JPS59181055A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS59181055A
JPS59181055A JP5421483A JP5421483A JPS59181055A JP S59181055 A JPS59181055 A JP S59181055A JP 5421483 A JP5421483 A JP 5421483A JP 5421483 A JP5421483 A JP 5421483A JP S59181055 A JPS59181055 A JP S59181055A
Authority
JP
Japan
Prior art keywords
layer
type
region
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5421483A
Other languages
Japanese (ja)
Inventor
Osamu Wada
修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5421483A priority Critical patent/JPS59181055A/en
Publication of JPS59181055A publication Critical patent/JPS59181055A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Abstract

PURPOSE:To prevent the generation of a parasitic capacity between a gate and a substrate by forming a different conductive type region on a semiconductor laminate corresponding to semiconductor elements arranged through a high resistance semiconductor layer on the laminate which forms a photosemiconductor element. CONSTITUTION:After a high density n type layer 12 is formed on an n type substrate 11, a p type layer 111 is formed. Then, an i type layer of n type low density, a high resistance layer 15 and an FET operation layer 16 are formed, and a positive electrode forming region of photodiode (PD) is formed by etching. Then, p type impurity is introduced to part of an i type layer 13 of PD to form a p type layer 14, and a positive electrode 20 and a negative electrode 21 of FET electrodes 17, 18, 19, are formed. Thus, different conductive type region 111 is formed on part of the laminated formed with the PD is formed, and a transistor is formed thereon. Accordingly, a parasitic capacity between a gate and a substrate can be prevented.

Description

【発明の詳細な説明】 (11発明の技術分野 本発明は、半導体集積回路装置に関し、特に受光素子と
、トランジスタ等の電圧・電流制御素子とを同−半導体
基板上に集積した集積型光半導体装置に関する。そして
製造工程が容易で、しかも、応答速度が速く特性のすぐ
れた集積型光学導体装置を実現するための構造の改良に
関する。
Detailed Description of the Invention (11) Technical Field of the Invention The present invention relates to a semiconductor integrated circuit device, and in particular to an integrated optical semiconductor device in which a light receiving element and a voltage/current control element such as a transistor are integrated on the same semiconductor substrate. The present invention relates to a device, and to improvements in structure for realizing an integrated optical conductor device that is easy to manufacture, has a fast response speed, and has excellent characteristics.

(2)  技術の背景 受光素子の発生する信号は一般に微弱であるから、増幅
回路を使用してこれを増幅することが必要である。
(2) Background of the technology Since the signal generated by the light receiving element is generally weak, it is necessary to amplify it using an amplifier circuit.

一方、受光素子は通常−辺が0.3 (mm)程度の微
小な矩形状となるので、別個に形成した受光素子と増幅
回路とを組合わせるよりも、受光素子と増幅回路とを単
一の半導体基板上に形成して集積型光学導体装置となし
たほろが高集積化か可能となり、産業上有意義である。
On the other hand, since the light-receiving element usually has a small rectangular shape with sides of about 0.3 (mm), it is better to combine the light-receiving element and the amplifier circuit into a single unit than to combine the light-receiving element and the amplifier circuit, which are formed separately. The integrated optical conductor device formed on a semiconductor substrate can be highly integrated, and is industrially significant.

(3)  従来技術と問題点 接合型受光素子と電界効果トランジスタ(以下FETと
いう。)とを単一の牛導体、a1:板上に形成した従来
技術における集積型光半導体装置の代表的な例を2例示
す。
(3) Prior art and problems A typical example of an integrated optical semiconductor device in the prior art in which a junction type light receiving element and a field effect transistor (hereinafter referred to as FET) are formed on a single conductor, a1: board. Here are two examples.

第1図はPIN型フォトメイオーP(以下FDという。FIG. 1 shows a PIN type photomeio-P (hereinafter referred to as FD).

)と電界効果トランジスタとをガリウムヒ素(GaAs
)基板に集積した構造の一例である。
) and the field effect transistor are made of gallium arsenide (GaAs).
) This is an example of a structure integrated on a substrate.

これは、ガリウムヒ素(GaAs)基&l上に形成され
たFDに固有の牛導体層構造、すなわち、n型ガリウム
ヒ素(n−GaAs)層2(以下n Nという。)、低
濃度n型ガリウムヒ菓(n”’−GaAθ)層3(以下
l層という。)よりなる積層体を平面的に展延し、その
最上層3上に、この層と格子整合し、がっ、高抵抗の半
導体層5(以下高抵抗層という。)を形成してこれをも
ってPD部(図に一点鎖線Aをもりて囲まれた領域)と
の導通を遮断し、この高抵抗層5上にこの層と格子整合
する半導体この例?こおいてはn型ガリウムヒ素(n−
GaAs)よりなる動作層6を有するFIICT(図に
一点鎖線Bをもって囲まれた領域)を形成したものであ
る。なお、図において、4はp型拡散層、(以下p層と
いう。
This is a conductor layer structure specific to FD formed on a gallium arsenide (GaAs) base, that is, an n-type gallium arsenide (n-GaAs) layer 2 (hereinafter referred to as nN), a low concentration n-type gallium A laminate consisting of a (n"'-GaAθ) layer 3 (hereinafter referred to as "L layer") is spread flat, and a high-resistance semiconductor is placed on top of the top layer 3, which is lattice matched with this layer. A layer 5 (hereinafter referred to as a high-resistance layer) is formed to cut off conduction with the PD section (the area surrounded by a dashed line A in the figure), and a grid is formed on this high-resistance layer 5. In this example, the matching semiconductor is n-type gallium arsenide (n-
FIICT (area surrounded by a dashed line B in the figure) is formed, and has an active layer 6 made of GaAs). In the figure, 4 is a p-type diffusion layer (hereinafter referred to as p layer).

