JPH0644641B2 - Incident position detection semiconductor device - Google Patents

Incident position detection semiconductor device

Info

Publication number
JPH0644641B2
JPH0644641B2 JP27367687A JP27367687A JPH0644641B2 JP H0644641 B2 JPH0644641 B2 JP H0644641B2 JP 27367687 A JP27367687 A JP 27367687A JP 27367687 A JP27367687 A JP 27367687A JP H0644641 B2 JPH0644641 B2 JP H0644641B2
Authority
JP
Japan
Prior art keywords
incident
semiconductor substrate
conductive layer
pair
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27367687A
Other languages
Japanese (ja)
Other versions
JPH01115172A (en
Inventor
晃永 山本
田中  均
正之 ▲榊▼原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP27367687A priority Critical patent/JPH0644641B2/en
Publication of JPH01115172A publication Critical patent/JPH01115172A/en
Publication of JPH0644641B2 publication Critical patent/JPH0644641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光や粒子線の入射位置についての情報を、電流
等として出力できる入射位置検出用半導体装置に関す
る。
The present invention relates to an incident position detecting semiconductor device capable of outputting information about the incident position of light or a particle beam as a current or the like.

〔従来の技術〕[Conventional technology]

従来、このような分野の技術としては、例えば特開昭5
9−17288号公報に示されるものがあった。この従
来例では、まずn型の矩形の半導体基板の端部に一対の
位置検出電極が設けられる。そして、これらの間の入射
面の中央には、均一な断面積で均一な不純物濃度のp型
の基幹導電層が形成され、この基幹導電層から入射面に
延びるように、複数のp型分枝導電層が形成されてい
る。
Conventionally, as a technique in such a field, for example, Japanese Patent Laid-Open No.
There was a thing shown by 9-17288 gazette. In this conventional example, first, a pair of position detection electrodes is provided at the end of an n-type rectangular semiconductor substrate. Then, a p-type basic conductive layer having a uniform cross-sectional area and a uniform impurity concentration is formed in the center of the incident surface between them, and a plurality of p-type conductive layers are formed so as to extend from the basic conductive layer to the incident surface. A branch conductive layer is formed.

この従来例によれば、光や粒子線の入射によって入射面
で生成された電荷は、分枝導電層で集められて基幹導電
層で抵抗分割される。ここで、基幹導電層は細く形成さ
れているので、その抵抗値は十分に高く、精度よく設定
することができ、従って検出感度を向上させることがで
きる。
According to this conventional example, the charges generated on the incident surface by the incidence of light or particle beam are collected by the branched conductive layer and resistance-divided by the basic conductive layer. Here, since the basic conductive layer is formed thin, its resistance value is sufficiently high and can be set with high accuracy, and therefore the detection sensitivity can be improved.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、この従来例えばカメラの自動焦点用に実
用化するときには、入射面の一部分のみを有効な入射領
域とし、他の無効入射領域には光または粒子線が入射し
ないことがある。このようなときに、従来装置のように
無効入射領域にも分枝導電層を設けておくと、ここで熱
励起により発生した正孔も基幹導電層に流れ込み、雑音
としてなってしまう。また、分枝導電層によるpn接合
容量が無効入射領域においても現れるため、高速応答に
なじまなくなる。さらに、無効入射領域中に入射したレ
ンズ(入射面の前方に設けられる)等反射などによって
発生した光電流や、有効入射領域に入射した光により発
生し、無効入射領域に到達したキャリアによる光電流が
発生し、位置検出精度を低下させる。
However, when it is practically used for the conventional autofocus of a camera, for example, only a part of the incident surface is an effective incident area, and light or particle beam may not be incident on the other invalid incident areas. At this time, if a branched conductive layer is provided in the invalid incident region as in the conventional device, holes generated by thermal excitation flow into the basic conductive layer and become noise. Further, since the pn junction capacitance due to the branched conductive layer appears even in the invalid incident region, it becomes unsuitable for high-speed response. Furthermore, the photocurrent generated by the reflection of the lens (provided in front of the incident surface) that entered the invalid incident area, or the photocurrent generated by the light that entered the effective incident area and reached the invalid incident area. Occurs, which lowers the position detection accuracy.

