JPS6247620A - Waveguide type optical switch - Google Patents

Waveguide type optical switch

Info

Publication number
JPS6247620A
JPS6247620A JP18670485A JP18670485A JPS6247620A JP S6247620 A JPS6247620 A JP S6247620A JP 18670485 A JP18670485 A JP 18670485A JP 18670485 A JP18670485 A JP 18670485A JP S6247620 A JPS6247620 A JP S6247620A
Authority
JP
Japan
Prior art keywords
layer
electric field
refractive index
quantum well
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18670485A
Other languages
Japanese (ja)
Other versions
JPH07113711B2 (en
Inventor
Akira Ajisawa
味澤 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60186704A priority Critical patent/JPH07113711B2/en
Publication of JPS6247620A publication Critical patent/JPS6247620A/en
Publication of JPH07113711B2 publication Critical patent/JPH07113711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make and break a light signal with a low voltage and low loss by forming a semiconductor optical waveguide into multiplex quantium well structure and largely changing absorptivity and refractive index according to the electric field to be impressed. CONSTITUTION:Incident light 9 on a single n<->-AlGaAs layer 3 conducts mainly in a layer 3 having the highest refractive index when a reverse bias voltage is not impressed between an electrode 7 and an electrode 8 and when an electric field is not impressed to the n<->-GaAs/AlGaAs multiplex quantum well layer 4. This layer 3 propagates the incident light as it is with a low loss. An exciton peak moves and the average refractive index increases when the electric field is impressed to the layer 4. The incident light 9 mainly propagates in the layer 4 and is absorbed by the increase of the refractive index. The light is thus made and broken with the low voltage and low loss when the electric field is controlled. The optical switch is miniaturized and the integration thereof is made easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信、光情報11″−理の分野において、
光伝送路における光信号の開閉を行なう光スィッチに関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to the field of optical communication and optical information processing.
This invention relates to an optical switch that opens and closes optical signals in an optical transmission line.

〔従来技術とその問題点〕[Prior art and its problems]

近年の光通信システムの発展に伴い、従来にない新しい
機能やサービスを提供するシステムが考えられている。
With the recent development of optical communication systems, systems that provide new functions and services that have not existed before are being considered.

その様なシステムで必要とされるデバイスとしてはその
一つに超高速切換可能、低電圧動作、小型で集積化が容
易といった可能性をもつ半導体を用いた光スィッチが挙
げられる。その中で、小型化、低電圧化等の面で比較的
性能の優れているフランツ・ケルディツシュ効果を用い
た光スィッチが考えられる。しかしながらこの光スィッ
チにも次の様な欠点があった。以下、単」のガイド層で
のフランツ・ケルディツシュ効果を用いた導波型光スイ
ッチについて説明する。
One of the devices required in such a system is an optical switch using a semiconductor, which has the potential of ultra-high-speed switching, low-voltage operation, small size, and easy integration. Among these, an optical switch using the Franz Keldytsch effect is considered, which has relatively excellent performance in terms of miniaturization and low voltage. However, this optical switch also had the following drawbacks. A waveguide optical switch using the Franz Keldytsch effect in a single guide layer will be described below.

フランツ・ケルディツシュ効果というのは、電界印加に
よりそれに応じて基礎吸収端が長波長側へ移動するとい
う効果である。スイッチの導波層のバンドギャップ波長
λ9を光源の波長λより少し短かめにしておく。ここで
言う導波層(ガイド層)というのは光が伝搬する半導体
層のことである。電界が導波層に印加されない時はλが
λ9よりも長いために伝搬する光は吸収されないが、電
界が印加され基礎吸収端がλ以上まで長波長側へ広がっ
てくるとそれに応じた光の吸収が起こる。この効果を利
用すると電界によって光の吸収を制御するゲートスイッ
チを製作することができる。
The Franz Keldytsch effect is an effect in which the fundamental absorption edge shifts toward longer wavelengths when an electric field is applied. The bandgap wavelength λ9 of the waveguide layer of the switch is set to be slightly shorter than the wavelength λ of the light source. The waveguide layer (guide layer) referred to here is a semiconductor layer through which light propagates. When no electric field is applied to the waveguide layer, the propagating light is not absorbed because λ is longer than λ9, but when an electric field is applied and the fundamental absorption edge spreads to longer wavelengths beyond λ, the corresponding light Absorption occurs. By utilizing this effect, it is possible to fabricate a gate switch that controls light absorption using an electric field.