であり、7.8.9は夫々FETのソース、ドレイン、
ケート電極〒あり、1o、1dは夫々FDの正負電極!
ある。かかる構造は、おおむねプレーナとな・るので集
積化のためのプロセスが簡易であるという利点を有する
が、応答速には、必ずしも満足すべきもの〒あるとは言
い難いo FEiTの下部領域に導電性を有するガリウ
ムヒ素(GaAs)層3が存在するので、PETのダー
ト9との間に寄生容量が発生するからである。
7.8.9 are the FET source, drain, and
There is a gate electrode, 1o and 1d are the positive and negative electrodes of FD respectively!
be. Such a structure has the advantage that the integration process is simple because it is generally planar, but it cannot be said that the response speed is necessarily satisfactory. This is because a parasitic capacitance is generated between the gallium arsenide (GaAs) layer 3 and the PET dirt 9 because the gallium arsenide (GaAs) layer 3 exists.

第2図も上記と同様にPIN型FDとFEATとをガリ
ウムヒ素(GaAB)基板上(こ集積した構造例である
が、上記の例と異なる点は、半絶縁性ガリウムヒ素(G
aAs)基板1′を共通の基板として、その上にPD(
図に一点錫線A′をもって囲まれた領域)とFET(図
に一点鎖線B′をもって囲まれた領域)とを並置した点
にある。このみ合はPETの基板が半絶縁性であるがら
寄生容量の問題は発生しないが、構造上段差ができるこ
とは避は難く、プレーナとならないため、製造プロセス
が容易ではな)  いという欠点を有する。
Figure 2 also shows an example of a structure in which a PIN-type FD and FEAT are integrated on a gallium arsenide (GaAB) substrate, as in the above example.
aAs) substrate 1' is used as a common substrate, and PD (
This is the point where the FET (the area surrounded by the dotted tin line A' in the figure) and the FET (the area surrounded by the dotted chain line B' in the figure) are juxtaposed. In this case, although the PET substrate is semi-insulating, the problem of parasitic capacitance does not occur, but it is difficult to avoid the formation of steps due to the structure, and since it is not planar, it has the disadvantage that the manufacturing process is not easy.

このように、従来技術における構造はいずれも満足すべ
きものではなく改良の余i6を残すものであった。
As described above, none of the structures in the prior art were satisfactory and left room for improvement.

(4)発明の目的 本発明の目的は、この要請に応えることにあり、単一の
基板上にPDとFET等゛屯汗・電流制御素子とが並置
されており、おおむねプレーナ型であってプロセスが容
易である集積型光半導体装置において、ゲート・基板間
の寄生容量の発生を防止して応答特性の向上した集積型
光半導体装置を提供することにある〇 (5)  発明の構成 本発明の目的は、光半導体素子を構成する半導体積層体
の一部に、高抵抗半導体層を介して前記半導体素子に電
気的に接続される半導体素子が配設され、前記半導体積
層体に対応する前記半導体積層体を構成する半導体層の
一つに前記半纏体層とは異る導電型を有する領域が配設
されてなる半導体集積回路装置により達成される。
(4) Purpose of the Invention The purpose of the present invention is to meet this demand, and includes a PD and a current control element such as a FET arranged side by side on a single substrate, which is generally of a planar type. An object of the present invention is to provide an integrated optical semiconductor device that is easy to process and has improved response characteristics by preventing the generation of parasitic capacitance between the gate and the substrate. The object is to provide a semiconductor element electrically connected to the semiconductor element via a high-resistance semiconductor layer in a part of the semiconductor layered body constituting the optical semiconductor element, and to provide the semiconductor element corresponding to the semiconductor layered body. This is achieved by a semiconductor integrated circuit device in which one of the semiconductor layers constituting a semiconductor stack is provided with a region having a conductivity type different from that of the semi-integrated layer.

本発明は、受光素子部と制御素子部とが共通の半導体積
層体に形成されておおむねプレーナ型である集積型光半
導体装置の能動素子を含む制御素子部の下部に上記の積
層体とは異なる導電型の層を形成し、PN接合のビルト
インポテンシャルを利用して上記の制御素子部とこの異
なる導電型の層との間を空乏層化して寄生容量の発生を
防止することとしたものである。
The present invention provides an integrated optical semiconductor device in which a light-receiving element part and a control element part are formed in a common semiconductor laminate, and which is different from the above-mentioned laminate. A layer of a different conductivity type is formed, and the built-in potential of the PN junction is used to create a depletion layer between the control element section and this layer of a different conductivity type, thereby preventing the generation of parasitic capacitance. .