そこで本発明は、無効入射領域が検出信号の雑音をもた
らしたり、検出精度を低下させたりすることのない入射
位置検出用半導体装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a semiconductor device for detecting an incident position, in which the invalid incident region does not cause noise of the detection signal or lower the detection accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本出願の第1の発明に係る入射位置検出用半導体装置
は、有効入射領域および無効入射領域を含む入射面が設
定される一導電型の半導体基板と、光や粒子線の入射に
より励起した正孔電子対の一方を収集するために、半導
体基板に設けられた電極と、半導体基板の入射面の両端
に設けられて正孔電子対の他方を収集する一対の位置信
号電極と、この一対の位置信号電極を高い抵抗で接続す
るように半導体基板に形成された基幹導電層と、この基
幹導電層から入射面の有効入射領域に延びるように形成
された反対導電型の不純物を含む複数の分枝導電層とを
備えることを特徴とする。
The incident position detecting semiconductor device according to the first invention of the present application is a semiconductor substrate of one conductivity type in which an incident surface including an effective incident region and an invalid incident region is set, and a positive electrode excited by incidence of light or particle beam. An electrode provided on the semiconductor substrate for collecting one of the hole-electron pairs, a pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes. A basic conductive layer formed on the semiconductor substrate so as to connect the position signal electrodes with high resistance, and a plurality of components containing impurities of opposite conductivity type formed so as to extend from the basic conductive layer to the effective incident area of the incident surface. And a branch conductive layer.

また、本願の第2の発明の係る入射位置検出用半導体装
置は、有効入射領域および無効入射領域を含む入射面が
設定される一導電型の半導体基板と、光や粒子線の入射
により励起した正孔電子対の一方を収集するために、半
導体基板に設けられた電極と、半導体基板の入射面の両
端に設けられて正孔電子対の他方を収集する一対の位置
信号電極と、この一対の位置信号電極を高い抵抗で接続
するように半導体基板に形成された基幹導電層と、この
基幹導電層から入射面の有効入射領域に延びるように形
成された反対導電型の不純物を含む複数の分枝導電層
と、絶縁膜とを介して基幹導電層を覆うように形成さ
れ、表面保護層の電荷の影響から基幹導電層をシールド
する導電性のシールド膜とを備えることを特徴とする。
Further, the incident position detecting semiconductor device according to the second invention of the present application is excited by one-conductivity type semiconductor substrate having an incident surface including an effective incident region and an invalid incident region and incident by light or particle beam. An electrode provided on the semiconductor substrate for collecting one of the hole-electron pairs, and a pair of position signal electrodes provided on both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes. Of the main conductive layer formed on the semiconductor substrate so as to connect the position signal electrodes with high resistance, and a plurality of impurities containing opposite conductivity types formed so as to extend from the main conductive layer to the effective incident region of the incident surface. It is characterized by comprising a branched conductive layer and a conductive shield film which is formed so as to cover the basic conductive layer via an insulating film and shields the basic conductive layer from the influence of charges of the surface protective layer.

また、本出願の第3の発明の係る入射位置検出用半導体
装置は、有効入射領域および無効入射領域を含む入射面
が設定される一導電型の半導体基板と、光や粒子線の入
射により励起した正孔電子対の一方を収集するために、
半導体基板に設けられた電極と、半導体基板の入射面の
両端に設けられて正孔電子対の他方を収集する一対の位
置検出電極と、この一対位置信号電極を高い抵抗で接続
するように半導体基板に形成された基幹導電層と、この
基幹導電層から入射面の有効入射領域に延びるように形
成された反対導電型の不純物を含む複数の分枝導電層
と、入射面の無効入射領域に形成された反対導電型の不
純物を含むキャリア捕獲層とを備えることを特徴とす
る。
Further, an incident position detecting semiconductor device according to a third invention of the present application is a semiconductor substrate of one conductivity type in which an incident surface including an effective incident region and an invalid incident region is set, and is excited by incidence of light or a particle beam. To collect one of the paired hole-electrons
The electrodes provided on the semiconductor substrate, the pair of position detection electrodes provided on both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected to each other with high resistance to form a semiconductor. A basic conductive layer formed on the substrate, a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the basic conductive layer to the effective incident area of the incident surface, and a reactive incident area of the incident surface. And a carrier trap layer containing impurities of opposite conductivity type formed.

