JPS58107512A - Optical control fiber element - Google Patents

Optical control fiber element

Info

Publication number
JPS58107512A
JPS58107512A JP56207815A JP20781581A JPS58107512A JP S58107512 A JPS58107512 A JP S58107512A JP 56207815 A JP56207815 A JP 56207815A JP 20781581 A JP20781581 A JP 20781581A JP S58107512 A JPS58107512 A JP S58107512A
Authority
JP
Japan
Prior art keywords
fiber
optical
optical fiber
light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56207815A
Other languages
Japanese (ja)
Inventor
Hideo Segawa
瀬川 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP56207815A priority Critical patent/JPS58107512A/en
Publication of JPS58107512A publication Critical patent/JPS58107512A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Abstract

PURPOSE:To vary the light volume which is transmitted by an optical fiber with a simple constitution, by providing a heating material on the outer circumferential surface of the optical fiber. CONSTITUTION:An electro-resistance thin film 2 of Ni-Cr, etc. is formed on a single surface (a) or entire surface (b) of a quartz optical fiber 1 by a vacuum deposition, sputtering and other processes. The temperature of the thin film 2 is raised up by the current pulse to heat the clad part. This increases the refractive index and decreases the light volume transmitted in the fiber 1. As a result, the ON/OFF is possible for the light in response to the current signal.

Description

【発明の詳細な説明】 本発明は、光ファイバを熱的に制御することにより、フ
ァイバの透過光量を変化させることの出来る全く針し光
変調素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a completely linear optical modulation element that can change the amount of light transmitted through an optical fiber by thermally controlling the optical fiber.

光シャッタを含め、光強度を信号によって制御するため
の光変調素子は光通信その他の分野において、最近急激
に開発が進められてきている。従来の光変調素子はガド
リニウム−鉄ガーネット (Gds −x Bix F
e5−y Gay 012) Qi結晶またはエピタキ
シャルフィルムを磁界中に置き7アレデー効果を利用し
て光を制御するものや、PLZT板に電界を作用させた
ときく生ずるケル効果を利用して光を制御するものが多
く用aられている・ しかし、これらの光変調素子は、光変調器を組立てるに
嶺り、偏光子、検光“子を必要とする他、大面積の素子
の製作が現在つとこる不可能であり、曲者は補装置・度
より高い!度の下でlo o Qe楊変の磁界をかける
必要があり、後者も80〜250vと駆辿電圧が高いと
いう欠点を有する。
2. Description of the Related Art Optical modulators, including optical shutters, for controlling light intensity using signals have recently been rapidly developed in optical communications and other fields. The conventional light modulation element is gadolinium-iron garnet (Gds-x Bix F
e5-y Gay 012) Qi crystals or epitaxial films are placed in a magnetic field to control light using the 7 Arede effect, and light is controlled using the Kell effect that often occurs when an electric field is applied to a PLZT plate. However, these light modulation elements require a polarizer and an analyzer to assemble the light modulator, and the fabrication of large-area elements is currently difficult. It is impossible to do so, and the bender needs to apply a lo o Qe Yanghen magnetic field under a higher degree than the auxiliary device, and the latter also has the disadvantage of a high trace voltage of 80-250V.

一方、光ファイバは、細径、軽量、町とう性電気絶縁性
、無誘導比、耐火耐水性、耐腐蝕注広帯域註の池に、最
近で′Fi低損失比など、他(け見られない数々■優れ
た%曲を育しており、通信分野ばかりでなく、f、に4
 O多くの分野でそθ利用が1まかられ2つある。
On the other hand, optical fibers are small diameter, lightweight, durable, electrically insulated, non-inductive, fireproof, water resistant, corrosion resistant, wideband, and have recently been developed with other features such as 'Fi low loss ratio'. Numerous ■ Excellent % songs have been developed, not only in the communication field, but also in f, 4.
O In many fields, there are one or two uses of θ.

しかし、従来の利用例は光の導波路としてυ利用のみで
あり、導波光を変調する場合には一1ファイバ外に取出
して変調し、場合によっては変調光をもう−1光ファイ
バに入射させなければならないという欠点を有していた
However, the conventional usage example is only to use υ as an optical waveguide, and when modulating the guided light, it is taken out of the first fiber and modulated, and in some cases, the modulated light is input into another optical fiber. It had the disadvantage that it had to be done.