第4図にフランツ・ケルディツシュ効果による吸収係数
の変化を、バンドギャップエネルギーE9と入射光のフ
ォトンエネルギーhωのエネルギー差(E9−hω)を
横軸にして示した。この第4図は「アプライド・フィジ
クス・レターズ(Appl、 Phys、 Lett、
34(1979) 744 ) Jに記載されているも
のを引用したものである。ここではE=OV/cmと5
X10’V/cmとした場合を示した。実際にフランツ
・ケルディツシュ効果を用いて光ゲートスイッチを製作
した場合、光源の波長λをスイッチのバンドギャップ波
長λ、の長波長近傍つまり(E、−hω)が小さい値に
設定すると、第4図からもわかるように、基礎吸収端の
形状はE、のところで急峻には切れず、長波長側に大き
く裾(テイル)をひいているためE=OV/cmの場合
においても大きな吸収を受け、スイッチとしては導波損
失の大きなものとなってしまう。例えば(Eg−h ω
) =4Qm e Vとした場合、その時の導波損失と
しては50dB/cmといった非常に大きな値となって
しまう。従って導波損失を小さくするためにはバンドギ
ャップエネルギーと入射光のフォトンエネルギーとのエ
ネルギー差(E、−hω)を80〜lQQmeV以上に
しなくてはならない。しかしくE、−hω)を大きくす
ると、ある電界強度変化に対する吸収係数変化は小さく
なってしまい、十分な消光比が得られない。この様に単
層のガイド層でのフランツ・ケルディツシュ効果を用い
た光ゲートスイッチにおいては、結晶の基礎吸収端の裾
びきのため低損失、低電圧、高消光比といった十分な性
能のものを得るのは困難であった。
FIG. 4 shows the change in absorption coefficient due to the Franz Keldytsch effect, with the energy difference (E9-hω) between the band gap energy E9 and the photon energy hω of the incident light being plotted on the horizontal axis. This figure 4 is based on the Applied Physics Letters (Appl, Phys, Lett,
34 (1979) 744) J. Here E=OV/cm and 5
The case where X10'V/cm is shown. When an optical gate switch is actually manufactured using the Franz Keldytsch effect, if the wavelength λ of the light source is set to a value close to the long wavelength of the switch's bandgap wavelength λ, that is, (E, -hω) is small, as shown in Figure 4. As can be seen from the figure, the shape of the fundamental absorption edge does not cut sharply at E, but has a large tail on the long wavelength side, so it receives large absorption even when E = OV/cm. As a switch, the waveguide loss will be large. For example (Eg−h ω
)=4Qm e V, the waveguide loss at that time would be a very large value of 50 dB/cm. Therefore, in order to reduce the waveguide loss, the energy difference (E, -hω) between the band gap energy and the photon energy of the incident light must be 80 to 1QQmeV or more. However, if E, -hω) is increased, the change in absorption coefficient with respect to a certain change in electric field strength becomes small, making it impossible to obtain a sufficient extinction ratio. In this way, in an optical gate switch using the Franz Keldytsch effect in a single-layer guide layer, sufficient performance such as low loss, low voltage, and high extinction ratio can be obtained due to the tailing of the basic absorption edge of the crystal. It was difficult.

この基礎吸収端の裾びきという問題を解決するためにガ
イド層に禁制帯幅の異なるそれぞれ500A以下の層を
交互に積層した多層構造(以下これを多重量子井戸構造
と呼ぶ)を用いた場合の導波型の光変調器が考えられて
いる(昭和60年度電子通信学会総合全国大会33−4
)。第5図はその一例である。n”−GaΔS基板21
上に分子線エピタキシャル法により n”−A I26
.3G ao、tA Sクラッド層22を1.5 μm
成長させ、次にn−−GaAs/AβGaAs多重量子
井戸ガイド23としてGaAs量子井戸層100人、A
βo、zGao、eAs障壁層300人を16周期、更
にp”  A lo、3G aa、7A Sクラッド層
24を1.5μmSp”−C+aAsキャップ層25を
成長させ、n側、p側にオーミック電極26゜27を取
り付はストライプ形のハイ・メサ構造の導波路を形成し
ている。この様な多重量子井戸構造の光吸収スペクトル
には状態密度の階段状の変化、鋭いエキシトンピークの
出現といった量子サイズ効果により基礎吸収端の短波長
化、及び急峻化が見られる。また、この多重量子井戸構
造に電界を印加するとエキシトンのピークの長波長側へ
の移動とともに吸収端が長波長側へ移動し裾をひくよう
になる。このことを利用して多重量子井戸構造導波路に
おいても吸収端の長波長側近傍での電界による光の吸収
の変調を行なう光ゲートスイッチが実現されている。こ
の構造においては単一層の導波路の場合に比べ吸収端が
急峻化しているために、光源の波長を吸収端に近づける
ことができ、低電圧化、高消光比化などの高性能化が期
待できる。しかしながら、この場合でもやはり次の様な
問題点があった。多重量子井戸構造のエキシトンを伴う
吸収端は単一層の場合の基礎吸収端に比べ急峻化はして
いるものの、それは理想的な状態ではない。多重量子井
戸層の界面のゆらぎ、不純物の影響などにより吸収端に
は取り除くことのできない裾びきが存在している。特に
入射光の波長が吸収端に近づくにつれその影響は大きく
なる。従って、多重量子井戸構造導波路を用いたとして
も、吸収端に入射光の波長を近づけ、低電圧化、高消光
比化を図り、更に導波損失まで下げることは非常に困難
なことである。
In order to solve this problem of the tailing of the basic absorption edge, a multilayer structure (hereinafter referred to as a multiple quantum well structure) in which layers with different forbidden band widths of 500 A or less are laminated alternately is used for the guide layer. A waveguide type optical modulator is being considered (1985 IEICE General Conference 33-4
). FIG. 5 is an example. n”-GaΔS substrate 21
n”-A I26 by molecular beam epitaxial method
.. 3G ao, tAS cladding layer 22 of 1.5 μm
Then, 100 GaAs quantum well layers are grown as n--GaAs/AβGaAs multiple quantum well guide 23, A
A βo, zGao, eAs barrier layer of 300 layers was grown for 16 cycles, and a p"Alo, 3G aa, 7A S cladding layer 24 of 1.5 μm Sp"-C+aAs cap layer 25 was grown, and ohmic electrodes 26 were formed on the n and p sides. 27 to form a waveguide with a striped high mesa structure. In the optical absorption spectrum of such a multi-quantum well structure, shortening of wavelength and steepening of the fundamental absorption edge are observed due to quantum size effects such as a step-like change in the density of states and the appearance of a sharp exciton peak. Furthermore, when an electric field is applied to this multi-quantum well structure, the exciton peak moves to the long wavelength side, and the absorption edge moves to the long wavelength side, making it tail. Taking advantage of this, an optical gate switch has been realized that modulates light absorption by an electric field near the long wavelength side of the absorption edge in a multi-quantum well structured waveguide. In this structure, the absorption edge is steeper than in the case of a single-layer waveguide, so the wavelength of the light source can be brought closer to the absorption edge, which is expected to lead to higher performance such as lower voltage and higher extinction ratio. can. However, even in this case, there were the following problems. Although the absorption edge with excitons in the multi-quantum well structure is steeper than the fundamental absorption edge in the case of a single layer, this is not an ideal situation. There is a tail at the absorption edge that cannot be removed due to fluctuations at the interface of the multiple quantum well layer, the influence of impurities, etc. In particular, the effect becomes greater as the wavelength of the incident light approaches the absorption edge. Therefore, even if a multi-quantum well structured waveguide is used, it is extremely difficult to bring the wavelength of the incident light closer to the absorption edge, lower the voltage, increase the extinction ratio, and further reduce the waveguide loss. .

