulator utilizing the Franz-Keldysh effect
US4185256A (en) Mode control of heterojunction injection lasers and method of fabrication
US5859866A (en) Photonic integration using a twin waveguide structure
US6252895B1 (en) Distributed feedback semiconductor laser in which light intensity distributions differ in different polarization modes, and driving method therefor
JPS6215875A (en) Semiconductor device and manufacture thereof
US5155737A (en) Semiconductor wavelength conversion device
EP0378098B1 (en) Semiconductor optical device
US5517517A (en) Semiconductor laser having integrated waveguiding lens
JPH0497206A (en) Semiconductor optical element
CA2165711C (en) Semiconductor light source having a spectrally broad, high power optical output
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
US5239600A (en) Optical device with an optical coupler for effecting light branching/combining by splitting a wavefront of light
JPH01319986A (en) Semiconductor laser device
JP2900824B2 (en) Method for manufacturing optical semiconductor device
JP2000269600A (en) High-power broad-band optical source and optical amplifier device
JPS6381305A (en) Optical integrated circuit
GB2298958A (en) Optical integrated semiconductor laser and waveguide
JP2760276B2 (en) Selectively grown waveguide type optical control device
KR20040034351A (en) Semiconductor laser and element for optical communication
JPH03235915A (en) Optical function element
JPS61107781A (en) Single axial-mode semiconductor laser device
JPH07325328A (en) Semiconductor optical modulator
JPH07122723A (en) Wavelength conversion laser