この空乏層の広がりは、この空乏層が広がる領域の不純
物濃度に依存し、この濃度が低い程空乏層の広がりは大
きくなるからこの不純物濃度をできるだけ低く選択する
ことは必要であるが、東に、制御素子部下部に設けられ
た上記の異なる導電型の領域に電極を設け、この領域に
接して存在するpNg合に逆ノ々イアス電圧を印加すれ
ば空乏層の形成が更に確実となり、又、所望の範囲に某
乏層を発生させるための制御も容易となるため、寄生容
量の発生防止効果は一層確実となりまた効果的となる。
The spread of this depletion layer depends on the impurity concentration in the region where this depletion layer spreads, and the lower this concentration is, the larger the spread of the depletion layer becomes. Therefore, it is necessary to select this impurity concentration as low as possible. The formation of the depletion layer can be further ensured by providing an electrode in the above-mentioned regions of different conductivity types provided at the bottom of the control element section and applying a reverse noise voltage to the pNg layer in contact with this region. Since the control for generating a certain depletion layer in a desired range becomes easier, the effect of preventing the generation of parasitic capacitance becomes more reliable and effective.

ただ、この場合、受光素子部と制御素子部との電位を独
立にすることが必要であるからこれらの間を電気的に確
実に分離する必碩がある。
However, in this case, it is necessary to make the potentials of the light receiving element section and the control element section independent, so it is necessary to ensure electrical isolation between them.

又、半導体材料はガリウムヒt、  (GaAs)とア
ルミニウムガリウムヒ素(AlGaAs )またはアル
ミニウムガリウムヒ素リン(AlGaAsP)との組合
わせ、インジウムリン(工nP)とインジウムガリウム
リン(InGaP)またはインジウムガリウムヒ素リン
(工nGaAsP)との組合わせ等が望ましいが、この
半導体の組合わせは一例であってこれに限定されるもの
ではない。
In addition, semiconductor materials include combinations of gallium nitride (GaAs) and aluminum gallium arsenide (AlGaAs) or aluminum gallium arsenide phosphide (AlGaAsP), and combinations of indium phosphide (NP) and indium gallium phosphide (InGaP) or indium gallium arsenide phosphide ( A combination of semiconductors such as GaAsP) is desirable, but this combination of semiconductors is only an example and is not limited to this.

この構成により、従来技術においては避は難かった0、
1(pF)程度の寄生容量をo、oz(pF)程度まで
、すなわち、1/4程度に減少しうろことめ1確認され
た。
With this configuration, 0, which was difficult to avoid in the conventional technology,
It was confirmed that the parasitic capacitance of about 1 (pF) was reduced to about 0.0 oz (pF), that is, about 1/4.

(6)  発明の実施例 以下図面を参照しつつ、本発明をこ係る実施5Nを3例
示し、夫々、半導体としてガリウムヒ素(GaAs)を
使用し、P工N型PDとFITと力1集積される集積型
光半導体装置の製造工程ζこつし)て跨兄明する。
(6) Embodiments of the Invention With reference to the drawings, three examples of 5N embodiments of the present invention will be described below, each using gallium arsenide (GaAs) as a semiconductor, a P-type N-type PD, a FIT, and a force-integrated one. We will explain the manufacturing process of integrated optical semiconductor devices.

第1例 第3図参照 n型不純物1017〜10” (Cm−3)程度含有す
るn型ガリウムヒ素(n−GaAs)よりなり厚さ力t
 300 (μm)程度の基板11上に気相成長法、有
機金属イヒ学気相成長法(以下MOOVD法とし)う。
Example 1: Refer to Figure 3. Made of n-type gallium arsenide (n-GaAs) containing n-type impurities of about 1017 to 10" (Cm-3), the thickness is t.
A vapor phase epitaxy method, metalorganic vapor phase epitaxy (hereinafter referred to as MOOVD method), is performed on a substrate 11 of about 300 (μm).

)等を1吏用して、n型不純物を5 X 11017(
a””’ )程度の比較的高濃度に含有するn型ガリウ
ムヒ素(n−GaAe)よりなり厚さが3〜5(μm)
程度fあるn層12を形成する。
) etc. to add n-type impurities to 5 x 11017 (
It is made of n-type gallium arsenide (n-GaAe) containing a relatively high concentration of about a""') and has a thickness of 3 to 5 (μm).
An n-layer 12 having a thickness of about f is formed.

第4図参照 上記のn層120FBT形成領域と対応する領域(こ、
本発明の特徴的構成であるp型領域111を形成するO
この工程は、熱拡散法またはイオン注入法をイ吏用する
ことによって実行可能であり、p型不純物として、例え
ば、亜鉛(Zn)、ベリリウム(Be)等を2(μm)
8度の深さに導入する。なお、このp型領域111の不
純物種度は1017(Cm−3)程度と比較的高濃度に
なすことが望ましい0 第5図参照 続いて、再び気相成長法等を使用して、(イ)n型不純
物を低濃度、すなわち、1014 (cm−3)15<
度に含有する低濃度n型ガリウムヒ素(n−GaAe)
  よりなり厚さが4(μm)程腿の1層13、仲)酸
素(0)をドープすることにより高抵抗となしたガリウ
ムヒ素(GaAs)又はアンドープのガリウムヒ素(G
aAs)よりなり厚さが3.ooo  <’;+>程枝
である高抵抗層15、(ハ)n型不純物をIQ17(a
m−3)程度含有するn型ガリウムヒ素(n−GaAe
)よりなり、厚さか0.2(μm)程度であるPETの
動作層となる増16′を順次形成する0 第6図、第7図、第8図参照 次に、3段階のエツチング工程を実行することによって
、受光素子部と制御素子部とを分離する。
Refer to FIG. 4 A region corresponding to the above n-layer 120FBT formation region (here,
O forming the p-type region 111, which is a characteristic configuration of the present invention.
This step can be carried out by using a thermal diffusion method or an ion implantation method, and as a p-type impurity, for example, zinc (Zn), beryllium (Be), etc.
Introduce it to a depth of 8 degrees. Note that it is desirable that the impurity concentration of this p-type region 111 is relatively high, about 1017 (Cm-3). ) n-type impurity at a low concentration, i.e., 1014 (cm-3)15<
Low concentration n-type gallium arsenide (n-GaAe) contained in
One layer of gallium arsenide (GaAs) with high resistance by doping with oxygen (0) or undoped gallium arsenide (G
aAs) with a thickness of 3. ooo <';+> high resistance layer 15, (c) n-type impurity at IQ17
m-3) n-type gallium arsenide (n-GaAe
) and a thickness of about 0.2 (μm), which will become the PET active layer 16' is sequentially formed (see Figures 6, 7, and 8).Next, a three-stage etching process is performed. By executing this, the light receiving element section and the control element section are separated.