以上説明した様に従来の構造においては、電界印加を制
御手段とした導波型の光スィッチとして動作電圧、消光
比、損失の面で優れた性能のものは得られていなかった
As explained above, in the conventional structure, it has not been possible to obtain a waveguide type optical switch using electric field application as a control means with excellent performance in terms of operating voltage, extinction ratio, and loss.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した様な従来の電界印加によってガ
イド層を伝搬する光の制御を行なう導波型光スイッチの
欠点を除去し、小型かつ集積化に適し、低電圧で動作し
、高消光比、低損失な導波型光スイッチを提供すること
にある。
The purpose of the present invention is to eliminate the drawbacks of the conventional waveguide optical switch that controls light propagating through a guide layer by applying an electric field, as described above, to be small and suitable for integration, operate at low voltage, and have high extinction. The object of the present invention is to provide a waveguide type optical switch with relatively low loss.

〔発明の構成〕[Structure of the invention]

本発明は、ガイド層を伝搬している導波光の制御を電界
を印加することにより行なう半導体導波型光スイッチに
おいて、前記ガイド層が、単一層と、前記単一層の上下
少なくとも一方に存在するそれぞれ500人より薄い半
導体層と前記半導体層の禁制帯幅より大きい禁制帯幅を
有する半導体層とが交互に積層された多層構造より成る
層とから構成され、前記多層構造のヘテロ界面に垂直に
電界を印加する手段を有し、前記多層構造がもつ基底準
位のエキシトンの吸収ピーク波長が被変調光の波長に対
して短波長近傍に設定され、前記被変調光に対し前記多
層構造の平均的屈折率が前記単一層の屈折率よりもわず
かに小さい屈折率をもつことを特徴としている。
The present invention provides a semiconductor waveguide optical switch in which guided light propagating through a guide layer is controlled by applying an electric field, wherein the guide layer is present in a single layer and at least one above and below the single layer. a multilayer structure in which semiconductor layers each having a thickness of less than 500 nm and semiconductor layers having a forbidden band width larger than the forbidden band width of the semiconductor layer are laminated alternately, and the layer is perpendicular to the heterointerface of the multilayer structure. means for applying an electric field, the absorption peak wavelength of excitons at the ground level of the multilayer structure is set near a short wavelength with respect to the wavelength of the modulated light, and the average of the multilayer structure is set with respect to the modulated light. The refractive index of the single layer is slightly smaller than that of the single layer.

〔発明の原理〕[Principle of the invention]

本発明は上述の構成をとることにより従来技術の問題点
を解決した。本発明の原理について第2図を用いて説明
する。前述したように多重量子井戸の吸収スペクトルに
は吸収端の近傍で鋭いエキシトンピークが見られる。ま
た、吸収と屈折率の間にはクラマース・クローニッヒの
関係があり、エキシトンのピークの存在によって屈折率
スペクトルはエキシトンピーク波長付近で大きな変化を
示す。それらの吸収スペクトルと屈折率スペクトルの様
子をそれぞれ第2図(a)、(b)に示す。次に、多重
量子井戸に電界を印加した場合の吸収と屈折率について
述べる。多重量子井戸に電界を印加すると、エキシトン
ピークは長波長側へ移動しその半値幅は広がる。そのエ
キシトンピークの長波長側への移動に伴って、屈折率ス
ペクトルも長波長側へ移動する。その時の吸収スペクト
ルと屈折率スペクトルの様子をそれぞれ第2図(C)、
(d)に示す。
The present invention has solved the problems of the prior art by adopting the above-described configuration. The principle of the present invention will be explained using FIG. 2. As mentioned above, the absorption spectrum of a multiple quantum well has a sharp exciton peak near the absorption edge. Furthermore, there is a Kramers-Kronig relationship between absorption and refractive index, and the presence of an exciton peak causes the refractive index spectrum to show a large change near the exciton peak wavelength. Their absorption spectra and refractive index spectra are shown in FIGS. 2(a) and 2(b), respectively. Next, we will discuss absorption and refractive index when an electric field is applied to a multiple quantum well. When an electric field is applied to a multiple quantum well, the exciton peak moves toward longer wavelengths and its half-width widens. As the exciton peak moves toward longer wavelengths, the refractive index spectrum also shifts toward longer wavelengths. The absorption spectrum and refractive index spectrum at that time are shown in Figure 2 (C) and
Shown in (d).