また、本出願の第4の発明の係る入射位置検出用半導体
装置は、有効入射領域および無効入射領域を含む入射面
が設定される一導電型の半導体基板と、光や粒子線の入
射により励起した正孔電子対の一方を収集するために、
半導体基板に設けられた電極と、半導体基板の入射面の
両端に設けられて正孔電子対の他方を収集する一対の位
置信号電極と、この一対の位置信号電極を高い抵抗で接
続するように半導体基板に形成された基幹導電層と、こ
の基幹導電層から入射面の有効入射領域に延びるように
形成された反対導電型の不純物を含む複数の分枝導電層
と、入射面の無効入射領域を覆うように形成された遮光
膜とを備えることを特徴とする。
Further, the semiconductor device for incident position detection according to the fourth invention of the present application is a semiconductor substrate of one conductivity type in which an incident surface including an effective incident region and an invalid incident region is set, and is excited by incidence of light or particle beam. To collect one of the paired hole-electrons
The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A basic conductive layer formed on a semiconductor substrate, a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the basic conductive layer to an effective incident area of the incident surface, and an invalid incident area of the incident surface. And a light-shielding film formed so as to cover the.

また、本出願の第5の発明の係る入射位置検出用半導体
装置は、有効入射領域および無効入射領域を含む入射面
が設定される一導電型の半導体基板と、光や粒子線の入
射により励起した正孔電子対の一方を収集するために、
半導体基板に設けられた電極と、半導体基板の入射面の
両端に設けられて正孔電子対の他方を収集する一対の位
置信号電極と、この一対の位置信号電極を高い抵抗で接
続すにように半導体基板に形成された基幹導電層と、こ
の基幹導電層から入射面の有効入射領域に延びるように
形成された反対導電型の不純物を含む複数の分枝導電層
と、入射面の無効入射領域を覆うように形成された遮光
膜と、絶縁膜を介して基幹導電層を覆うように形成さ
れ、表面保護層の電荷の影響から基幹導電層をシールド
する導電性のシールド膜とを備えることを特徴とする。
Further, the semiconductor device for incident position detection according to the fifth invention of the present application is a semiconductor substrate of one conductivity type in which an incident surface including an effective incident region and an invalid incident region is set, and is excited by incidence of light or a particle beam. To collect one of the paired hole-electrons
The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A main conductive layer formed on the semiconductor substrate, a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the main conductive layer to the effective incident area of the incident surface, and invalid incident light of the incident surface. A light-shielding film formed so as to cover the region, and a conductive shield film formed so as to cover the core conductive layer via an insulating film and shielding the core conductive layer from the influence of the electric charge of the surface protective layer. Is characterized by.

〔作用〕[Action]

第1の発明によれば、無効入射領域には分枝導電層が存
在しないので、ここで電子/正孔対が発生しても基幹導
電層に流れこむ確率は低い。また、pn接合容量も分枝
導電層の設けられていない分だけ少なくなる。
According to the first aspect of the invention, since the branched conductive layer does not exist in the invalid incident region, even if an electron / hole pair is generated here, the probability of flowing into the basic conductive layer is low. Further, the pn junction capacitance is also reduced because the branch conductive layer is not provided.

第2の発明によれば、基幹導電層がシールド膜で覆われ
ているので、表面保護層の電荷から基幹導電層を保護す
ることができる。
According to the second aspect of the invention, since the core conductive layer is covered with the shield film, the core conductive layer can be protected from the electric charge of the surface protective layer.

第3の発明によれば、無効入射領域には基板と反対導電
型のキャリア捕獲層が設けられているので、熱励起やレ
ンズ等からの反射光により発生した電子/正孔対や有効
入射領域で発生し、無効入射領域に到達した電子、正孔
対は捕獲されて基幹導電層に流入することはない。ま
た、キャリア捕獲層は半導体基板と電気的に短絡されて
いる場合には、これらの電子と正孔は再結合し、従つて
これが検出信号の雑音成分となることはない。
According to the third aspect of the present invention, since the carrier trapping layer having a conductivity type opposite to that of the substrate is provided in the invalid incident region, electron / hole pairs generated by thermal excitation or reflected light from the lens or the effective incident region. The electron-hole pairs that have been generated in 1 and have reached the invalid incident region are not captured and flow into the basic conductive layer. Further, when the carrier trapping layer is electrically short-circuited with the semiconductor substrate, these electrons and holes are recombined so that they do not become a noise component of the detection signal.

第4の発明によれば、無効入射領域には遮光膜が設けら
れているので、レンズからの反射光があったとしても、
無効領域で光電流が生じることはない。
According to the fourth invention, since the light-shielding film is provided in the invalid incident area, even if there is reflected light from the lens,
No photocurrent is generated in the ineffective region.