すなわち、まず、公知の手法をもって層16′上のFI
T動作層となる領域にエツチング工程ク(図示せず。)
を形成し、ウェットエツチング法するいはドライエツチ
ング法を使用して層16′の他の領域を除去してlF″
ET動作層16を残留させる(第6図)。続いて、同様
の工程により高抵抗層15を動作N16の下部領域をの
ぞく領域からエツチング除去する(第7図)。更に、同
様にしてFDの1層13の一部領域をn層12に達する
ま1エツチングすることによりFDの正電極形成領域2
2を形成する(第8図)。
That is, first, the FI on the layer 16' is formed using a known method.
An etching process (not shown) is applied to the region that will become the T active layer.
and remove other areas of layer 16' using a wet or dry etching process to form an IF''
The ET active layer 16 is left (FIG. 6). Subsequently, the high-resistance layer 15 is etched away from the region except the lower region of the operation layer N16 by a similar process (FIG. 7). Furthermore, by etching a part of the first layer 13 of the FD until it reaches the n layer 12, the positive electrode forming area 2 of the FD is etched.
2 (Figure 8).

89図参照 FDの1層13の一部領域に例えば亜鉛(Zn)的のp
型不純物を導入してPDの1層14を形成する0この工
程は上記と同様、熱拡散法、イオン注入法等を使用して
実行することができ、1層14の深さはl(μm)程度
となすことが望ましい。
Refer to Fig. 89. For example, a p-oxide film such as zinc (Zn) is applied to a part of the first layer 13 of the FD.
This step of forming one layer 14 of PD by introducing type impurities can be performed using thermal diffusion, ion implantation, etc., as described above, and the depth of one layer 14 is l (μm). ) is desirable.

第10図参照 最後に、夫々所定の領域に公知の方法を使用して電極を
形成する。まず、金・ゲルマニウム(Au・Ge)/ニ
ッケル(N1)二重層よりなるFETのソース・ ドレ
イン電極17.1BとFDの正電極20とを同時に形成
し、続いて金・亜鉛(Au−Zn)よりなるPDの負電
極21 、更にアルミニウム(A1)よすするゲートt
M、 極19を形成し、しかるのち、泰板11を裏面か
ら研磨して100 (μm)程度の犀さとなして製造工
程を完了する。
Refer to FIG. 10. Finally, electrodes are formed in each predetermined region using a known method. First, the FET source/drain electrode 17.1B made of a gold/germanium (Au/Ge)/nickel (N1) double layer and the FD positive electrode 20 are formed simultaneously, and then a gold/zinc (Au-Zn) double layer is formed. The negative electrode 21 of the PD is made of aluminum (A1), and the gate t is made of aluminum (A1).
After forming the pole 19, the plate 11 is polished from the back side to a thickness of about 100 (μm), and the manufacturing process is completed.

第2例 第11図は本発明の第2の実施例に係るか種型光半導体
装置の断面図である。本例の製造工程は本発明の特徴的
構成であるp撤領域111′の形成工程を除いては上記
の第1例に示したものと全く同一である。すなわち、第
1例においては熱拡散法又はイオン注入法等を使用して
n tw 12にp!不純物を導入してpm領域Ill
を形成することとなしたが、本例では、(1) n層1
2の全面にp型不純物を10 i 7 (Cm−3)程
度含有するp型ガリウムヒ素(p−GaAs)よりなり
厚さが1(μm)程度である層を形成した型領域形成予
定領域に開口を有するマスクを形成しp型ガリウムヒ素
(p−GaAs)層を選択的に成長させたのちマスクを
除去する方法を使用してp型領域111′を形成するこ
ととなす。
Second Example FIG. 11 is a sectional view of a seed-type optical semiconductor device according to a second example of the present invention. The manufacturing process of this example is exactly the same as that shown in the first example above, except for the process of forming the p-removal region 111', which is a characteristic feature of the present invention. That is, in the first example, p! Introducing impurities to form pm region Ill
In this example, (1) n layer 1
A layer of p-type gallium arsenide (p-GaAs) containing p-type impurities of about 10 i 7 (Cm-3) and having a thickness of about 1 (μm) was formed on the entire surface of the mold region. A p-type region 111' is formed by forming a mask having an opening, selectively growing a p-type gallium arsenide (p-GaAs) layer, and then removing the mask.