電界がない場合のエキシトンのピーク波長を被変調光の
波長の短波長近傍に設定すると、電界印加により吸収係
数は103〜10’cm=、屈折率は10−2程度の増
加が得られる。従って電界によるこの大きな吸収係数変
化と屈折率変化の両方を導波型光スイッチに適用するこ
とにより、導波損失、動作電圧、消光比などの面で従来
にない高性能な導波型光スイッチが得られる。
If the peak wavelength of excitons in the absence of an electric field is set near the shorter wavelength of the modulated light, the application of the electric field will increase the absorption coefficient by 10 3 to 10 cm and the refractive index by about 10 −2 . Therefore, by applying both the large absorption coefficient change and refractive index change caused by the electric field to a waveguide optical switch, a waveguide optical switch with unprecedented high performance in terms of waveguide loss, operating voltage, extinction ratio, etc. is obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して詳細に説
明する。第1図は本発明の1つの実施例を示す図である
。尚、本実施例ではGaAs/AfGaAs系の半導体
材料を用いたものにつき説明し、第1図には本発明のガ
イド層が単一層とそれに隣接する多重量子井戸層より成
り、導波光を電界により制御する導波型光スイッチの斜
視図が示されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing one embodiment of the present invention. In this example, a case using a GaAs/AfGaAs semiconductor material will be explained, and FIG. 1 shows that the guide layer of the present invention is composed of a single layer and an adjacent multiple quantum well layer, and that guided light is guided by an electric field. A perspective view of a controlling waveguide optical switch is shown.

この導波型光スイッチの構造を、その製造方法とともに
説明する。n”−GaAs基板1の上に分子線エピタキ
シー法により n+−AβGaAsクラッド層2.n−
−AβGaAs単一層3.n−−GaAs/Aj7Ga
As多重量子井戸層4. p”−AβCyaAsクラッ
ド層5を成長させる。次に3次元ガイドを形成するため
に、導波路となる部分の両側をエツチングによりn=−
AβQaAsクラッド層2に達するまで落とし、導波路
の両側を液相成長法により導波路より屈折率の低いn−
−−Aj!GaAs埋込み層6で埋込み、最後にp側に
ストライプ電極7及びn側に電極8を取りつける。
The structure of this waveguide type optical switch will be explained along with its manufacturing method. An n+-AβGaAs cladding layer 2.n- is formed on the n''-GaAs substrate 1 by molecular beam epitaxy.
-AβGaAs single layer3. n--GaAs/Aj7Ga
As multiple quantum well layer 4. A p''-AβCyaAs cladding layer 5 is grown.Next, in order to form a three-dimensional guide, both sides of the portion that will become the waveguide are etched so that n=-
The AβQaAs cladding layer 2 is dropped until it reaches the AβQaAs cladding layer 2, and both sides of the waveguide are coated with n-
--Aj! It is buried with a GaAs buried layer 6, and finally a stripe electrode 7 is attached to the p side and an electrode 8 is attached to the n side.

ここで多重童子井戸層4の井戸層及び障壁層の各層厚及
び組成を(GaAs、Aβo、5Gao、5As)=(
85人、95人)としそれを12周期、単一層3の組成
をAβo、+sG ao、a5A Sとじ層厚を0.2
μm、n’及びp゛クラツド層25、埋込み層6の組成
をAβo、*Ga(1,7Asとしそれぞれのクラッド
層の層厚を1〜2μm程度にしておく。この様にして単
一層3と多重量子井戸層4より成る3次元導波路を形成
する。また、p側電極7には金・亜鉛、n側電極8には
金・ゲルマニウムを用いオーミック接触を形成する。p
側電極及びn 1.111電極8は、多重量子井戸層4
のヘテロ界面に垂直に電界を印加する手段を構成する。
Here, the thickness and composition of each well layer and barrier layer of the multiple Doji well layer 4 are (GaAs, Aβo, 5Gao, 5As) = (
85 people, 95 people) and it is repeated 12 times, the composition of single layer 3 is Aβo, +sG ao, a5A S binding layer thickness is 0.2
The compositions of the cladding layer 25 and the buried layer 6 are Aβo, *Ga(1,7As), and the thickness of each cladding layer is about 1 to 2 μm.In this way, the single layer 3 and A three-dimensional waveguide consisting of a multiple quantum well layer 4 is formed.Ohmic contact is formed using gold and zinc for the p-side electrode 7 and gold and germanium for the n-side electrode 8.p
The side electrode and the n1.111 electrode 8 are the multi-quantum well layer 4
means for applying an electric field perpendicularly to the heterointerface of the

以上述べた製作プロセスはあくまでも一例であってこの
プロセスに限定されない。多重量子井戸層は、気相成長
法や金属有機物法などを用いて成長してもよく、埋込み
層は気相成長法を用いてもよい。また、3次元導波路の
形状はリブ型あるいは溝を掘った形状にしてもよい。更
には、多重量子井戸層は単一層の下に形成してもよく、
また単一層の上下に多重量子井戸層を形成してもよい。
The manufacturing process described above is just an example and is not limited to this process. The multiple quantum well layer may be grown using a vapor phase growth method, a metal organic material method, etc., and the buried layer may be grown using a vapor phase growth method. Further, the shape of the three-dimensional waveguide may be a rib type or a grooved shape. Furthermore, the multiple quantum well layer may be formed under a single layer,
Further, multiple quantum well layers may be formed above and below the single layer.

