JPS6262074B2 - - Google Patents

Info

Publication number
JPS6262074B2
JPS6262074B2 JP12624282A JP12624282A JPS6262074B2 JP S6262074 B2 JPS6262074 B2 JP S6262074B2 JP 12624282 A JP12624282 A JP 12624282A JP 12624282 A JP12624282 A JP 12624282A JP S6262074 B2 JPS6262074 B2 JP S6262074B2
Authority
JP
Japan
Prior art keywords
conductive layer
incident
semiconductor substrate
position signal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12624282A
Other languages
Japanese (ja)
Other versions
JPS5917288A (en
Inventor
Seiji Yamaguchi
Akinaga Yamamoto
Toshihiko Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP57126242A priority Critical patent/JPS5917288A/en
Publication of JPS5917288A publication Critical patent/JPS5917288A/en
Publication of JPS6262074B2 publication Critical patent/JPS6262074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 本発明は光や粒子線の入射位置に関する情報を
含む電流等を出力することができる入射位置検出
用半導体装置、さらに詳しく言うと光や粒子線の
入射位置の一次元情報を取り出すのに適した入射
位置検出用半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device for detecting an incident position that can output a current or the like that includes information regarding the incident position of light or a particle beam, and more specifically, a semiconductor device for detecting a one-dimensional incident position of a light or particle beam. The present invention relates to a semiconductor device for detecting an incident position suitable for extracting information.

光や粒子の入射位置に関する情報を含む電流等
を出力することができる入射位置検出用半導体装
置が知られている。
2. Description of the Related Art A semiconductor device for detecting an incident position that can output a current or the like that includes information regarding the incident position of light or particles is known.

まずこの入射位置検出用半導体装置を簡単に説
明する。
First, this semiconductor device for detecting an incident position will be briefly explained.

第1図は光等の入射位置の一次元情報を出力す
ることができる半導体装置の平面図、第2図は概
略断面図である。
FIG. 1 is a plan view of a semiconductor device capable of outputting one-dimensional information on the incident position of light, etc., and FIG. 2 is a schematic cross-sectional view.

この半導体装置の半導体基板5はいずれの導電
型であつても良い。
The semiconductor substrate 5 of this semiconductor device may be of any conductivity type.

この半導体基板5の一方の面(第2図において
上側の面)にこの半導体基板5と異なる導電型の
導電層4が形成されている。この層4は面積抵抗
が均一に保たれるように厚さを均一にしてある。
この入射面導電層4の表面がこの装置の受光面1
を形成する。
A conductive layer 4 having a conductivity type different from that of the semiconductor substrate 5 is formed on one surface of the semiconductor substrate 5 (the upper surface in FIG. 2). This layer 4 has a uniform thickness so that the sheet resistance is kept uniform.
The surface of this incident surface conductive layer 4 is the light receiving surface 1 of this device.
form.

入射面導電層4の両端4aおよび4bは特に高
い濃度で不純物をドープし、それぞれの上面に金
属層2a,3aが形成されている。この金属層2
a,3aおよび前記高い濃度で不純物がドープさ
れている部分がそれぞれ第1位置信号電極2およ
び第2位置信号電極3を形成している。
Both ends 4a and 4b of the entrance surface conductive layer 4 are doped with impurities at a particularly high concentration, and metal layers 2a and 3a are formed on their respective upper surfaces. This metal layer 2
a, 3a and the portion doped with impurities at a high concentration form a first position signal electrode 2 and a second position signal electrode 3, respectively.

前記半導体基板5の底面にはこの半導体基板5
と同じ導電型で高濃度に不純物がドープされ、底
面導電層6が形成されている。この底面導電層6
の表面に金属層が設けられ、この金属層により入
射光量信号電極7が形成されている。
This semiconductor substrate 5 is provided on the bottom surface of the semiconductor substrate 5.
The bottom conductive layer 6 is doped with impurities of the same conductivity type and at a high concentration. This bottom conductive layer 6
A metal layer is provided on the surface of the electrode 7, and the incident light amount signal electrode 7 is formed by this metal layer.