本発明は、光7フイパの外1111rIiに微少発熱体
を設け、温度変化による光ファイバのクラツド部の屈折
率を変化させることにより、コア部からの光の漏れを生
じさせることにより、極めて簡略な構造によってファイ
バの伝搬光鎗を変化サセて光変調素子の機能を持たせる
ことが出来友もっである− 以下vI!施例により絆細に説明をする。
The present invention provides an extremely simple structure by providing a minute heating element outside the optical fiber 7 1111rIi and changing the refractive index of the cladding part of the optical fiber due to temperature changes, thereby causing light to leak from the core part. Depending on the structure, it is possible to change the propagation force of the fiber and give it the function of an optical modulation element. A detailed explanation will be provided based on examples.

光ファイバは、そII)構造から大きく分けて2つのタ
イプに分類することが出来る。第1図に7ドすようvc
@折率が階段状に変化しているステップ型元ファイバう
りと屈折率が半部方向に放物線状Kf化しているグレー
ディッド型7アイパ+、1))であるが、何れにしても
コアと呼ばれるファイバ中心tillの屈折率をクラッ
ドと呼ばれる外周mL2D@折率よりわずか(0,1〜
1%)に筒<シてあり、光波はコア部分にとじ込められ
て伝搬する。
Optical fibers can be broadly classified into two types based on their structure. Figure 1 shows 7 dos vc
@Step-type original fiber whose refractive index changes in a step-like manner and graded-type 7 Eyepa+, whose refractive index changes in a parabolic Kf direction in the half direction, but in any case, the core The refractive index of the fiber center till is slightly smaller than the outer periphery mL2D @ refractive index (0,1~
1%), and the light waves are confined in the core and propagate.

構成@′科υ点から誉れは、石莢系元ファイバ多成分系
光ファイバ、プラスチッククラッド光フアイバ外に分け
られるが、本発明では石英系党ファイバを使用する。石
英系元ファイバではコアはGeO2、P2・05等をド
ープした石英ガラス。
In terms of structure, the optical fiber can be divided into quartz-based fiber, multi-component optical fiber, and plastic-clad optical fiber, but in the present invention, quartz-based fiber is used. In a quartz-based original fiber, the core is quartz glass doped with GeO2, P2.05, etc.

クラッドはB2O5等をドープした石英ガラスが用いら
れる。
The cladding is made of quartz glass doped with B2O5 or the like.

コアの屈折率をno%クラッドの屈折率をncとすると
そO屈折率差Δは n。
If the refractive index of the core is no% and the refractive index of the cladding is nc, then the refractive index difference Δ is n.

で定義される。上記のようにΔは通常α1〜l優に選ば
れる0今、Δ= 0. U U 5、no= 1.46
0の石英ファイバでは、n(!−1,453となり、5 コアとクラッドの屈折率差はlO〜10  Oオーダー
となる。
Defined by As mentioned above, Δ is usually chosen to be α1~l, where Δ=0. U U 5, no = 1.46
In the case of a quartz fiber with a diameter of 0, n(!-1,453), and the difference in refractive index between the 5 core and the cladding is on the order of lO to 10 O.

ところで、ガラス等■誘電体媒質においては、屈折率が
温[Kよって変化し、0〜100℃υ温1範囲では、ガ
ラスでは1O−5℃変化する。
By the way, in a dielectric medium such as glass, the refractive index changes depending on the temperature [K], and in the temperature range of 0 to 100°C, the refractive index changes by 10-5°C in the case of glass.

第2図に石英ガラスの屈折率の温直依存注を示す。これ
(よれば室温から300℃へ加熱することで、4X1(
J  の屈折率変化が生ずることがわかる口従って、ク
ラッドにこの程度υ墨変変化を与えるとその屈折率はほ
ぼコアO屈折率と等しくなる。このような条件下では光
ファイバのコア内を伝搬する導波光はコア部分にとじ込
められて伝搬することができなくなり、クラッド部へも
れるようになる。クラッド部へもれた光は、クラッドi
!!面で反射されたとしても再びコア中り導波光となる
ことはなく、光フアイバ外へ゛出射してゆく。従って、
光7アイパの1部に加熱部を設け、入力信号に従ってフ
ァイバを加熱すれば、加熱に伴って導波光強度が減少す
るOで光スィッチ或は光変調素子として利用することが
出来る。
Figure 2 shows the temperature dependence of the refractive index of silica glass. According to this, by heating from room temperature to 300℃, 4X1 (
It can be seen that a change in the refractive index of J occurs. Therefore, if this degree of υ change is applied to the cladding, its refractive index becomes approximately equal to the core O refractive index. Under such conditions, the guided light propagating within the core of the optical fiber is confined in the core and cannot propagate, and leaks into the cladding. The light leaking to the cladding part is
! ! Even if it is reflected by a surface, the light will not become guided into the core again and will be emitted to the outside of the optical fiber. Therefore,
If a heating part is provided in a part of the optical 7-eyeper and the fiber is heated in accordance with an input signal, the fiber can be used as an optical switch or an optical modulation element in which the guided light intensity decreases with heating.