次に、本実施例の導波型光スイッチの動作について簡単
に述べる。n−−AfGaAs単一層ガイド3への入射
光9は、電極7と電極8の間に逆バイアス電圧を加えな
い時、即ちrr−CraAs/AβGaAs多重量子井
戸ガイド4に電界が印加されていない場合、屈折率の一
番高いn−−AβGaAs単一層ガイド3を導波する。
Next, the operation of the waveguide optical switch of this example will be briefly described. The incident light 9 on the n--AfGaAs single layer guide 3 is generated when no reverse bias voltage is applied between the electrodes 7 and 8, that is, when no electric field is applied to the rr-CraAs/AβGaAs multiple quantum well guide 4. , the wave is guided through an n--AβGaAs single layer guide 3 having the highest refractive index.

この層は入射光に対して非常に低損失であるので光はそ
のまま伝1般し出射光10として取り出せる。n−−G
aAs/Aj7GaΔS多重量子井戸ガイド4に電界が
印加された場合は、多重量子井戸4のエキシトンピーク
の移動に伴って平均的な屈折率が大きくなり単一層ガイ
ド3の屈折率以上になる。
Since this layer has very low loss for incident light, the light is transmitted as it is and can be extracted as output light 10. n--G
When an electric field is applied to the aAs/Aj7GaΔS multiple quantum well guide 4, the average refractive index increases as the exciton peak of the multiple quantum well 4 moves and becomes equal to or higher than the refractive index of the single layer guide 3.

すると、入射光9は主に多重量子井戸ガイド4を伝搬す
る様になる。多重量子井戸4の屈折率の増加とともに吸
収係数も大きくなる。従って、入射光9は多重量子井戸
ガイド4を伝搬しながら大きな吸収を受ける。よって、
出射光10は消光され取り出せない。この様にして電界
による屈折率と吸収係数変化を利用した導波型の光スィ
ッチが可能となる。
Then, the incident light 9 comes to mainly propagate through the multiple quantum well guide 4. As the refractive index of the multiple quantum well 4 increases, the absorption coefficient also increases. Therefore, the incident light 9 undergoes significant absorption while propagating through the multiple quantum well guide 4. Therefore,
The emitted light 10 is extinguished and cannot be extracted. In this way, a waveguide type optical switch that utilizes changes in refractive index and absorption coefficient due to an electric field becomes possible.

更にこの導波型光スイッチについて第2図、第3図を用
いて詳しく説明する。第2図において(a)とら)はそ
れぞれ多重量子井戸層に電界が印加されてない場合の吸
収スペクトルと屈折率スペクトルであり、(C)と(d
)はそれぞれ多重量子井戸層に電界が印加された場合の
吸収スペクトルと屈折率スペクトルである。第3図にお
いて(a)、ら)はそれぞれ電界が印加されてない場合
の導波層の屈折率分布と導波光の界分布であり、(C)
、(d)はそれぞれ電界が印加された場合の導波層の屈
折率分布と導波光の界分布である。
Furthermore, this waveguide type optical switch will be explained in detail using FIGS. 2 and 3. In Figure 2, (a) and (d) are the absorption spectrum and refractive index spectrum, respectively, when no electric field is applied to the multiple quantum well layer, and (C) and (d)
) are the absorption spectrum and refractive index spectrum, respectively, when an electric field is applied to the multiple quantum well layer. In Figure 3, (a) and 3) are the refractive index distribution of the waveguide layer and the field distribution of the guided light, respectively, when no electric field is applied, and (C)
, (d) are the refractive index distribution of the waveguide layer and the field distribution of the guided light when an electric field is applied, respectively.

第2図(a)の吸収スペクトルにおいて入射光の波長を
λ3=0.84μm(h ω−1,47e v)とする
。前述したGaAs/AfGaAs多重量子井戸構造で
はn=1のエレクトロンとヘビーホール間の遷移波長を
λ1、エキシトンのピーク波長を22とすると、それら
は入射光の波長λ3の短波長近傍にあり、λ1は〜0.
82μm、λ2は〜0.83μmとなる。
In the absorption spectrum of FIG. 2(a), the wavelength of the incident light is λ3=0.84 μm (h ω-1,47 e v). In the GaAs/AfGaAs multiple quantum well structure described above, if the transition wavelength between an n=1 electron and a heavy hole is λ1, and the peak wavelength of an exciton is 22, they are near the short wavelength of the incident light wavelength λ3, and λ1 is ~0.
82 μm, and λ2 is ~0.83 μm.

波長λ3においてはこの多重量子井戸層はα1なる吸収
を受けるが、α1の吸収はエキシトンピークによる吸収
に比べれば十分に小さい。また、この組成においては波
長λ3に対して多重量子井戸層の平均的な屈折率はn+
=3.48、単一層ガイドの屈折率はn3=3.51、
クラッド層の屈折率はn、=3.4である。その時の屈
折率分布が第3図(a)である。また、その時の導波光
の界分布は第3図ら)に示され、11は多重量子井戸層
の領域でα1なる吸収を受ける部分、12は単一層ガイ
ドの領域でほとんどの吸収を受けない部分である。入射
光は屈折率の一番高いn2=3.51の単一層ガイドの
部分を主に導波し、多重量子井戸層へのしみ出しはわず
かである。
At wavelength λ3, this multi-quantum well layer experiences absorption α1, but the absorption α1 is sufficiently small compared to the absorption due to the exciton peak. In addition, in this composition, the average refractive index of the multi-quantum well layer for wavelength λ3 is n+
= 3.48, the refractive index of the single layer guide is n3 = 3.51,
The refractive index of the cladding layer is n=3.4. The refractive index distribution at that time is shown in FIG. 3(a). The field distribution of the guided light at that time is shown in Figure 3, etc., where 11 is the region of the multi-quantum well layer that receives absorption α1, and 12 is the region of the single layer guide that receives almost no absorption. be. The incident light is mainly guided through the single-layer guide portion with the highest refractive index of n2=3.51, and only a small amount of light leaks into the multi-quantum well layer.