前記第1および第2の位置信号電極2,3およ
び入射光量信号電極7には引出し用のリード線8
a,8bおよび8cがそれぞれ接続されている。
A lead wire 8 is connected to the first and second position signal electrodes 2 and 3 and the incident light amount signal electrode 7.
a, 8b and 8c are connected to each other.

前記構成に係わる半導体装置の動作は次のとお
りである。
The operation of the semiconductor device with the above configuration is as follows.

まず、前記入射光量信号電極7と第1および第
2の信号電極2,3間に等しい逆バイアス電圧を
あたえるように電源装置に接続する。この状態で
前記装置の受光面1の任意の位置に光が入射する
と前記入射点に近い基板5と導電層4により形成
されるPN接合部に起電力が生じる。
First, a power supply is connected to apply an equal reverse bias voltage between the incident light amount signal electrode 7 and the first and second signal electrodes 2 and 3. In this state, when light is incident on any position on the light-receiving surface 1 of the device, an electromotive force is generated at the PN junction formed by the substrate 5 and the conductive layer 4 near the point of incidence.

この起電力によつて光量電極7から第1位置信
号電極2へおよび光量信号電極7から第2位置信
号電極3へ光電流が流れる。バイアス電圧の極性
が逆であれば前述の方向とは逆の方向に電流が流
れる。いずれにしろ、第1位置信号電極2を流れ
る電源と第2位置信号電極3を流れる電流の大き
さの比は第1位置信号電極2と光の入射点の間の
層4の電気抵抗と第2位置信号電極3と光の入射
点の間の入射面導電層4の電気抵抗の大きさの比
の逆数に比例する。この事から第1位置信号電極
2をながれる電流の大きさをI1、第2位置信号電
極3を流れる電源の大きさをI2とし、第1位置信
号電極2を座標1、第2位置信号電極3を座標−
1とする一次元座標において、前記光の入射点
は、(I1−I2)/(I1+I2)なるアナログ演算を実行
することによつて知ることができる。
Due to this electromotive force, a photocurrent flows from the light amount electrode 7 to the first position signal electrode 2 and from the light amount signal electrode 7 to the second position signal electrode 3. If the polarity of the bias voltage is reversed, the current flows in the opposite direction to the above-mentioned direction. In any case, the ratio between the magnitude of the power flowing through the first position signal electrode 2 and the magnitude of the current flowing through the second position signal electrode 3 is determined by the electrical resistance of the layer 4 between the first position signal electrode 2 and the light incident point. It is proportional to the reciprocal of the ratio of the electrical resistances of the incident surface conductive layer 4 between the two-position signal electrode 3 and the light incident point. From this, the magnitude of the current flowing through the first position signal electrode 2 is I 1 , the magnitude of the power flowing through the second position signal electrode 3 is I 2 , and the first position signal electrode 2 is the coordinate 1, and the second position signal Coordinates of electrode 3 -
In the one-dimensional coordinate set to 1, the point of incidence of the light can be found by performing an analog calculation of (I 1 −I 2 )/(I 1 +I 2 ).

前述した形式の入射位置検出用半導体装置を小
形にして、カメラの距離計などに応用しようとす
ると、位置信号電極間の抵抗が低くなり、使用で
きないという問題がある。
If the semiconductor device for detecting the incident position of the type described above is miniaturized and applied to a distance meter of a camera, etc., there is a problem that the resistance between the position signal electrodes becomes low and the semiconductor device cannot be used.

前記応用ではある条件下に位置信号電極間の抵
抗が200kΩ以上であることが強く要請されてい
る。その理由は次のとおりである。
In the above application, it is strongly required that the resistance between the position signal electrodes be 200 kΩ or more under certain conditions. The reason is as follows.

前記半導体装置の熱雑音電流は、2つの位置信
号電極間の電気抵抗の平方根に反比例する。すな
わち前記電極間の電気抵抗が小さいと熱雑音電流
が大きくなる。したがつて前記電極間の抵抗が小
であると微弱な光の入射に対する光電流が熱雑音
電流に埋もれるために、前述した光の入射点の位
置の検出が困難になる。
Thermal noise current of the semiconductor device is inversely proportional to the square root of the electrical resistance between the two position signal electrodes. That is, when the electrical resistance between the electrodes is small, the thermal noise current becomes large. Therefore, if the resistance between the electrodes is small, the photocurrent for weak incident light will be buried in the thermal noise current, making it difficult to detect the position of the light incident point.