第1例、第2例いずれの構造においても、p型層111
.111′と低濃度n型層(1%)13との界面に形成
されるpn接合のビルトインポテンシャルにより!7−
ト電極19の下部の1N13中に空乏層が広がり寄生容
量の発生が有効に防止される。上記2例においては、1
層13の濃度を調節して1014(cm”’ 3)程度
となすことにより空乏J@を高抵抗層15とp型N1t
l、  111’との間に挾まれる1層13の全域に発
生させることができる。但し、この場合の空乏層の広が
りが不完全tあったとしても、電気的に見ればキャパシ
タの直列接続となるのt1寄住容量はやはり大幅に低減
されることとなる0第3例 本例は上記2例における空乏層の広がりを更に確実で制
御性の良好なものにするために本発明の璧旨1あるp型
層上に電極を設けた構造1ある0第12図参照 半絶縁性ガリウムヒ素(GaAs)よりなり段さが30
0(μm)程度である基板31上に、気相成長法あるい
はM ’OOV D法等を使用して、n型不純物として
スズ(Sn)を5 X 1017(cm−3)i度含有
するn型ガリウムヒ素(n−GaAs)よりなり厚さが
3(μm)程度であるn層32を形成する。続いて、熱
拡散法、イオン注入法等を使用することにより上記n層
32の所望の領域にp型不純物として例えば亜鉛(Zn
)、ベリリウム(Be)等を2(μm)程度の深さに導
入し本発明の特徴的構成であるp型饋域131を形成す
る。このとき、p型領域131の不純物濃度は1017
1017(a程度であることが望ましい。なお、このp
型領域131上の一部領域に1コ俊の工程において電極
が形成されることとなるので、該p型領域131は上記
の2例と異なり、FETの動作層に対応する領域より水
平に展延されて設けられている。
In both the structures of the first example and the second example, the p-type layer 111
.. Due to the built-in potential of the pn junction formed at the interface between 111' and the low concentration n-type layer (1%) 13! 7-
A depletion layer spreads in the 1N13 below the top electrode 19, and the generation of parasitic capacitance is effectively prevented. In the above two examples, 1
By adjusting the concentration of the layer 13 to about 1014 (cm'''3), the depletion J@ is reduced to the high resistance layer 15 and the p-type N1t.
It can be generated over the entire area of one layer 13 sandwiched between 1 and 111'. However, even if the depletion layer spreads incompletely in this case, from an electrical point of view, the parasitic capacitance of capacitors connected in series will still be significantly reduced. In order to further ensure and control the spread of the depletion layer in the above two examples, the present invention has a structure in which an electrode is provided on the p-type layer. Made of gallium arsenide (GaAs) and has 30 steps.
On the substrate 31, which has a diameter of approximately 0 (μm), an n layer containing 5 x 1017 (cm-3)i degrees of tin (Sn) as an n-type impurity is grown using a vapor phase growth method or M'OOV D method. An n layer 32 made of type gallium arsenide (n-GaAs) and having a thickness of about 3 (μm) is formed. Next, a p-type impurity such as zinc (Zn
), beryllium (Be), etc. are introduced to a depth of about 2 (μm) to form a p-type hollow region 131, which is a characteristic structure of the present invention. At this time, the impurity concentration of the p-type region 131 is 1017
1017 (preferably about a. In addition, this p
Since an electrode will be formed in a part of the mold region 131 in a single process, the p-type region 131 will be expanded horizontally more than the region corresponding to the active layer of the FET, unlike the two examples above. It is extended.

嬉13図参照 再び、層成長を開始して、p型領域131の形成された
n層32上に(イ)n型不純物を10141014(a
程度含有する低濃in型ガリワムヒ素(n−GaAa)
よりなり厚さが3〜4(μm)程度である1層33、(
ロ)酸素(02)をドープすることにより高抵抗となし
たアルミニウムガリウムヒ素(aIGaAs)またはア
ンドープのアルミニウムガリウムヒ素(Al’GaAs
)よりなり厚さ7゛(り)程度7ある高抵抗層°゛・(
ハ)n型不純物を10”(cm−3)程度含有するn型
ガリウムヒ素(n−GaAs)よりなり厚さが0.2(
μm)程度フあ−るFETの動作層となる36′を順次
形成する。
Refer to Figure 13. Layer growth is started again, and (a) n-type impurities are added 10141014 (a) on the n-layer 32 where the p-type region 131 is formed.
Low concentration in-type Galiwam arsenic (n-GaAa) containing
One layer 33, which has a thickness of about 3 to 4 (μm) (
b) Aluminum gallium arsenide (aIGaAs) made high in resistance by doping with oxygen (02) or undoped aluminum gallium arsenide (Al'GaAs)
) and has a thickness of about 7゛(ri).
C) Made of n-type gallium arsenide (n-GaAs) containing about 10" (cm-3) of n-type impurities and having a thickness of 0.2" (cm-3).
A layer 36', which will become the active layer of the FET, having a thickness of about .mu.m) is sequentially formed.

第14図参照 続いて、通常の方法を使用することにより層36′を選
択的に除去してFITの動作層36を形成する。
Referring to FIG. 14, layer 36' is then selectively removed using conventional methods to form active layer 36 of the FIT.

