JPS5917288A - Semiconductor device for incident position detection - Google Patents

Semiconductor device for incident position detection

Info

Publication number
JPS5917288A
JPS5917288A JP57126242A JP12624282A JPS5917288A JP S5917288 A JPS5917288 A JP S5917288A JP 57126242 A JP57126242 A JP 57126242A JP 12624282 A JP12624282 A JP 12624282A JP S5917288 A JPS5917288 A JP S5917288A
Authority
JP
Japan
Prior art keywords
conductive layer
semiconductor substrate
incident
semiconductor device
position signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57126242A
Other languages
Japanese (ja)
Other versions
JPS6262074B2 (en
Inventor
Seiji Yamaguchi
誠二 山口
Akinaga Yamamoto
晃永 山本
Toshihiko Tomita
俊彦 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu TV Co Ltd
Original Assignee
Hamamatsu TV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu TV Co Ltd filed Critical Hamamatsu TV Co Ltd
Priority to JP57126242A priority Critical patent/JPS5917288A/en
Publication of JPS5917288A publication Critical patent/JPS5917288A/en
Publication of JPS6262074B2 publication Critical patent/JPS6262074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable to perform positional operation at a small optical input signal by a method wherein the titled device is constructed of a one conductive type semiconductor substrate, a pair of positional signal electrodes, the conductive layer of an incident face, a base conductive layer and an incident light volume signal electrode. CONSTITUTION:A first and a second positional signal electrodes 12, 13 are formed by forming P type conductive layers of high concentration doping boron from one face of the semiconductor substrate 11, and by evaporating aluminum on the surface thereof. A first and a second lead wires 14, 15 are connected to the respective positional signal electrodes 12, 13. A P type conductive layer 16 is formed on the incident face side of the semiconductor substrate 11. The P type conductive layer 16 thereof is constructed of a main trank part 16a to connect linearly the centers of the electrodes 12, 13, and branch parts 16b, 16c,... 16n of the plural number to cross perpendicularly the main trank part 16a. Phosphorus is doped to another face of the semiconductor substrate 11 to form the base conductive layer 17 of N type conductive layer of high concentration, gold is evaporated to the surface thereof to form the incident light volume signal electrode 18, and a third lead wire is connected thereto.

Description

【発明の詳細な説明】 本発明は光や粒子線の入射位置に関する情報を含む電流
等を出力することができる入射位置検出用半導体装置、
さらに詳しく言うと光や粒子線の入射位置の一次元情報
を取り出すのに適した入射位置検出用半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device for detecting an incident position that can output a current, etc. that includes information regarding the incident position of light or particle beam;
More specifically, the present invention relates to an incident position detection semiconductor device suitable for extracting one-dimensional information on the incident position of light or particle beams.

光や粒子線の入射位置に関する情報を含む電流等を出力
することができる入射位置検出用半導体装置が知られて
いる。
2. Description of the Related Art A semiconductor device for detecting an incident position that can output a current or the like that includes information regarding the incident position of light or a particle beam is known.

まずこの入射位置検出用半導体装置を簡単に説明する。First, this semiconductor device for detecting an incident position will be briefly explained.

第1図は光等の入射位置の一次元情報を出力することが
できる半導体装置の平面図、第2図は概略断面図である
FIG. 1 is a plan view of a semiconductor device capable of outputting one-dimensional information on the incident position of light, etc., and FIG. 2 is a schematic cross-sectional view.

この半導体装置の半導体基板5はいずれの導電型であっ
ても良い。
The semiconductor substrate 5 of this semiconductor device may be of any conductivity type.

この半導体基板5の一方の面(第2図において上側の面
)にこの半導体基板5と異なる導電型の導電層4が形成
されている。この層4は面積抵抗が均一に保たれるよう
に厚さを均一にしである。この入射面導電層4の表面が
この装置の受光面1を形成する。
A conductive layer 4 having a conductivity type different from that of the semiconductor substrate 5 is formed on one surface of the semiconductor substrate 5 (the upper surface in FIG. 2). This layer 4 has a uniform thickness so that the sheet resistance remains uniform. The surface of this entrance surface conductive layer 4 forms the light receiving surface 1 of this device.