前記半導体装置の2つの位置信号電極からの出
力電流は、通常それぞれ別個のオペアンプによつ
て増幅される。その2つのオペアンプの入力オフ
セツト電圧は厳密には一致しない。2つの位置電
極間の間の電気抵抗が小さいと、この2つの入力
オフセツト電圧の差によつて電流が流れる。入射
した光が微弱で光電流が小さいときは、2つの位
置電極が送出する電流の比はこの電流によつて本
来の光の入射による電流の比から大きくはずれた
ものとなる。
The output currents from the two position signal electrodes of the semiconductor device are usually amplified by separate operational amplifiers. The input offset voltages of the two operational amplifiers do not exactly match. If the electrical resistance between the two position electrodes is small, a current will flow due to the difference between the two input offset voltages. When the incident light is weak and the photocurrent is small, the ratio of the currents sent out by the two position electrodes will deviate greatly from the original ratio of currents caused by the incident light.

この問題をN形シリコン半導体基板を用い、2
つの位置信号電極の間隔を2mm、受光面の幅を1
mmとした入射位置検出用半導体装置を例にしてさ
らに説明する。
We solved this problem by using an N-type silicon semiconductor substrate.
The distance between two position signal electrodes is 2 mm, and the width of the light receiving surface is 1 mm.
Further explanation will be given using an example of a semiconductor device for detecting an incident position in mm.

前記N形導電性のシリコン基板にボロンをイオ
ン注入して得られたP形の導電性の層で前記電気
抵抗を200kΩ以上とするにはボロンの注入量を
4×1011/cm2以下としなければならない。そのた
めに導体層の厚さを1μに設定する不純物濃度は
4×1015/cm3にしなければならない。このような
低濃度の不純物によつて均一な高抵抗の層を実現
することは次のような理由で困難である。
In order to make the electrical resistance of the P-type conductive layer obtained by implanting boron ions into the N-type conductive silicon substrate to 200 kΩ or more, the amount of boron implanted should be 4×10 11 /cm 2 or less. There must be. Therefore, the impurity concentration for setting the conductor layer thickness to 1 μm must be 4×10 15 /cm 3 . It is difficult to realize a uniform high resistance layer using such a low concentration of impurities for the following reasons.

まず基板の不純物濃度の不均一性によつて、ボ
ロンを均一に注入しても均一な電気抵抗層が得ら
れない。例えば基板の不純物濃度が平均4×
1014/cm3でその20%のばらつきがあるときボロン
の濃度は1%のばらつきが生じる。これは電気抵
抗に1%のばらつきを生じさせる。この電気抵抗
のばらつきは、受光面上の分布あるいは、光の入
射点にも依るが位置信号として満足できない結果
を生ずる虞れがある。
First, due to non-uniform impurity concentration in the substrate, a uniform electrical resistance layer cannot be obtained even if boron is uniformly implanted. For example, the average impurity concentration of the substrate is 4×
When there is a variation of 20% at 10 14 /cm 3 , a variation of 1% occurs in the boron concentration. This causes a 1% variation in electrical resistance. This variation in electrical resistance may cause an unsatisfactory result as a position signal, depending on the distribution on the light-receiving surface or the point of incidence of the light.