しかも、しみ出し部における吸収係数α1は比較的小さ
いため、全体としての導波損失は従来の導波層が全て多
重量子井戸層で構成されているものに比べ十分に小さい
ものとなる。
Furthermore, since the absorption coefficient α1 in the seepage portion is relatively small, the overall waveguide loss is sufficiently smaller than that of a conventional waveguide layer in which all of the waveguide layers are composed of multiple quantum well layers.

次に、多重量子井戸層に電界が印加された場合について
述べる。その時の吸収スペクトルを第2図(C)に示す
。この場合、逆バイアス電圧として4■程度印加した時
、電界強度としては5X10’〜105V / cmと
なり、その時、エキシトンのピークはλ2=0.83μ
mからλ4=0.85μmへ約20nm、エネルギーに
換算して30〜4QmeV低エネルギー側へ移動する。
Next, a case will be described in which an electric field is applied to the multiple quantum well layer. The absorption spectrum at that time is shown in FIG. 2(C). In this case, when a reverse bias voltage of about 4μ is applied, the electric field strength is 5X10' to 105V/cm, and the exciton peak is λ2 = 0.83μ.
It moves from m to λ4=0.85 μm by about 20 nm, 30 to 4 QmeV in terms of energy, toward the lower energy side.

従って、入射光の波長λ3=0.84μmに対する吸収
係数α2はα、に比べて非常に太き(なり、〜10’c
m−’程度となる。電界印加によってエキシトンのピー
クを含めた吸収スペクトル全体が長波長側へ移動するの
に伴って、第2図(d)に示した様に屈折率スペクトル
も長波長側へ移動する。従って、波長λ3=0.84μ
mでの多重量子井戸層の平均的な屈折率は、電界が印加
されていない場合はn 、 =3.48であったのに対
し、電界が印加された場合はn2=3.55と大きくな
り、単一層ガイドの屈折率n3=3.51以上となる。
Therefore, the absorption coefficient α2 for the wavelength λ3 = 0.84 μm of the incident light is very thick compared to α (~10'c
It will be about m-'. As the entire absorption spectrum including the exciton peak shifts toward longer wavelengths due to the application of an electric field, the refractive index spectrum also shifts toward longer wavelengths, as shown in FIG. 2(d). Therefore, wavelength λ3=0.84μ
The average refractive index of the multi-quantum well layer at m was n = 3.48 when no electric field was applied, whereas it increased to n = 3.55 when an electric field was applied. Therefore, the refractive index n3 of the single layer guide is 3.51 or more.

その屈折率分布を第3図(C)に示す。また、第3図(
d)にその時の光の界分布が示され、13は多重量子井
戸層の領域でα2が〜l Q 4 cm−1なる非常に
大きな吸収を受ける部分であり、14は単一層ガイドの
領域でほとんど吸収を受けない部分である。入射光は屈
折率の一番高いn2=3.55の多重量子井戸層の部分
を主に導波する。従って、導波光のほとんどが多重量子
井戸層で吸収されてしまい結果的に大きな消光比が得ら
れる。
The refractive index distribution is shown in FIG. 3(C). Also, Figure 3 (
The field distribution of light at that time is shown in d), where 13 is the region of the multi-quantum well layer, which receives very large absorption with α2 of ~l Q 4 cm-1, and 14 is the region of the single-layer guide. This is the part that receives almost no absorption. The incident light is mainly guided through a portion of the multi-quantum well layer where n2=3.55 has the highest refractive index. Therefore, most of the guided light is absorbed by the multiple quantum well layer, resulting in a large extinction ratio.

以上より、この構造の導波型光スイッチは導波損失が非
常に少なく、更に低電圧(5V以下)で動作し大きな消
光比が得られ、電界を制御手段としているため数082
以上の高速変調も可能であり、特に触れなかったが、素
子長も1 mm以下で十分製作可能である。
From the above, the waveguide optical switch with this structure has very low waveguide loss, operates at low voltage (5V or less), has a large extinction ratio, and uses an electric field as a control means, so
The above-mentioned high-speed modulation is also possible, and although it was not mentioned in particular, it is sufficiently possible to manufacture the device with an element length of 1 mm or less.

また、ここで用いた入射光の波長、AβGaAsの各層
の組成1層厚、あるいはGaAs/AA’GaAs多重
量子井戸の各層厚等に関しては、あくまで一つの例であ
って、電界による吸収係数変化、屈折率変化などで実施
例と同等の効果が得られれば、特に実施例に限定するも
のではない。
In addition, the wavelength of the incident light used here, the composition of each layer of AβGaAs, the thickness of each layer of GaAs/AA'GaAs multiple quantum wells, etc. are just examples, and the changes in absorption coefficient due to electric field, The present invention is not particularly limited to the examples as long as effects equivalent to those of the examples can be obtained in terms of changes in refractive index, etc.