入射面導電層4の両端4aおよび4bは特に高い濃度で
不純物をドープし、それぞれの上面に金属層2a、3a
が形成されている。この金属層2a、3aおよび前記高
い濃度で不純物がドープされている部分がそれぞれ第1
位置信号電極2および第2位置信号電極3を形成してい
る。
Both ends 4a and 4b of the entrance surface conductive layer 4 are doped with impurities at a particularly high concentration, and metal layers 2a and 3a are formed on their respective upper surfaces.
is formed. These metal layers 2a, 3a and the portions doped with impurities at a high concentration are the first
A position signal electrode 2 and a second position signal electrode 3 are formed.

前記半導体基板5の底面にはこの半導体基板5と同じ導
電型で高濃度に不純物がドープされ、底面導電層6が形
成されている。この底面導電層6の表面に金属層が設け
られ、この金属層により入射光量信号電極7が形成され
ている。
A bottom conductive layer 6 is formed on the bottom surface of the semiconductor substrate 5 by doping impurities of the same conductivity type as the semiconductor substrate 5 at a high concentration. A metal layer is provided on the surface of this bottom conductive layer 6, and an incident light amount signal electrode 7 is formed by this metal layer.

前記第1および第2の位置信号電極2.3および入射光
量信号電極7には引出し用のリード線8a、8bおよび
8cがそれぞれ接続されている。
Lead wires 8a, 8b and 8c are connected to the first and second position signal electrodes 2.3 and the incident light amount signal electrode 7, respectively.

前記構成に係わる半導体装置の動作は次のとおりである
The operation of the semiconductor device with the above configuration is as follows.

まず、前記入射光量信号電極7と第1および第2の信号
電極2.3間に等しい逆バイアス電圧をあたえるように
電源装置に接続する。この状態で前記装置の受光面lの
任意の位置に光が入射すると前記入射点に近い基板5と
導電層4により形成されるPN接合部に起電力が生じる
First, a power supply is connected to apply an equal reverse bias voltage between the incident light amount signal electrode 7 and the first and second signal electrodes 2.3. In this state, when light is incident on any position on the light receiving surface l of the device, an electromotive force is generated at the PN junction formed by the substrate 5 and the conductive layer 4 near the point of incidence.

この起電力によって光量電極7から第1位置信号電極2
へおよび光量信号電極7から第2位置信号電極3へ光電
流が流れる。バイアス電圧の極性が逆であれば前述の方
向とは逆の方向に電流が流れ゛る。いずれにしろ、第1
位置信号電極2を流れる電流と第2位置信号電極3を流
れる電流の大きさの比は第1位置信号電極2と光の入射
点の間の層4の電気抵抗と第2位置信号電極3と光の入
射点の間の入射面導電層4の電気抵抗の大きさの比の逆
数に比例する。この事から第1位置信号電極2をながれ
る電流の大きさを11.第2位置信号電極3を流れる電
流の大きさをI2とし、第1位置信号電極2を座標1.
第2位置信号電極3を座標−1とする一次元座標におい
て、前記光の入射点は、(II   12)/ (II
 +12)なるアナログ演算を実行することによって知
ることができる。
This electromotive force causes the light quantity electrode 7 to move from the first position signal electrode 2 to the first position signal electrode 2.
A photocurrent flows from the light quantity signal electrode 7 to the second position signal electrode 3 . If the polarity of the bias voltage is reversed, the current will flow in the opposite direction to the aforementioned direction. In any case, the first
The ratio of the magnitude of the current flowing through the position signal electrode 2 and the current flowing through the second position signal electrode 3 is determined by the electrical resistance of the layer 4 between the first position signal electrode 2 and the light incident point and the second position signal electrode 3. It is proportional to the reciprocal of the ratio of the electrical resistances of the incident surface conductive layer 4 between the light incident points. From this, the magnitude of the current flowing through the first position signal electrode 2 can be determined as 11. The magnitude of the current flowing through the second position signal electrode 3 is I2, and the first position signal electrode 2 is at the coordinates 1.
In one-dimensional coordinates with the second position signal electrode 3 as the coordinate -1, the incident point of the light is (II 12)/(II
+12) can be found by performing an analog calculation.