上記の加熱部は、光ファイバの外側に発熱体たとえば電
気抵抗体薄膜を真空蒸着やスパッタリングによって形成
することによって作ることが出来る。Ni −Cr 、
Ta2N %Ta −81系%Ta−8田系勢種々の材
料がこの目的に利用出来るが、薄膜だけでなく、RuO
2などの1膜抵抗でもさしつかえない・このような抵抗
体2をフォトエツチング法等により、113図に示すよ
うにファイバlの片側rM(勾または全外周(b)に選
択的に設け、数百ないし数にΩの抵抗素子とする。この
抵抗素子は電流パルスによって発熱するが、数μ3〜数
m5f)電流パルスによって300℃〜500℃に昇温
させることが可能である。こ0昇温によりクラッド部が
加熱され、上記のように光フアイバ内を導波していた光
が外部にもれ。
The heating section described above can be made by forming a heating element, such as an electric resistor thin film, on the outside of the optical fiber by vacuum deposition or sputtering. Ni-Cr,
Various materials can be used for this purpose, including thin films as well as RuO
A single film resistor such as 2 may also be used. ・Selectively place such a resistor 2 on one side rM (angle or the entire outer periphery (b) of the fiber L as shown in Fig. 113 by photo-etching, etc.) A resistive element having a resistance of Ω to several Ω is used.This resistive element generates heat by a current pulse, and it is possible to raise the temperature to 300° C. to 500° C. by a current pulse of several μ3 to several m5f. The cladding part is heated due to this temperature rise, and the light that was guided inside the optical fiber leaks to the outside as described above.

出射端で光の強度を観測すると、第4図に示すように電
流パルスに応じて光強度が変化するυが見られる。すな
わち、電流信号に応じた光OON、OFFが可能になる
。ファイバーには多モードファイバと墜−モードファイ
バがあり、多モードファイバではコア部が60虜前後、
−一モードファイバでは5IJxn 前後υものが多く
、クラツド径は150IIm が典型値であるが、何れ
にしても熱容量は十分に少さく、光の応答は1 mm 
 以下にすることが可能である。
When observing the light intensity at the output end, it is seen that the light intensity changes υ according to the current pulse, as shown in FIG. That is, it becomes possible to turn the light ON and OFF according to the current signal. There are two types of fiber: multi-mode fiber and low-mode fiber.The core of multi-mode fiber is around 60 mm.
-Many one-mode fibers are around 5IJxn υ, and the typical cladding diameter is 150IIm, but in any case, the heat capacity is sufficiently small and the optical response is 1 mm.
It is possible to do the following.

第5図は上記のような光ファイバを複数個差べて光スイ
ツチアレイを構暉したガである。ファイバlをヒートシ
ンクとして作用する基板3上に配列し、その各々に独立
に抵抗素子2を設けることにより、任意のファイバを選
択的に制御することが出来る。場合により、一括して抵
抗体を設けることも出来るが、この場合には総てのファ
イバを同時に作動させることとなる。
FIG. 5 shows an optical switch array constructed by connecting a plurality of optical fibers as described above. By arranging the fibers 1 on a substrate 3 that acts as a heat sink and independently providing a resistance element 2 to each fiber, it is possible to selectively control any fiber. Depending on the case, resistors can be provided all at once, but in this case all the fibers will be operated at the same time.

なか、上記実施例では抵抗体に通電して発熱させている
が、例えば吸収率の高い物質O薄膜を設け、光の吸収に
よって昇温させる等、適宜の他の形式の加熱体を配設し
てもよいことは云うまでもない。
In the above embodiment, the resistor is energized to generate heat, but other suitable types of heating elements may be provided, for example, by providing a thin film of material O with high absorption rate to raise the temperature by absorbing light. Needless to say, it is okay.

以上説明したように、本発明は光ファイバの貴重または
外周面に力a熱素子を形成するだけなυで、素子DII
I成が簡単で、作製が容易であるだけでなく、光変調器
とする場合もファイバの導波光を外部に−[9抄出して
KMする必要もなく、光フアイバ以外に例えば偏光板等
の他の光学素子を必要としない。更にファイバそのもの
が導波路なので、従来のように外部に導波路を作って光
質1lI11を構成する必要もないので。
As explained above, the present invention provides an element DII by simply forming a thermal element on the precious or outer circumferential surface of an optical fiber.
It is not only easy to construct and manufacture, but also when used as an optical modulator, there is no need to extract the guided light of the fiber to the outside and perform KM. No other optical elements are required. Furthermore, since the fiber itself is a waveguide, there is no need to create an external waveguide to configure the optical quality 1lI11 as in the conventional case.