次にP型導電性の層に不均一な反転層が形成さ
れるために均一な電気抵抗層が得られない。すな
わち通常P型導電性の層の表面にP型導電性の層
を保護するためと、入射光の反射を防止するため
に酸化シリコンの層が設けてある。このときP型
導電性の層の不純物濃度が低いと、P型導電性の
層の表面に反転層が形成される。さらに酸化層の
表面に汚れが付着するとその汚れの模様に対応し
た反転層が形成される。この反転層はP型導電性
の層の中で一層高抵抗層として作用するので、結
局、酸化層の表面の汚れの模様に対応した電気抵
抗の不均一がP型導電性の層の中に生じることに
なる。
Next, a non-uniform inversion layer is formed in the P-type conductive layer, making it impossible to obtain a uniform electrically resistive layer. That is, a silicon oxide layer is usually provided on the surface of the P-type conductive layer in order to protect the P-type conductive layer and to prevent reflection of incident light. At this time, if the impurity concentration of the P-type conductive layer is low, an inversion layer is formed on the surface of the P-type conductive layer. Furthermore, when dirt adheres to the surface of the oxidized layer, an inversion layer corresponding to the pattern of the dirt is formed. This inversion layer acts as a higher resistance layer in the P-type conductive layer, so that the non-uniformity of electrical resistance corresponding to the dirt pattern on the surface of the oxidized layer will eventually occur in the P-type conductive layer. will occur.

本発明の目的は、半導体基板に形成した異なる
導電性の不純物濃度を低くすることなく、2つの
位置信号電極間の抵抗を大きくして、微弱な光が
入射したときにも前記光の入射点の位置を検出す
ることができるようにした入射位置検出用半導体
装置を提供することにある。
An object of the present invention is to increase the resistance between two position signal electrodes without lowering the concentration of impurities of different conductivity formed on a semiconductor substrate, so that even when weak light is incident, the incident point of the light can be improved. An object of the present invention is to provide a semiconductor device for detecting an incident position, which is capable of detecting the position of an incident position.

前記目的を達成するために本発明による入射位
置検出用半導体装置は一導電型の半導体基板と、
前記半導体基板の矩形状の入射面の短辺側に沿つ
て互いに平行に設けられた一対の位置信号電極
と、前記半導体基板の矩形状の入射面を前記一対
の位置信号電極と平行方向または直角方向に等間
隔に分割するように、均一な不純物濃度を持ち前
記導電層とは異なる導電層で細い均一な幅に形成
して前記一対の位置信号電極間を高い抵抗で接続
する入射面導電層と、前記半導体基板の矩形状の
入射面と反対の面に形成された高濃度の前記半導
体基板と同一導電形の底面導電層と、前記底面導
電層に接続された入射光量信号電極から構成され
ている。
In order to achieve the above object, a semiconductor device for detecting an incident position according to the present invention includes a semiconductor substrate of one conductivity type;
a pair of position signal electrodes provided parallel to each other along the short sides of a rectangular entrance surface of the semiconductor substrate; an entrance surface conductive layer formed with a conductive layer different from the conductive layer having a uniform impurity concentration and having a narrow uniform width so as to be divided at equal intervals in the direction and connecting the pair of position signal electrodes with high resistance; and a highly concentrated bottom conductive layer of the same conductivity type as the semiconductor substrate formed on a surface opposite to the rectangular incident surface of the semiconductor substrate, and an incident light amount signal electrode connected to the bottom conductive layer. ing.

なお前記構成によれば入射面の相当部分は入射
面導電層で覆われなくなる。しかし、入射面導電
層の間隔が小数キヤリアの拡散長より短ければ、
光の入射によつて基板に発生した小数キヤリア
は、入射面導電層に到達するから、入射面導電層
に覆われていない部分に入射した光の検出につい
ても全く支障がない。この構成により2つの位置
信号電極の抵抗を大きくすることができ、本発明
の目的は完全に達成できる。
Note that according to the above configuration, a considerable portion of the entrance surface is not covered with the entrance surface conductive layer. However, if the distance between the conductive layers on the incident surface is shorter than the diffusion length of the fractional carrier,
Fractional carriers generated on the substrate by the incidence of light reach the entrance surface conductive layer, so there is no problem at all in detecting light incident on the portion not covered by the entrance surface conductive layer. With this configuration, the resistance of the two position signal electrodes can be increased, and the object of the present invention can be completely achieved.

以下図面を参照して本発明による入射位置検出
用半導体装置をさらに詳しく説明する。
The semiconductor device for detecting an incident position according to the present invention will be described in more detail below with reference to the drawings.