前述した形式の入射位置検出用半導体装置を小形にして
、カメラの距離針などに応用しようとすると、位置信号
電極間の抵抗が低くなり、使用できないという問題があ
る。
If the semiconductor device for detecting the incident position of the type described above is miniaturized and applied to a distance needle of a camera, etc., there is a problem that the resistance between the position signal electrodes becomes low and the semiconductor device cannot be used.

前記応用ではある条件下に位置信号電極間の抵抗が20
0にΩ以上であることが強く要請されている。その理由
は次のとおりである。
In the above application, under certain conditions the resistance between the position signal electrodes is 20
It is strongly required that the resistance be greater than 0Ω. The reason is as follows.

前記半導体装置の熱雑音電流は、2つの位置信号電極間
の電気抵抗の平方根に反比例する。すなわち前記電極間
の電気抵抗が小さいと熱雑音電流が大きくなる。したが
って前記電極間の抵抗が小であると微弱な光の入射に対
する光電流が熱雑音電流に埋もれるために、前述した光
の入射点の位置の検出が困難になる。
Thermal noise current of the semiconductor device is inversely proportional to the square root of the electrical resistance between the two position signal electrodes. That is, when the electrical resistance between the electrodes is small, the thermal noise current becomes large. Therefore, if the resistance between the electrodes is small, the photocurrent for weak incident light will be buried in thermal noise current, making it difficult to detect the position of the light incident point.

前記半導体装置の2つの位置信号電極からの出力電流は
、通常それぞれ別個のオペアンプによって増幅される。
The output currents from the two position signal electrodes of the semiconductor device are typically amplified by separate operational amplifiers.

その2つのオペアンプの入力オフセット電圧は厳密には
一致しない。2つの位置電極間の間の電気抵抗が小さい
と、この2つの入力オフセット電圧の差によって電流が
流れる。入射した光が微弱で光電流が小さいときは、2
つの位置電極が送出する電流の比はこの電流によって本
来の光の入射による電流の比から大きくはずれたものと
なる。
The input offset voltages of the two operational amplifiers do not exactly match. If the electrical resistance between the two position electrodes is small, a current will flow due to the difference between the two input offset voltages. When the incident light is weak and the photocurrent is small, 2
This current causes the ratio of the currents sent out by the two position electrodes to deviate greatly from the ratio of the currents due to the original incidence of light.

この問題をN形シリコン半導体基板を用い、2つの位置
信号電極の間隔を2 mm、受光面の幅を1mmとした
入射位置検出用半導体装置を例にしてさらに説明する。
This problem will be further explained using an example of a semiconductor device for detecting an incident position using an N-type silicon semiconductor substrate, with a distance between two position signal electrodes of 2 mm, and a width of a light receiving surface of 1 mm.

前記N形導電性のシリコン基板にボロンをイオン注入し
て得られたP形の導電性の層で前記電気抵抗゛を200
にΩ以上とするにはボロンの注入量を4X10/−以下
としなければならない。そのために導体層の厚さを1μ
に設定すると不純物濃度は4X10/et4にしなけれ
ばならない。このような低濃度の不純物によって均一な
高抵抗の層を実曳することは次のような理由で困難であ
る。
A P-type conductive layer obtained by implanting boron ions into the N-type conductive silicon substrate reduces the electrical resistance to 200.
In order to make the resistance more than Ω, the amount of boron implanted must be less than 4×10/−. Therefore, the thickness of the conductor layer is 1 μm.
, the impurity concentration must be 4×10/et4. It is difficult to actually form a uniform, high-resistance layer using impurities at such a low concentration for the following reasons.