第5の発明によれば、無効入射領域には遮光膜が設けら
れているので、レンズからの反射光があったとしても、
無効領域で光電流が生じることはないし、基幹導電層が
シールド膜で覆われているので、表面保護層の電荷から
基幹導電層を保護することができる。
According to the fifth aspect, since the light-shielding film is provided in the invalid incident area, even if there is reflected light from the lens,
No photocurrent is generated in the ineffective region, and since the core conductive layer is covered with the shield film, the core conductive layer can be protected from the charges of the surface protective layer.

〔実施例〕〔Example〕

以下、添付図面の第1図ないし第5図を参照して、本発
明の実施例を説明する。なお、図面の説明において同一
要素には同一符号を付し、重複する説明を省略する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5 of the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

第1図は第1実施例に係る入射位置検出用半導体装置の
平面図である。図示の通り、半導体基板1の表面側であ
る入射面の端部には一対の位置信号電極2a,2bが設
けられ、これらの間の入射面の中央部には基幹導電層3
が形成されている。基幹導電層3からは入射面方向に延
びるように分枝導電層4が有効入射領域Bのみに形成さ
れているが、これは互いに等間隔で複数本となってい
る。そして、右半分の無効入射領域Cには分枝導電層が
形成されていない。
FIG. 1 is a plan view of an incident position detecting semiconductor device according to the first embodiment. As shown in the figure, a pair of position signal electrodes 2a and 2b are provided at the end of the incident surface, which is the surface side of the semiconductor substrate 1, and the central conductive layer 3 is provided at the center of the incident surface between them.
Are formed. The branched conductive layers 4 are formed only in the effective incident region B so as to extend from the basic conductive layer 3 in the incident surface direction, but a plurality of branched conductive layers 4 are formed at equal intervals. Further, no branched conductive layer is formed in the invalid incident region C on the right half.

上記実施例の装置の詳細な構成を、第2図の平面図およ
びA−A線断面図により説明する。
The detailed configuration of the apparatus of the above embodiment will be described with reference to the plan view of FIG. 2 and the sectional view taken along the line AA.

例えば、各辺が1〜50mmのn型のシリコンからなる半
導体基板1の表面側には、1×1013〜1014cm-3
程度にp型不純物を注入した基幹導電層3が0.5〜
1.0μm程度の深さで形成されると共に、無効入射領
域Cを除く有効入射領域Bには、分枝導電層4が基幹導
電層3と同様の不純物を含んで5μm〜200μm程度
のピッチで0.5〜1μm程度の深さに形成される。入
射面の端にはオーミックコンタクト領域6a,6bが形
成され、これらは上記の基幹導電層3と接続されてい
る。これらの上には、例えば熱酸化SiOからなる絶
縁膜7が形成され、オーミックコンタクト領域6a,6
b上の絶縁膜7の開口を介して、例えばアルミニウムか
らなる位置信号電極2a,2bとのオーミック接触がと
られている。そして、これらの上には例えばエポキシ樹
脂からなる表面保護層8が塗布形成され、その開口(図
示せず)を介してワイヤ9a,9bが位置信号電極2
a,2bにボンディングされている。半導体基板1の裏
面側には、例えばn型不純物を含むオーミックコンタク
ト層10が形成され、この表面には裏面電極11がオー
ミック接触して設けられる。
For example, 1 × 10 13 to 10 14 cm −3 is provided on the front surface side of the semiconductor substrate 1 made of n-type silicon having each side of 1 to 50 mm.
The basic conductive layer 3 in which p-type impurities are implanted to a degree of 0.5 to
The branched conductive layer 4 is formed to have a depth of about 1.0 μm, and in the effective incident region B excluding the invalid incident region C, the branched conductive layer 4 contains the same impurities as the trunk conductive layer 3 at a pitch of about 5 μm to 200 μm. It is formed to a depth of about 0.5 to 1 μm. Ohmic contact regions 6a and 6b are formed at the ends of the incident surface, and these are connected to the above-mentioned basic conductive layer 3. An insulating film 7 made of, for example, thermally oxidized SiO 2 is formed on these, and ohmic contact regions 6a, 6 are formed.
An ohmic contact is made with the position signal electrodes 2a and 2b made of, for example, aluminum through the opening of the insulating film 7 on b. Then, a surface protection layer 8 made of, for example, an epoxy resin is applied and formed on these, and the wires 9a and 9b are connected to the position signal electrode 2 through openings (not shown).
Bonded to a and 2b. An ohmic contact layer 10 containing, for example, an n-type impurity is formed on the back surface side of the semiconductor substrate 1, and a back surface electrode 11 is provided in ohmic contact with this surface.

次に、上記の第1実施例の装置の作用を説明する。Next, the operation of the device of the first embodiment will be described.