第3図に本発明の実施例である入射位置検出用
半導体装置の概略平面図、第4図は略図的断面図
である。半導体基板11は不純物として燐を
1013/cm3ドープした厚さ約250μmのN形半導体
である。第1および第2の位置信号電極12およ
び13は半導体基板11の一面からボロンを4×
1011/cm2ドープして高濃度のP形導電性の層を形
成し、その表面にアルミニユームを0.8μmの厚
さに蒸着して形成する。各位置信号電極12にお
よび13にワイヤボンデイングにより、第1およ
び第2のリード線14,15が接続されている。
半導体基板11の入射面側にP形の導電性の導電
層16を形成する。このP形の導電層16は電極
12および13の中点を直線状に結ぶ基幹部分1
6aと、前記基幹部分16aに垂直に交叉する複
数の枝部分16b,16c……16nとから構成
されている。半導体基板11の他の面(底面)に
は燐をドープして、高濃度のN形導電性層の底面
導電層17を形成し、その表面に金を蒸着して入
射光量信号電極18を形成し、第3リード線を接
続してある。
FIG. 3 is a schematic plan view of a semiconductor device for detecting an incident position according to an embodiment of the present invention, and FIG. 4 is a schematic cross-sectional view. The semiconductor substrate 11 contains phosphorus as an impurity.
It is an N-type semiconductor doped with 10 13 /cm 3 and approximately 250 μm thick. The first and second position signal electrodes 12 and 13 are made of boron 4x from one surface of the semiconductor substrate 11.
A highly concentrated P-type conductive layer is doped with 10 11 /cm 2 , and aluminum is deposited on the surface to a thickness of 0.8 μm. First and second lead wires 14 and 15 are connected to each position signal electrode 12 and 13 by wire bonding.
A P-type conductive layer 16 is formed on the incident surface side of the semiconductor substrate 11 . This P-type conductive layer 16 is a core portion 1 that connects the midpoints of the electrodes 12 and 13 in a straight line.
6a, and a plurality of branch portions 16b, 16c, . . . , 16n that perpendicularly intersect the main portion 16a. The other surface (bottom surface) of the semiconductor substrate 11 is doped with phosphorus to form a bottom conductive layer 17 which is a highly concentrated N-type conductive layer, and gold is deposited on the surface to form an incident light amount signal electrode 18. And the third lead wire is connected.

半導体基板11の幅は1mm、2つの電極12と
13との間隔は2mmである。P形導電層の幅は基
幹部分16aも枝部分16b,16c……16n
も共に100μm、隣接する枝部分16b,16c
……16nの間隔は100μm、枝部分16b,1
6c……16nの長さは900μmとしてある。こ
の枝部分の間隔100μmは半導体基板11内の小
数キヤリヤの拡散長300μmよりも小さい。
The width of the semiconductor substrate 11 is 1 mm, and the distance between the two electrodes 12 and 13 is 2 mm. The width of the P-type conductive layer is the same as that of the main portion 16a and the branch portions 16b, 16c...16n.
Both are 100 μm, adjacent branch parts 16b and 16c
...16n interval is 100μm, branch portion 16b,1
The length of 6c...16n is 900 μm. The distance between the branch portions of 100 μm is smaller than the diffusion length of the fractional carrier in the semiconductor substrate 11 of 300 μm.

前述の実施例装置の位置信号電極13と電極1
4の間の電気抵抗を測定したところ250kΩの高
抵抗が得られた。
Position signal electrode 13 and electrode 1 of the above-described embodiment device
When the electrical resistance was measured between 4 and 4, a high resistance of 250 kΩ was obtained.

この実施例装置の半導体基板11の入射面全面
に同一条件で導電層を形成したときの電極間電圧
は50kΩを越えることができなかつた。
When a conductive layer was formed on the entire incident surface of the semiconductor substrate 11 of this example device under the same conditions, the voltage between the electrodes could not exceed 50 kΩ.

以上図示した実施例について詳細に説明した
が、前記実施例において枝導電層16b,16c
……16nを除去し、基幹部分16aと同形状の
導電層を多数本等間隔で平行に両端の位置信号電
極に達するように配置することにより、同様な効
果を得ることができた。
The embodiment illustrated above has been described in detail, but in the embodiment, the branch conductive layers 16b, 16c
. . . By removing 16n and arranging a large number of conductive layers having the same shape as the basic portion 16a in parallel at equal intervals so as to reach the position signal electrodes at both ends, the same effect could be obtained.