まず基板の不純物濃度の不均一性によって、ボロンを均
一に注入しても均一な電気抵抗層が得られない。例えば
基板の不純物濃度がギ均4X10/cn!でその20%
のばらつきがあるときボロンの濃度は1%のばらつきが
生じる。これは電気抵抗に1%のばらつきを生じさせる
。この電気抵抗のばらつきは、受光面上の分布あるいは
、光の入射点にも依るが位置信号として満足できない結
果を生ずる虞れがある。
First, due to non-uniform impurity concentration in the substrate, a uniform electrical resistance layer cannot be obtained even if boron is uniformly implanted. For example, the impurity concentration of the substrate is 4×10/cn! 20% of that
When there is a variation in boron concentration, a variation of 1% occurs. This causes a 1% variation in electrical resistance. This variation in electrical resistance may cause an unsatisfactory result as a position signal, depending on the distribution on the light-receiving surface or the point of incidence of the light.

次にP型溝電性の層に不均一な反転層が形成されるため
に均一な電気抵抗層が得られない。すなわち通審P型導
電性の層の表面にP型溝電性の層を保護するためと、入
射光の反射を防止するために酸化シリコンの層が設けで
ある。このときP型溝電性の層の不純物濃度が低いと、
P型溝電性の層の表面に反転層が形成される。さらに酸
化層の表面に汚れが付着するとその汚れの模様に対応し
た反転層が形成される。この反転層はP型溝電性の層の
中で一層高抵抗層として作用するので、結局、酸化層の
表面の汚れの模様に対応した電気抵抗の不均一がP型溝
電性の層の中に生じることになる。
Next, since a non-uniform inversion layer is formed in the P-type groove conductive layer, a uniform electrical resistance layer cannot be obtained. That is, a silicon oxide layer is provided on the surface of the P-type conductive layer to protect the P-type groove conductive layer and to prevent reflection of incident light. At this time, if the impurity concentration of the P-type groove conductive layer is low,
An inversion layer is formed on the surface of the P-type groove conductive layer. Furthermore, when dirt adheres to the surface of the oxidized layer, an inversion layer corresponding to the pattern of the dirt is formed. This inversion layer acts as a layer with higher resistance among the layers with P-type groove conductivity, so that the non-uniformity of electrical resistance corresponding to the dirt pattern on the surface of the oxide layer results in the layer with P-type groove conductivity. It will occur inside.

本発明の目的は、半導体基板に形成した異なる導電性の
不純物濃度を低くすることなく、2つの位置信号電極間
の抵抗を大きくして、微弱な光が入射したときにも前記
光の入射点の位置を検出することができるようにした入
射位置検出用半導体装置を提供することにある。
An object of the present invention is to increase the resistance between two position signal electrodes without lowering the concentration of impurities of different conductivity formed on a semiconductor substrate, so that even when weak light is incident, the incident point of the light can be improved. An object of the present invention is to provide a semiconductor device for detecting an incident position, which is capable of detecting the position of an incident position.

前記目的を達成するために本発明による入射位置検出用
半導体装置は一導電型の半導体基板と、前記半導体基板
の矩形状の入射面の短辺側に沿って互いに平行に設けら
れた一対の位置信号電極と、前記半導体基板の矩形状の
入射面を前記一対の位置信号電極と平行方向または直角
方向に等間隔に分割するように、均一な不純物濃度を持
ち前記導電層とは異なる導電層で細い均一な幅に形成し
て前記一対の位置信号電極間を高い抵抗で接続する入射
面導電層と、前記半導体基板の矩形状の入射面と反対の
面に形成された高濃度の前記半導体基板と同−導電形の
底面導電層と、前記底面導電層に接続された入射光量信
号電極から構成されている。
In order to achieve the above object, a semiconductor device for detecting an incident position according to the present invention includes a semiconductor substrate of one conductivity type, and a pair of positions provided parallel to each other along the short side of a rectangular incident surface of the semiconductor substrate. a signal electrode and a conductive layer different from the conductive layer and having a uniform impurity concentration so as to divide the rectangular incident surface of the semiconductor substrate at equal intervals in a direction parallel to or perpendicular to the pair of position signal electrodes; an entrance surface conductive layer formed to have a narrow uniform width and connect the pair of position signal electrodes with high resistance; and a high concentration semiconductor substrate formed on a surface opposite to the rectangular entrance surface of the semiconductor substrate. It is composed of a bottom conductive layer of the same conductivity type as the bottom conductive layer, and an incident light amount signal electrode connected to the bottom conductive layer.