更に、半導体材料に関してもGaAs/AβGaAs系
の材料のみならず、InGaAsP/InP、InC,
aAs/InAj!Asなどの材料を用いてもよい。
Furthermore, regarding semiconductor materials, not only GaAs/AβGaAs materials but also InGaAsP/InP, InC,
aAs/InAj! A material such as As may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、従来の多重
量子井戸層を導波路としていた導波型光スイッチに比べ
、導波損失を非常に下げることができ、動作電圧、消光
比、導波損失の面でともに高性能な導波型光スイッチが
可能となり、将来の光機能素子、光回路又はそれらを集
積化、システム化した光通信及び光情報処理システム等
の実現に寄与するところ大である。
As explained in detail above, according to the present invention, it is possible to significantly reduce waveguide loss, reduce operating voltage, extinction ratio, and It has become possible to create waveguide optical switches with high performance in terms of wave loss, and it will greatly contribute to the realization of future optical functional devices, optical circuits, and optical communication and optical information processing systems that integrate and systemize them. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による導波型光スイッチの実施例を説明
するための図、 第2図は本発明の導波型光スイッチの動作原理を説明す
るための図であり、第2図(a)、(b)はそれぞれ電
界が印加されていない場合の多重量子井戸層の吸収スペ
クトルと屈折率スペクトルを示す図、第2図(C)、(
d)はそれぞれ電界が印加された場合の多重量子井戸層
の吸収スペクトルと屈折率スペクトルを示す図、 第3図は本発明による導波型光スイッチの実施例を説明
するための図であり、第3図(a) 、 (b) ハソ
れぞれ電界が印加されていない場合の導波路の屈折率分
布と導波光の界分布を示す図、第3図(C)。 (d)は電界が印加された場合の導波路の屈折率分布と
導波光の界分布を示す図、 第4図は単層構造におけるフランツ・ケルディツシュ効
果を説明するための図、 第5図は従来の多重量子井戸層のみをガイド層とした導
波型光スイッチを説明するための図である。 1.21  ・・・・・・・・・ n”−GaAs基板
2.22  ・・・・・・・・・ n”−AβGaAs
クラッド層3  ・・・・・・・・・ rr−AIGa
As単一層ガイド4.23  ・−=−・−n−−Ga
As/AAGaAs多重量子井戸ガイド 5.24  ・・・・川・・ p”−AβGaAsクラ
ッド層6  ・・・・・・・・・ AβGaAs埋込み
層?、 8.26.27・・・ 電極 9   ・・・・・・ 入射光 10    ・・・・・・ 出射光 11、13  ・・川 導波光の界分布で多重量子井戸
層を導波する部分 12.14  ・川・・ 導波光の界分布で単一層を導
波する部分 25    ・・・・・・ p”−GaAsキャップ層
代理人 弁理士  岩 佐 義 幸 λ、入、入、X◆                 
    λ糎 χz Xsχ今ミ皮 長  λ    
        5皮 蚤  X(a)       
 (b) j皮 蚤  λ              911 
 農  入(C)        (d) (a)(b) (C)       (d) 第3図 第4図 第5図 手続補正書く自発) 昭和61年 7月26日
FIG. 1 is a diagram for explaining an embodiment of the waveguide type optical switch according to the present invention, and FIG. 2 is a diagram for explaining the operating principle of the waveguide type optical switch according to the present invention. a) and (b) are diagrams showing the absorption spectrum and refractive index spectrum of the multiple quantum well layer when no electric field is applied, respectively, and Figure 2 (C) and (
d) is a diagram showing the absorption spectrum and refractive index spectrum of the multiple quantum well layer when an electric field is applied, respectively; FIG. 3 is a diagram for explaining an embodiment of the waveguide optical switch according to the present invention; FIGS. 3(a) and 3(b) are diagrams showing the refractive index distribution of the waveguide and the field distribution of guided light when no electric field is applied, respectively, and FIG. 3(C). (d) is a diagram showing the refractive index distribution of the waveguide and the field distribution of guided light when an electric field is applied, Figure 4 is a diagram to explain the Franz-Kjelditsch effect in a single layer structure, and Figure 5 is FIG. 2 is a diagram for explaining a waveguide optical switch using only a conventional multiple quantum well layer as a guide layer. 1.21 ...... n"-GaAs substrate 2.22 ...... n"-AβGaAs
Cladding layer 3 rr-AIGa
As single layer guide 4.23 ・−=−・−n−−Ga
As/AAGaAs multiple quantum well guide 5.24 ... River... p''-AβGaAs cladding layer 6 ...... AβGaAs buried layer?, 8.26.27... Electrode 9 ... ...... Incoming light 10 ...... Outgoing light 11, 13 ... River Portion that guides the multi-quantum well layer in the field distribution of guided light 12.14 - River... Part 25 that guides the wave in one layer... p”-GaAs cap layer agent Patent attorney Yoshiyuki Iwasa λ, enter, enter, X◆
λglue χz Xsχnowmi skin length λ
5 skin flea X(a)
(b) j skin flea λ 911
Agricultural input (C) (d) (a) (b) (C) (d) Figure 3 Figure 4 Figure 5 Procedural amendments voluntarily) July 26, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)ガイド層を伝搬している導波光の制御を電界を印
加することにより行なう半導体導波型光スイッチにおい
て、前記ガイド層が、単一層と、前記単一層の上下少な
くとも一方に存在するそれぞれ500Åより薄い半導体
層と前記半導体層の禁制帯幅より大きい禁制帯幅を有す
る半導体層とが交互に積層された多層構造より成る層と
から構成され、前記多層構造のヘテロ界面に垂直に電界
を印加する手段を有し、前記多層構造がもつ基底準位の
エキシトンの吸収ピーク波長が被変調光の波長に対して
短波長近傍に設定され、前記被変調光に対し前記多層構
造の平均的屈折率が前記単一層の屈折率よりもわずかに
小さい屈折率をもつことを特徴とする導波型光スイッチ
(1) In a semiconductor waveguide optical switch in which guided light propagating through a guide layer is controlled by applying an electric field, the guide layer is a single layer and each layer exists on at least one of the upper and lower sides of the single layer. It is composed of a multilayer structure in which semiconductor layers thinner than 500 Å and semiconductor layers having a forbidden band width larger than the forbidden band width of the semiconductor layer are laminated alternately, and an electric field is applied perpendicularly to the heterointerface of the multilayer structure. the absorption peak wavelength of excitons at the ground level of the multilayer structure is set near a short wavelength with respect to the wavelength of the modulated light, and the average refraction of the multilayer structure with respect to the modulated light is A waveguide optical switch characterized in that the optical switch has a refractive index slightly smaller than the refractive index of the single layer.
JP60186704A 1985-08-27 1985-08-27 Semiconductor waveguide type optical switch Expired - Lifetime JPH07113711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186704A JPH07113711B2 (en) 1985-08-27 1985-08-27 Semiconductor waveguide type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186704A JPH07113711B2 (en) 1985-08-27 1985-08-27 Semiconductor waveguide type optical switch