以上詳しく説明したように、本発明による装置
では位置信号電極間の抵抗を大きくできるので、
小さい光入力信号での位置演算が可能になり、応
い応用が期待できる。
As explained in detail above, in the device according to the present invention, the resistance between the position signal electrodes can be increased.
It becomes possible to calculate position with a small optical input signal, and many applications are expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光等の入射位置の一次元情報を出力す
ることができる半導体装置の平面図、第2図は概
略断面図である。第3図は本発明による入射位置
検出用半導体装置の実施例装置の平面図、第4図
は概略断面図である。 1……受光面、2……第1位置信号電極、2
a,3a……金属層、3……第2位置信号電極、
4……入射面導体層、4a,4b……ドープ部
分、5……半導体基板、6……底面導体層、7…
…入射光量信号電極、11……半導体基板、12
……第1位置信号電極、13……第2位置信号電
極、14……第1のリード線、15……第2のリ
ード線、16……入射面導電層(P型導電層)、
16a……基幹導電層、16b,16b〜16n
……枝導電層、17……底面導電層(P形導電
層)、18……光量信号電極、19……第3のリ
ード線。
FIG. 1 is a plan view of a semiconductor device capable of outputting one-dimensional information on the incident position of light, etc., and FIG. 2 is a schematic cross-sectional view. FIG. 3 is a plan view of an embodiment of the semiconductor device for detecting an incident position according to the present invention, and FIG. 4 is a schematic cross-sectional view. 1... Light receiving surface, 2... First position signal electrode, 2
a, 3a...Metal layer, 3...Second position signal electrode,
4... Entrance surface conductor layer, 4a, 4b... Doped portion, 5... Semiconductor substrate, 6... Bottom conductor layer, 7...
...Incident light amount signal electrode, 11...Semiconductor substrate, 12
...First position signal electrode, 13...Second position signal electrode, 14...First lead wire, 15...Second lead wire, 16...Incidence surface conductive layer (P-type conductive layer),
16a...Basic conductive layer, 16b, 16b to 16n
... Branch conductive layer, 17 ... Bottom conductive layer (P-type conductive layer), 18 ... Light quantity signal electrode, 19 ... Third lead wire.

Claims (1)

【特許請求の範囲】 1 一導電型の半導体基板と、前記半導体基板の
矩形状の入射面の短辺側に沿つて互いに平行に設
けられた一対の位置信号電極と、前記一対の位置
信号電極間を高い抵抗で接続するとともに前記半
導体基板の矩形状の入射面を前記一対の位置信号
電極と平行方向または直角方向に等間隔に分割す
るように、均一な不純物濃度を持ち前記導電層と
は異なる導電型で細い均一な幅に形成された入射
面導電層と、前記半導体基板の矩形状の入射面と
反対の面に形成された高濃度の前記半導体基板と
同一導電型の底面導電層と、前記底面導電層に接
続された入射光量信号電極から構成した入射位置
検出用半導体装置。 2 前記入射面導電層は、前記一対の位置信号電
極を直接接続する基幹部分導電層と、この基幹部
分導電層に直角に接続される複数本の枝導電層と
から構成した特許請求の範囲第1項記載の入射位
置検出用半導体装置。 3 前記入射面導電層により分割された半導体基
板の幅はこの半導体基板中の小数キヤリヤの平均
自由行程と同程度または以下である特許請求の範
囲第1項記載の入射位置検出用半導体装置。
[Scope of Claims] 1. A semiconductor substrate of one conductivity type, a pair of position signal electrodes provided parallel to each other along the short side of a rectangular incident surface of the semiconductor substrate, and the pair of position signal electrodes. The conductive layer has a uniform impurity concentration and has a uniform impurity concentration such that the rectangular incident surface of the semiconductor substrate is divided at equal intervals in a direction parallel to or perpendicular to the pair of position signal electrodes. an entrance surface conductive layer of different conductivity types and formed to have a narrow and uniform width; and a highly concentrated bottom conductive layer of the same conductivity type as the semiconductor substrate formed on a surface opposite to the rectangular entrance surface of the semiconductor substrate. . A semiconductor device for detecting an incident position, comprising an incident light amount signal electrode connected to the bottom conductive layer. 2. The incident surface conductive layer is comprised of a main conductive layer that directly connects the pair of position signal electrodes, and a plurality of branch conductive layers that are connected at right angles to the main conductive layer. The semiconductor device for detecting an incident position according to item 1. 3. The semiconductor device for detecting an incident position according to claim 1, wherein the width of the semiconductor substrate divided by the incident surface conductive layer is equal to or less than the mean free path of the fractional carrier in the semiconductor substrate.
JP57126242A 1982-07-20 1982-07-20 Semiconductor device for incident position detection Granted JPS5917288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126242A JPS5917288A (en) 1982-07-20 1982-07-20 Semiconductor device for incident position detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126242A JPS5917288A (en) 1982-07-20 1982-07-20 Semiconductor device for incident position detection