なお前記構成によれば入射面の相当部分は入射面導電層
で覆われなくなる。しかし、入射面導電層の間隔が小数
キャリヤの拡散長より短ければ、光の入射によって基板
に発生した小数キャリヤは、入射面導電層に到達するか
ら、入射面導電層ムこ覆われていない部分に入射した光
の検出についても全く支障がない。この構成により2つ
の位置信号電極の抵抗を大きくすることができ、本発明
の目的は完全に達成できる。
Note that according to the above configuration, a considerable portion of the entrance surface is not covered with the entrance surface conductive layer. However, if the interval between the entrance surface conductive layers is shorter than the diffusion length of the minority carriers, the minority carriers generated on the substrate due to the incidence of light will reach the entrance surface conductive layer, leaving the portions of the entrance surface conductive layer that are not covered. There is no problem at all in detecting light incident on the device. With this configuration, the resistance of the two position signal electrodes can be increased, and the object of the present invention can be completely achieved.

以下図面を参照して本発明による入射位置検出用半導体
装置をさらに詳しく説明する。
The semiconductor device for detecting an incident position according to the present invention will be described in more detail below with reference to the drawings.

第3図に本発明の実施例である入射位置検出用半導体装
置の概略平面図、第4図は略図的断面図である。半導体
基板11は不純物として燐を10/ Ctaドープした
厚さ約250μmのN形半導体である。第1および第2
の位置信号電極12および13は半導体基板11の一面
からボロンを4×10/ctaドープして高濃度のP形
溝電性の層を形成し、その表面にアルミニュームを0.
8μmの厚さに蒸着して形成する。各位置信号電極12
におよび13にワイヤボンディングにより、第1および
第2のリード線14.15が接続されている。
FIG. 3 is a schematic plan view of a semiconductor device for detecting an incident position according to an embodiment of the present invention, and FIG. 4 is a schematic cross-sectional view. The semiconductor substrate 11 is an N-type semiconductor doped with 10/Cta of phosphorus as an impurity and has a thickness of about 250 μm. 1st and 2nd
The position signal electrodes 12 and 13 are formed by doping boron at 4 x 10/cta from one side of the semiconductor substrate 11 to form a highly concentrated P-type groove conductive layer, and coating the surface with aluminum at a concentration of 4 x 10/cta.
It is formed by vapor deposition to a thickness of 8 μm. Each position signal electrode 12
First and second lead wires 14, 15 are connected to and 13 by wire bonding.

半導体基板11の入射面側にP形の導電性の導電層16
を形成する。このP形の導電層16は電極12および1
3の中点を直線状に結ぶ基幹部分16aと、前記基幹部
分16aに垂直に交叉する複数の核部分16b、16c
・・・16nとから構成されている。半導体基板11の
他の面(底面)には燐をドープして、高濃度のN形溝電
性層の底面導電層17を形成し、その表面に金を蒸着し
て入射光量信号電極18を形成し、第3リード線を接続
しである。
A P-type conductive layer 16 is provided on the incident surface side of the semiconductor substrate 11.
form. This P-type conductive layer 16 is connected to the electrodes 12 and 1.
A core portion 16a linearly connecting the midpoints of 3 and a plurality of core portions 16b, 16c perpendicularly intersecting the core portion 16a.
...16n. The other surface (bottom surface) of the semiconductor substrate 11 is doped with phosphorus to form a bottom conductive layer 17 of a highly concentrated N-type groove conductive layer, and gold is deposited on the surface to form an incident light amount signal electrode 18. Then, the third lead wire is connected.