第15図参照 この段階では、本来p層であるべきPD部の最上層が高
抵抗層35となりでいるため、p型不純物として、例え
ば、亜鉛(Zn)を選択的に拡散しFDの1層34を形
成する。1層34の深さは、高抵抗層35の厚さに等し
い値、すなわち、1(μm)程度となすことが望ましい
が、゛多少これを越えることはやむをえない。
See Figure 15. At this stage, the top layer of the PD section, which should originally be a p-layer, has become the high-resistance layer 35. Therefore, as a p-type impurity, for example, zinc (Zn) is selectively diffused into one layer of the FD. form 34. The depth of the first layer 34 is desirably equal to the thickness of the high resistance layer 35, that is, about 1 (μm), but it is unavoidable that it exceeds this to some extent.

第16図、第17図、第18図参照 次に、3段階のエツチング処理を実行してPD部とFE
T部とを分離し、切に、FET下部のp型領域の一部領
域とFDのn層の−s 11域とを露出させ夫々電極形
成領域とする。このエツチング処理は、全てウェットエ
ツチング法、ドライエツチング法のいずれの方法を使用
しても実行可能であるが、ブロムメタノール(OHs 
OH” B r 2 )あるいは硫酸(H2BO3)と
過酸化水素水(H20□)と水(H2O)との混合溶液
をエッチャントとしてなすウェットエツチング法等を使
用することが埃実的である。
Refer to Figures 16, 17, and 18. Next, a three-stage etching process is performed to remove the PD and FE parts.
The T part is separated from the T part, and a part of the p-type region under the FET and the -s 11 region of the n-layer of the FD are exposed and used as electrode formation regions, respectively. This etching process can be performed using either a wet etching method or a dry etching method, but bromomethanol (OHs
It is practical to use a wet etching method using a mixed solution of sulfuric acid (H2BO3), hydrogen peroxide (H20□), and water (H2O) as an etchant.

まず、PD部とFET部の境界をなす領域に牛絶縁性基
板31ま′1%達する溝状開口招を形成してPD部とF
ET部とを電気的に完全に分離する(第16図)0その
理由は、動作時において、p型領域131に接して存在
するPN接合に対して逆/々イアスとなる電圧をp型領
域131に設けられた電極に印加して空乏層の広がりを
確実なものとなすため、FDとFITとの電位を独立に
する必資があるからである。続いて、本発明の特徴的構
成であるp型領竣131のFIT動作層36に対応しな
い一部領域を館山させ電極形成領域材とする(第17図
)。
First, a groove-like opening extending 1% of the length of the insulating substrate 31 is formed in the area forming the boundary between the PD section and the FET section, and
The reason for this is that during operation, the p-type region 131 is completely electrically isolated from the p-type region 131 by applying a voltage that is opposite/semi-bias to the PN junction that is in contact with the p-type region 131. This is because it is necessary to make the potentials of the FD and FIT independent in order to ensure that the depletion layer spreads by applying it to the electrode provided at the electrode 131. Subsequently, a part of the p-type region 131 that does not correspond to the FIT operation layer 36, which is a characteristic structure of the present invention, is etched to form an electrode forming region material (FIG. 17).

更に、FDのn層を露出させFDの正電極形成領域45
とする(第18図)0 第19図参照 最後にそれぞれ所定の領域に公知の方法を使用して電極
を形成する。まず、金・ゲルマニウム(Au−Go) 
/ ニッケル(Ni)二重層よりなるFETのソース、
Pレイン電極37、アとFDの正電極40とを同時に形
成し、続いて、金・亜鉛(au−Zn)よりなるFDの
負電極41とp型領域131に所望の電位を与えるため
の電極42とを同時に形成し、更に、アルミニウム(A
1)よりなるダート電極39を形成し、しかるのち、基
板31を裏面から研磨して100 (μm)程度の厚さ
となして製造工程を完了する0 第加図は、本例により実現された集積型元手導体装置の
等価回路1ある。図において、一点鎖線をもって囲まれ
た領域51が集積型元手導体装置であり、151はFD
であり、152はFETマあり、153は本発明の特徴
的構成であるp型領域受ある。
Furthermore, the n-layer of the FD is exposed and the positive electrode formation region 45 of the FD is formed.
(FIG. 18) 0 Refer to FIG. 19 Finally, electrodes are formed in each predetermined region using a known method. First, gold/germanium (Au-Go)
/ FET source made of nickel (Ni) double layer,
A P-rain electrode 37 and a positive electrode 40 of the FD are formed simultaneously, and then an electrode for applying a desired potential to the negative electrode 41 of the FD made of gold-zinc (au-Zn) and the p-type region 131 is formed. 42 at the same time, and furthermore, aluminum (A
1) A dirt electrode 39 is formed, and then the substrate 31 is polished from the back side to a thickness of about 100 (μm) to complete the manufacturing process. There is an equivalent circuit 1 of the mold base conductor device. In the figure, an area 51 surrounded by a dashed line is an integrated type base conductor device, and 151 is an FD.
152 is a FET resistor, and 153 is a p-type region receiver, which is a characteristic configuration of the present invention.