Publications (2)

Publication Number Publication Date
JPS5917288A JPS5917288A (en) 1984-01-28
JPS6262074B2 true JPS6262074B2 (en) 1987-12-24

Family

ID=14930307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126242A Granted JPS5917288A (en) 1982-07-20 1982-07-20 Semiconductor device for incident position detection

Country Status (1)

Country Link
JP (1) JPS5917288A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127883A (en) * 1983-01-12 1984-07-23 Matsushita Electronics Corp Photosensitive semiconductor device
JPH0691279B2 (en) * 1986-10-03 1994-11-14 理化学研究所 Semiconductor position detector
JP2572389B2 (en) * 1987-05-21 1997-01-16 浜松ホトニクス株式会社 High-speed response optical position detector
JPH0644640B2 (en) * 1987-10-29 1994-06-08 浜松ホトニクス株式会社 Incident position detection semiconductor device
JPH0644641B2 (en) * 1987-10-29 1994-06-08 浜松ホトニクス株式会社 Incident position detection semiconductor device
JPH01115169A (en) * 1987-10-29 1989-05-08 Hamamatsu Photonics Kk Semiconductor device for incident position detection
JPH01143427U (en) * 1988-03-28 1989-10-02
JP2524708Y2 (en) * 1990-11-26 1997-02-05 シャープ株式会社 Position sensor
JP4209526B2 (en) 1998-12-28 2009-01-14 浜松ホトニクス株式会社 Semiconductor position detector and distance measuring device using the same

Also Published As

Publication number Publication date
JPS5917288A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
CN105679841B (en) Optical detection device
RU2238571C2 (en) Magnetic field sensor
CN105633192A (en) Light detection device
US3593067A (en) Semiconductor radiation sensor
JPH01251763A (en) Vertical hall element and integrated magnetic sensor
JPS6262074B2 (en)
JPS5928072B2 (en) radiation sensing device
JPH05335618A (en) Optical position detecting semiconductor device
JPH0241179B2 (en)
US5138146A (en) Image position sensitive device with multiple output electrodes
US4060822A (en) Strip type radiation detector and method of making same
US4942442A (en) Device including a radiation sensor
JPS5956774A (en) Semiconductor device for detecting incidence position of particle ray, and the like
JPS6057716B2 (en) semiconductor optical position detector
JPH01115170A (en) Semiconductor device for incident position detection
JP2972303B2 (en) 2D optical position detector
JPH0410581A (en) Optical position detection semiconductor device
JP2001015797A (en) Semiconductor device for detecting light incidence position and manufacture thereof
JPH02108992A (en) Radiation detector and radiation detecting device using same
JP3260495B2 (en) Semiconductor device for optical position detection
JP2572389B2 (en) High-speed response optical position detector
JPH0650344B2 (en) Devices containing radiation detectors
JPS6390181A (en) Constitution of semiconductor position detector
JP3229083B2 (en) Photoelectric conversion element
JPH0342878A (en) Semiconductor position detector