半導体基板11の幅は1龍、2つの電極12と13との
間隔は2鶴である。P形溝電層の幅は基幹部分16aも
核部分16b、16cm16nも共に100μm、隣接
する核部分16b、16C・・・16nの間隔は100
μm、核部分16b、16c・−−16nの長さは90
(lumとしである。この核部分の間隔100μmは半
導体基板11内の小数キャリヤの拡散長300μmより
も小さい。
The width of the semiconductor substrate 11 is one square, and the distance between the two electrodes 12 and 13 is two squares. The width of the P-type groove conductor layer is 100 μm for both the core portion 16a and the core portions 16b, 16cm16n, and the interval between the adjacent core portions 16b, 16C, . . . , 16n is 100 μm.
μm, the length of the core portions 16b, 16c, --16n is 90
(This is given as lum.) The interval of 100 μm between the core portions is smaller than the diffusion length of minority carriers in the semiconductor substrate 11 of 300 μm.

前述の実施例装置の位置信号電極13と電極14の間の
電気抵抗を測定したところ250にΩの高抵抗が得られ
た。
When the electric resistance between the position signal electrode 13 and the electrode 14 of the above-mentioned embodiment device was measured, a high resistance of 250Ω was obtained.

この実施例装置の半導体基板110入射面全面に同一条
件で導電層を形成したときの電極間電圧は50にΩを越
えることができなかった。
When a conductive layer was formed on the entire incident surface of the semiconductor substrate 110 of this example device under the same conditions, the voltage between the electrodes could not exceed 50Ω.

以上詳しく説明したように、本発明による装置では位置
信号電極間の抵抗を大きくできるので、小さい光入力信
号での位置演算が可能になり、広い応用が期待できる。
As described above in detail, in the device according to the present invention, the resistance between the position signal electrodes can be increased, so position calculation can be performed using a small optical input signal, and a wide range of applications can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光等の入射位置の一次元情報を出力することが
できる半導体装置の平面図、第2図は概略断面図である
。 第3図は本発明による入射位置検出用半導体装置の実施
例装置の平面図、第4図は概略断面図である。 2・・・・第1位電信号電極 2a、3a・・・金属層 3・・・・ 第2位電信号電極 4・・・入射面導体層 4a、4b・・・ドーズ部分 5・・・半導体基板 6・・・・底面導体層 7・・・入射光量信号電極 11・・・・半導体基板 12・・・・第1位電信号電極 ・ 13・・・・第2位電信号電極 14・・・・ 第1のリード線 15・・・・第2のリード線 16・・・入射面導電層(P形溝電層)16a・・・基
幹導電層 16b、16b〜16n・・・枝溝電層17・・・底面
導電層(P形溝電層) 18・・・光量信号電極 19・ ・ ・第3のリード線 手続補正書 特許庁長官    若  杉   和   夫   殿
1、事件の表示 ■計ロ57年特 許 願第126242号2、発明の名
称 入射位置検出用半導体装置 3、補正する者 事件との関係   特許出願人 4、代 理 人 補正の内容(特願昭57−−126242)(11明細
書第6頁第17行目のr4X10/cjJをr4X10
’ンd」に補正する6 (2)明細書第6頁第19行目のr 4 X 1 (1
/ctJJをr 4 X 10’/c+(Jに補正する
。 (3)明細書第7頁第4行目から同第5行目の[4×i
0/cnJをr4X10’ンd」に補正する。 (4)明細書第9頁第16行目から同第17行目の「1
0/ctJJを「101ンcJ」ニ?1f正tル。 (5)明細書第9頁第19行目から同第20行目の[4
X10/Jlをr4X10’ンd」に補正する。 以   上
FIG. 1 is a plan view of a semiconductor device capable of outputting one-dimensional information on the incident position of light, etc., and FIG. 2 is a schematic cross-sectional view. FIG. 3 is a plan view of an embodiment of the semiconductor device for detecting an incident position according to the present invention, and FIG. 4 is a schematic cross-sectional view. 2...First electrical signal electrodes 2a, 3a...Metal layer 3...Second electrical signal electrode 4...Incidence surface conductor layer 4a, 4b...Dose portion 5... Semiconductor substrate 6... Bottom conductor layer 7... Incident light amount signal electrode 11... Semiconductor substrate 12... First electrical signal electrode 13... Second electrical signal electrode 14. ...First lead wire 15...Second lead wire 16...Incidence surface conductive layer (P-type groove layer) 16a...Main conductive layer 16b, 16b to 16n...Branch groove Conductive layer 17...Bottom conductive layer (P-type groove conductive layer) 18...Light level signal electrode 19...Third lead wire procedural amendment form Commissioner of the Japan Patent Office Kazuo Wakasugi 1, Incident Display ■Total Patent Application No. 126242 of 1957 2, Name of the invention: Semiconductor device for detecting incident position 3, Relationship with the person making the amendment: Patent applicant 4, Contents of the amendment by the agent (Patent Application No. 126242, 1982) ( 11 Specification page 6 line 17 r4X10/cjJ is r4X10
6 (2) r 4 X 1 (1
/ctJJ is corrected to r 4 X 10'/c+(J. (3) [4×i
Correct 0/cnJ to r4X10'nd'. (4) “1” from page 9, line 16 to line 17 of the specification
0/ctJJ as “101ncJ”? 1st floor. (5) [4] from line 19 to line 20 on page 9 of the specification
Correct X10/Jl to r4X10'nd. that's all