152のゲートには正′市圧が印加されることとなるの
で、p型領域153の電位をこれに対して負の電位、た
とえば図の如く接地電位となしておけば、空乏層の広が
りを更に確実なものとなすことができ、寄生容量の発生
を有効に防止することができ  −る0 なお、第1例乃至第3例において、3段階のエツチング
工程及び3種類の材料をもってなす磁極形成工程の順序
は上記に示されるものに限定されないことはいうまでも
ない。更に、PET等の制御素子部は高抵抗層によって
受光素子部と完全に分離されているため、その下部の層
被造には何らの影響を受けない。したがって、受光素子
としては、本実施例に示したPIN型PDの他に、シロ
ットキゲート型PD、7ノ々シンシフオドダイオード(
APD)等を使用することもできるため、極めて広い範
囲をこ適用しうろことは明らかである。
Since a positive market voltage will be applied to the gate of the p-type region 152, if the potential of the p-type region 153 is set to a negative potential, for example, the ground potential as shown in the figure, the expansion of the depletion layer will be prevented. In addition, in the first to third examples, the magnetic pole formation is performed using a three-step etching process and three types of materials. It goes without saying that the order of the steps is not limited to that shown above. Furthermore, since the control element section such as PET is completely separated from the light receiving element section by the high resistance layer, it is not affected by the layer structure below it. Therefore, as a light-receiving element, in addition to the PIN type PD shown in this example, a Shirotki gate type PD, and a 7-no-single-shifted PD (
APD) etc. can also be used, so it is clear that this can be applied in an extremely wide range.

上記の構造となせば、集積型元手導体装置において、寄
生容量の発生が有効に防止されるので、応答速度は従来
技術に比してはるかに改善され、また、プレーナ構造で
あるため微細構造となすための製造プロセスが容易で集
積度の向上にも有効に寄与する等、多大の利益を実現す
ることができる。上記のとおり、従来技術において0.
1(pF)程度1あった寄生容量の値が本発明に係る集
積型光半導体装置においては効果0.02(pF’)と
、はぼ、1/4  程度に減少されることガ確認されて
いる。
With the above structure, the generation of parasitic capacitance is effectively prevented in the integrated type main conductor device, so the response speed is much improved compared to the conventional technology. It is possible to realize great benefits, such as the ease of manufacturing process and effective contribution to improving the degree of integration. As mentioned above, in the prior art, 0.
It has been confirmed that the value of the parasitic capacitance, which was about 1 (pF), is reduced to about 1/4, with an effect of 0.02 (pF'), in the integrated optical semiconductor device according to the present invention. There is.

(7)発明の詳細 な説明せるとおり、本発明によれば、単一の基板上にF
DとIl’l!tT等電圧・電流制御素子とが並置され
ており、おおむねプレーナ型であってプロセスが容易で
ある集積型元手導体において、ゲート・基板間の寄生容
量の発生を防止して応答特性の向上した集積型光半導体
装置を提供することが1きる。
(7) As described in the detailed description of the invention, according to the present invention, F
D and Il'l! In an integrated base conductor in which tT voltage and current control elements are arranged in parallel and is generally planar and easy to process, the response characteristics are improved by preventing the generation of parasitic capacitance between the gate and the substrate. It is possible to provide an integrated optical semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、共に従来技術における集積型光半
導体装置の基本構造の一例を示す断面図であり、第3図
乃至第10図は本発明の第1の実施例に係る集積型半導
体装置の主9′#i造工稈完了後の基板断面図であり、
第11図は本発明の第2の実施例に係る集積型元手導体
装置の完成した状態の断面図であり、第12図乃至第1
9図は本発明の第3の実施例にかかる集積型元手導体装
置の土量製造工程完了後の基板断面図でi)る。又、第
20図は、このM3の実施例に係る集積型光半導体装置
の等価回路を示す回路図であるO 111′、11.31 ・・・基板(1,11はn ”
 −G a A s s 1’、31は鴇縁性GaAs
)、ill、  111’、131・・−p型領域、2
.12.32 ・−n N (n−GaAs )、3.
13.33−”を層(n−−GaAs)、4.14.3
4 ・p層(p邪不純物拡散層領埴)、5.15.35
 ・・・高抵抗層(SニーGaAs又は酸素ドープGa
Aa)、16.36.−= F RT 動作層となる層
(n−GaAs) 、6.16.36−F If: T
動作層(n−GaAs )、7.17.37・・・ソー
ス電極(Au−Ge/Ni)、8.18.3B−・・ド
レイン電極(Au −Ge/N i )、9.19.3
9・・・ゲート電&(Al)、10.20.40・・・
PDの正電極(Au−Ge/Ni )、]、0,21.
41 ・F Dの負電極(Au−Zn) 、42・・・
p型頭域の負電極(Au・Zn、)、22.45 ・F
 Dの正電極形成領域、43 ・F D部とFET部を
分離するための溝状開口、44・・・p型頭域の電極形
成領域、51・・・集積型光半導体装置、151・・・
FD、152・・・F、BT、 153・・・p型頭域
、61.62・・・抵抗、A、A・・・FET部、B、
B・・・FD部。
1 and 2 are cross-sectional views showing an example of the basic structure of an integrated optical semiconductor device in the prior art, and FIGS. 3 to 10 are cross-sectional views of an integrated optical semiconductor device according to a first embodiment of the present invention. It is a sectional view of the substrate after completion of the main 9′#i construction of the semiconductor device,
FIG. 11 is a sectional view of the completed integrated type base conductor device according to the second embodiment of the present invention, and FIG.
FIG. 9 is a cross-sectional view of the substrate after the volume manufacturing process of the integrated type base conductor device according to the third embodiment of the present invention is completed. Further, FIG. 20 is a circuit diagram showing an equivalent circuit of the integrated optical semiconductor device according to the embodiment of M3.
-G a As s 1', 31 is tangled GaAs
), ill, 111', 131...-p type region, 2
.. 12.32 ・-n N (n-GaAs), 3.
13.33-” layer (n--GaAs), 4.14.3
4 ・P layer (p evil impurity diffusion layer territory), 5.15.35
...High resistance layer (S-nee GaAs or oxygen-doped Ga
Aa), 16.36. -=F RT Layer serving as active layer (n-GaAs), 6.16.36-F If: T
Operating layer (n-GaAs), 7.17.37...Source electrode (Au-Ge/Ni), 8.18.3B-...Drain electrode (Au-Ge/Ni), 9.19.3
9...Gate electric & (Al), 10.20.40...
Positive electrode of PD (Au-Ge/Ni),], 0,21.
41 ・F D negative electrode (Au-Zn), 42...
P-type head area negative electrode (Au/Zn,), 22.45 ・F
D positive electrode formation region, 43 ・F groove-shaped opening for separating the D section and the FET section, 44 . . . electrode formation region of p-type head region, 51 . . . integrated optical semiconductor device, 151 .・
FD, 152...F, BT, 153...p type head area, 61.62...resistance, A, A...FET section, B,
B...FD section.