Publications (2)

Publication Number Publication Date
JPS6247620A true JPS6247620A (en) 1987-03-02
JPH07113711B2 JPH07113711B2 (en) 1995-12-06

Family

ID=16193172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186704A Expired - Lifetime JPH07113711B2 (en) 1985-08-27 1985-08-27 Semiconductor waveguide type optical switch

Country Status (1)

Country Link
JP (1) JPH07113711B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191822A (en) * 1986-02-18 1987-08-22 Nippon Telegr & Teleph Corp <Ntt> Quantum well type optical modulator and its production
JPS6381305A (en) * 1986-09-26 1988-04-12 Nec Corp Optical integrated circuit
JPH01178933A (en) * 1987-12-29 1989-07-17 Nec Corp Optical switch
JPH01204018A (en) * 1988-02-10 1989-08-16 Nec Corp Optical modulator
JPH0291623A (en) * 1988-09-28 1990-03-30 Shimadzu Corp Optical filter
JPH03110504A (en) * 1989-09-26 1991-05-10 Fujitsu Ltd Photosemiconductor device
JP2010113084A (en) * 2008-11-05 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical signal processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154791A (en) * 1979-05-22 1980-12-02 Nec Corp Light transmitter
JPS58107512A (en) * 1981-12-22 1983-06-27 Ricoh Co Ltd Optical control fiber element
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator
JPS60260017A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulation element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154791A (en) * 1979-05-22 1980-12-02 Nec Corp Light transmitter
JPS58107512A (en) * 1981-12-22 1983-06-27 Ricoh Co Ltd Optical control fiber element
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator
JPS60260017A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulation element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191822A (en) * 1986-02-18 1987-08-22 Nippon Telegr & Teleph Corp <Ntt> Quantum well type optical modulator and its production
JPS6381305A (en) * 1986-09-26 1988-04-12 Nec Corp Optical integrated circuit
JPH01178933A (en) * 1987-12-29 1989-07-17 Nec Corp Optical switch
JP2503558B2 (en) * 1987-12-29 1996-06-05 日本電気株式会社 Optical switch
JPH01204018A (en) * 1988-02-10 1989-08-16 Nec Corp Optical modulator
JPH0291623A (en) * 1988-09-28 1990-03-30 Shimadzu Corp Optical filter
JPH03110504A (en) * 1989-09-26 1991-05-10 Fujitsu Ltd Photosemiconductor device
JP2010113084A (en) * 2008-11-05 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical signal processing device

Also Published As

Publication number Publication date
JPH07113711B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
US5680411A (en) Integrated monolithic laser-modulator component with multiple quantum well structure
JP2594352B2 (en) Optical device
JPH0521904A (en) Semiconductor optical controlling element and manufacture thereof
EP0378098B1 (en) Semiconductor optical device
CA2139140C (en) A method for fabricating a semiconductor photonic integrated circuit
JPH0715093A (en) Optical semiconductor element
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JP2814906B2 (en) Optical semiconductor device and method of manufacturing the same
US5757985A (en) Semiconductor mach-zehnder-type optical modulator
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
US5012474A (en) Polarization switching in active devices
JPS6247620A (en) Waveguide type optical switch
US20120120478A1 (en) Electro-optical devices based on the variation in the index or absorption in the isb transitions
JPH06125141A (en) Semiconductor quantum well optical element
US5084897A (en) Optical filter device
JPS61212823A (en) Optical modulator
JPS61270726A (en) Waveguide type optical gate switch
JPS63100422A (en) Waveguide type optical switch
JP3527078B2 (en) Light control element
JP2676942B2 (en) Light modulator
JP2971419B2 (en) Light switch
JPH09101491A (en) Semiconductor mach-zehnder modulator and its production
KR100216528B1 (en) A semiconductor optical tunable filter having superlattice waveguide
JPH07248511A (en) Optical semiconductor device