Claims (1)

【特許請求の範囲】 +11 −導電型の半導体基板と、前記半導体基板の矩
形状の入射面の短辺側に沿って互いに平行に設けられた
一対の位置信号電極と、前記一対の位置信号電極間を高
い抵抗で接続するとともに前記半導体基板の矩形状の入
射面を前記一対の位置信号電極と平行方向または直角方
向に等間隔に分割するように、均一な不純物濃度を持ち
前記導電層とは異なる導電型で細い均一な幅に形成され
た入射面導電層と、前記半導体基板の矩形状の入射面と
反対の面に形成された高濃度の前記半導体基板と同一導
電型の底面導電層と、前記底面導電層に接続された入射
光量信号電極から構成した入射位置検出用半導体装置。 (2)前記入射面導電層は、前記一対の位置信号電極を
直接接続する基幹部分導電層と、この基幹部分導電層に
直角に接続される複数本の枝導電層とから構成した特許
請求の範囲第11項記載の入射位置検出用半導体装置。 (3)前記入射面導電層により分割された半導体基板の
幅はこの半導体基板中の小数キャリヤの平均自由行程と
同程度または以下である特許請求の範囲第1項記載の入
射位置検出用半導体装置。
[Claims] +11 - A conductive type semiconductor substrate, a pair of position signal electrodes provided parallel to each other along the short side of a rectangular incident surface of the semiconductor substrate, and the pair of position signal electrodes. The conductive layer has a uniform impurity concentration and has a uniform impurity concentration such that the rectangular incident surface of the semiconductor substrate is divided at equal intervals in a direction parallel to or perpendicular to the pair of position signal electrodes. an entrance surface conductive layer of different conductivity types and formed to have a narrow and uniform width; and a highly concentrated bottom conductive layer of the same conductivity type as the semiconductor substrate formed on a surface opposite to the rectangular entrance surface of the semiconductor substrate. . A semiconductor device for detecting an incident position, comprising an incident light amount signal electrode connected to the bottom conductive layer. (2) The incident surface conductive layer is composed of a main conductive layer directly connecting the pair of position signal electrodes, and a plurality of branch conductive layers connected at right angles to the main conductive layer. The semiconductor device for detecting the incident position according to the scope 11. (3) A semiconductor device for detecting an incident position according to claim 1, wherein the width of the semiconductor substrate divided by the incident surface conductive layer is equal to or less than the mean free path of fractional carriers in the semiconductor substrate. .
JP57126242A 1982-07-20 1982-07-20 Semiconductor device for incident position detection Granted JPS5917288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126242A JPS5917288A (en) 1982-07-20 1982-07-20 Semiconductor device for incident position detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126242A JPS5917288A (en) 1982-07-20 1982-07-20 Semiconductor device for incident position detection