Claims (1)

【特許請求の範囲】[Claims] 光学導体素子を構成する半導体積層体の一部に、高抵抗
半導体層を介して前記光学導体素子に電気的に接続され
る半導体素子が配設され、前記半導体素子部に対応する
前記半導体積層体を構成する半導体層の一つに前記半導
体層とは異る導電型を有する領塚が配設されてなる半導
体集積回路装置。
A semiconductor element electrically connected to the optical conductor element via a high-resistance semiconductor layer is disposed in a part of the semiconductor laminate constituting the optical conductor element, and the semiconductor laminate corresponds to the semiconductor element part. A semiconductor integrated circuit device, in which one of the semiconductor layers constituting the semiconductor layer is provided with a region having a conductivity type different from that of the semiconductor layer.
JP5421483A 1983-03-30 1983-03-30 Semiconductor integrated circuit device Pending JPS59181055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5421483A JPS59181055A (en) 1983-03-30 1983-03-30 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5421483A JPS59181055A (en) 1983-03-30 1983-03-30 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS59181055A true JPS59181055A (en) 1984-10-15

Family

ID=12964293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5421483A Pending JPS59181055A (en) 1983-03-30 1983-03-30 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59181055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738933A (en) * 1985-08-27 1988-04-19 Fei Microwave, Inc. Monolithic PIN diode and method for its manufacture
US5166083A (en) * 1991-03-28 1992-11-24 Texas Instruments Incorporated Method of integrating heterojunction bipolar transistors with heterojunction FETs and PIN diodes
US5213987A (en) * 1991-03-28 1993-05-25 Texas Instruments Incorporated Method of integrating heterojunction bipolar transistors with PIN diodes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738933A (en) * 1985-08-27 1988-04-19 Fei Microwave, Inc. Monolithic PIN diode and method for its manufacture
US5166083A (en) * 1991-03-28 1992-11-24 Texas Instruments Incorporated Method of integrating heterojunction bipolar transistors with heterojunction FETs and PIN diodes
US5213987A (en) * 1991-03-28 1993-05-25 Texas Instruments Incorporated Method of integrating heterojunction bipolar transistors with PIN diodes
US5422501A (en) * 1991-03-28 1995-06-06 Texas Instruments Incorporated Method of integrating heterojunction bipolar transistors with heterojunction FETs and PIN diodes

Similar Documents

Publication Publication Date Title
KR0175179B1 (en) Method of fabricating monolithic multifunction intergrated circuit devices
JP2007287782A (en) Mesa bipolar transistor
US4924283A (en) Heterojunction bipolar transistor and process for fabricating same
JPS59181055A (en) Semiconductor integrated circuit device
JP2553510B2 (en) Semiconductor device and manufacturing method thereof
JPS6095966A (en) Hetero-junction bipolar transistor and manufacture thereof
JP2619407B2 (en) Method for manufacturing semiconductor device
JP4162439B2 (en) Semiconductor integrated circuit
JP2868083B2 (en) Method for manufacturing semiconductor device
JPS61147577A (en) Complementary semiconductor device
JPH06188404A (en) Load resistor integration type semiconductor light function element
JPH06267992A (en) Semiconductor device and its manufacture
JP2005123474A (en) Semiconductor device and method for manufacturing the same
US7038244B2 (en) Semiconductor device and method of manufacturing the same
JPS61280665A (en) Hetero-junction bipolar transistor and manufacture thereof
JP2583793B2 (en) Semiconductor substrate
JPH02256287A (en) Semiconductor light emitting device and usage thereof
JP2570770B2 (en) Bipolar transistor
CN117476754A (en) Heterojunction bipolar transistor and forming method thereof
JPS63151077A (en) Opto-electric integrated circuit device
JP2670525B2 (en) Light receiving element and manufacturing method thereof
JPS62122285A (en) Semiconductor light emitting element
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPS60116170A (en) Semiconductor device
JPH0496375A (en) Semiconductor device