非常に簡便な光スィッチを提供することができる0また
。素子は極めて小型なので、複数のファイバを合わせる
ことにより、光シヤツタアレイとしても使用出来るなど
%従来のも0Kfffを見ない光変調器として光通信分
野をはじめ広い応用分野を持つもっである。
It can also provide a very simple optical switch. Since the device is extremely small, it can be used as an optical shutter array by combining multiple fibers, and has a wide range of applications including the field of optical communication as an optical modulator that goes beyond conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバの構造説明図、第2図はファイバ材
料Il)温度−屈折率変化曲線、第3図はこの発明υ光
制御ファイバの実施例の斜視図第4図はそO作動状況の
説明図、IM5図は光スイツチアレイの構成概念図であ
る。 1:光ファイバ 2:発熱抵抗体 3:基板特許出願人
   陳式会仕 リコー
Fig. 1 is an explanatory diagram of the structure of an optical fiber, Fig. 2 is a fiber material Il) temperature-refractive index change curve, Fig. 3 is a perspective view of an embodiment of the optical control fiber of this invention, and Fig. 4 is its operating situation. The explanatory diagram and the IM5 diagram are conceptual diagrams of the structure of the optical switch array. 1: Optical fiber 2: Heat generating resistor 3: Substrate patent applicant Chin Shiki Huishi Ricoh

Claims (1)

【特許請求の範囲】[Claims] 光ファイバの外周面上に加熱体を設けたことを4I徴と
する光−御ファイバ素子
An optical fiber control element characterized by 4I that a heating body is provided on the outer peripheral surface of the optical fiber.
JP56207815A 1981-12-22 1981-12-22 Optical control fiber element Pending JPS58107512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207815A JPS58107512A (en) 1981-12-22 1981-12-22 Optical control fiber element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207815A JPS58107512A (en) 1981-12-22 1981-12-22 Optical control fiber element

Publications (1)

Publication Number Publication Date
JPS58107512A true JPS58107512A (en) 1983-06-27

Family

ID=16545959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207815A Pending JPS58107512A (en) 1981-12-22 1981-12-22 Optical control fiber element

Country Status (1)

Country Link
JP (1) JPS58107512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260017A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulation element
JPS6247620A (en) * 1985-08-27 1987-03-02 Nec Corp Waveguide type optical switch
JPS6249129U (en) * 1985-09-13 1987-03-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260017A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulation element
JPS6247620A (en) * 1985-08-27 1987-03-02 Nec Corp Waveguide type optical switch
JPS6249129U (en) * 1985-09-13 1987-03-26

Similar Documents

Publication Publication Date Title
US6424755B1 (en) Slotted monolithic optical waveguides
JPH0672964B2 (en) Waveguide optical interferometer
US3841731A (en) Improvements in or relating to liquid core dielectric waveguides
JPH10325944A (en) Optical modulation device and its manufacture
JPS58107512A (en) Optical control fiber element
EP0434139B1 (en) Frequency doubling optical waveguide with active phase matching
US4907850A (en) Apparatus for periodically generating second harmonic
JP2000066044A (en) Waveguide using polymer material and its using method
KR100288447B1 (en) Optical intensity modulator and its fabrication method
JPH037910A (en) Waveguide type optical circuit element
JPH09258151A (en) Polling method for optical waveguide
EP0815491B1 (en) Polarization-independent electro-optically switched directional coupler
Mikami et al. Coupling‐length adjustment for an optical directional coupler as a 2× 2 switch
JPS5893036A (en) Light branching device
JPH05249426A (en) Wavelength selection filter and transmission wavelength control method
JP2000029079A (en) Thermooptical switch
JPH02300726A (en) Light switching parts
JP2962378B2 (en) Light switch
JPS63309906A (en) Optical waveguide coupler
JP3800039B2 (en) Thermo-optic optical attenuator
JP2534703B2 (en) Polarization control device
JP2003043432A (en) Variable difference time delay line and group delay time difference correcting device
JPH0634924A (en) Thermooptical phase shifter
JPH01116523A (en) Variable branching ratio type optical coupler
Veselka et al. Low-loss proton exchange channel waveguides and TM-pass polarizers In Z-cut LiNbO3