Publications (2)

Publication Number Publication Date
JPS5917288A true JPS5917288A (en) 1984-01-28
JPS6262074B2 JPS6262074B2 (en) 1987-12-24

Family

ID=14930307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126242A Granted JPS5917288A (en) 1982-07-20 1982-07-20 Semiconductor device for incident position detection

Country Status (1)

Country Link
JP (1) JPS5917288A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127883A (en) * 1983-01-12 1984-07-23 Matsushita Electronics Corp Photosensitive semiconductor device
JPS6390181A (en) * 1986-10-03 1988-04-21 Rikagaku Kenkyusho Constitution of semiconductor position detector
JPS63289876A (en) * 1987-05-21 1988-11-28 Hamamatsu Photonics Kk High-speed response optical position detector
JPH01115169A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01115172A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01115170A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01143427U (en) * 1988-03-28 1989-10-02
JPH0480071U (en) * 1990-11-26 1992-07-13
WO2000041248A1 (en) * 1998-12-28 2000-07-13 Hamamatsu Photonics K.K. Semiconductor position detector and range finder using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127883A (en) * 1983-01-12 1984-07-23 Matsushita Electronics Corp Photosensitive semiconductor device
JPH0478032B2 (en) * 1983-01-12 1992-12-10 Matsushita Electronics Corp
JPS6390181A (en) * 1986-10-03 1988-04-21 Rikagaku Kenkyusho Constitution of semiconductor position detector
JPS63289876A (en) * 1987-05-21 1988-11-28 Hamamatsu Photonics Kk High-speed response optical position detector
JPH01115169A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01115172A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01115170A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01143427U (en) * 1988-03-28 1989-10-02
JPH0480071U (en) * 1990-11-26 1992-07-13
WO2000041248A1 (en) * 1998-12-28 2000-07-13 Hamamatsu Photonics K.K. Semiconductor position detector and range finder using the same
US6529281B2 (en) 1998-12-28 2003-03-04 Hamamatsu Photonics K.K. Position sensitive detectors and distance measuring apparatus using them

Also Published As

Publication number Publication date
JPS6262074B2 (en) 1987-12-24

Similar Documents

Publication Publication Date Title
US5831513A (en) Magnetic field sensing device
CN105679841B (en) Optical detection device
CN105633192A (en) Light detection device
US4376872A (en) High voltage V-groove solar cell
JP3411580B2 (en) Ionizing radiation detector
JPS5917288A (en) Semiconductor device for incident position detection
KR100230198B1 (en) Device with an integrated color selective photodiode and an amplifier connected to the photodiode
CA1153826A (en) Differentially modulated avalanche area magnetically sensitive transistor
US6465857B1 (en) Semiconductor particle detector and a method for its manufacture
JPS61108930A (en) Semiconductor incident position detector for detecting incident position of corpuscular beam or the like
US4060822A (en) Strip type radiation detector and method of making same
JPS59127883A (en) Photosensitive semiconductor device
JPS5956774A (en) Semiconductor device for detecting incidence position of particle ray, and the like
Martins et al. Thin film position sensitive detectors: from 1D to 3D applications
JP2003535476A (en) Photodetector for position detection
JPS6057716B2 (en) semiconductor optical position detector
JP3431326B2 (en) Hall element and electric quantity measuring device
US7381940B2 (en) Light receiving element for position detection having a plurality of resistance units and sensor and electronic apparatus having the same
JP3260495B2 (en) Semiconductor device for optical position detection
JPH02244774A (en) Semiconductor optical position detector
JP2524708Y2 (en) Position sensor
JP3229083B2 (en) Photoelectric conversion element
JPH02197162A (en) Resistor
JPS6318201A (en) Semiconductor position detector
JPH01289178A (en) Semiconductor position sensor