例えば、赤外線スポットが表面側から有効入射領域Bに
入射されると、これは表面保護層8および絶縁膜7を透
過して半導体基板1の入射面に達する。これにより半導
体基板1で電子/正孔対が発生すると、電子はオーミッ
クコンタクト層10および裏面電極11側へ流れ、正孔
はp型の分枝導電層4に流れ込む。そして、この正孔に
よる光電流は分枝導電層4を通って基幹導電層3に流
れ、この流入点から位置信号電極2a,2bまでの抵抗
比の逆数で分割される。
For example, when an infrared spot is incident on the effective incident area B from the front surface side, it passes through the surface protective layer 8 and the insulating film 7 and reaches the incident surface of the semiconductor substrate 1. As a result, when electron / hole pairs are generated in the semiconductor substrate 1, electrons flow toward the ohmic contact layer 10 and the back electrode 11 side, and holes flow into the p-type branched conductive layer 4. Then, the photocurrent due to the holes flows through the branch conductive layer 4 into the basic conductive layer 3 and is divided by the reciprocal of the resistance ratio from the inflow point to the position signal electrodes 2a and 2b.

ここで、無効入射領域Cにはp型の分枝伝導層が設けら
れていないので、ここで熱励起により電子/正孔対が発
生したり、レンズの反射等により発生した電子/正孔対
や、有効入射領域で発生し、無効入射領域に到達した電
子/正孔対の大半は無効入射領域Cの中で再結合してし
まう。このため、検出信号に雑音が含まれて検出精度が
低下するようなことはなくなる。
Here, since the p-type branch conductive layer is not provided in the invalid incident region C, an electron / hole pair is generated here by thermal excitation or an electron / hole pair generated by reflection of a lens or the like. Alternatively, most of the electron / hole pairs generated in the effective incident region and reaching the invalid incident region are recombined in the invalid incident region C. Therefore, it is possible to prevent the detection accuracy from being lowered due to the noise included in the detection signal.

また、半導体基板1と基幹導電層3および分枝導電層4
によるpn接合の総面積を、無効入射領域Cに分枝導電
層が形成されていない分だけ少なくできるので、リーク
電流を抑えることができる。さらに、pn接合容量もそ
の分だけ少なくなるので、高速、高周波の検出に適して
いる。
In addition, the semiconductor substrate 1, the core conductive layer 3 and the branched conductive layer 4
The total area of the pn junction due to can be reduced by the amount that the branch conductive layer is not formed in the invalid incident region C, so that the leak current can be suppressed. Further, since the pn junction capacitance is correspondingly reduced, it is suitable for high speed and high frequency detection.

次に、第3図を参照して、第2実施例を説明する。Next, a second embodiment will be described with reference to FIG.

第3図はその平面図であり、第1図のものと比べて異な
る点は、無効入射領域にキャリア捕獲層20が形成され
ていることである。このキャリア捕獲層20は例えば基
幹導電層3および分枝導電層4の形成時に、マスクの開
口を介してp型不純物を注入することにより形成でき
る。そして、このキャリア捕獲層20は半導体基板1あ
るいは図示しない外部の基板1より低い電位に接続して
おく。
FIG. 3 is a plan view thereof, and a point different from that in FIG. 1 is that the carrier trapping layer 20 is formed in the invalid incident region. This carrier trapping layer 20 can be formed, for example, by implanting a p-type impurity through the opening of the mask when forming the basic conductive layer 3 and the branched conductive layer 4. The carrier trapping layer 20 is connected to a potential lower than that of the semiconductor substrate 1 or the external substrate 1 (not shown).

このようにすれば、熱励起やレンズの反射などにより発
生した電子/正孔対や、有効入射領域で発生し、無効入
射領域に到達した電子/正孔対は、それぞれ半導体基板
1とキャリア捕獲層20に流れこむ。ここで、半導体基
板1とキャリア捕獲層20が上記のように短絡されてい
ると、これら電子と正孔は再結合し、従ってこれが検出
信号の雑音成分となることはない。
By doing so, the electron / hole pairs generated by thermal excitation or reflection of the lens, or the electron / hole pairs generated in the effective incident area and reaching the invalid incident area are respectively captured by the semiconductor substrate 1 and carrier trap. Pour into layer 20. Here, when the semiconductor substrate 1 and the carrier trapping layer 20 are short-circuited as described above, these electrons and holes are recombined, so that they do not become a noise component of the detection signal.

次に、第4図を参照して、第3実施例を説明する。Next, a third embodiment will be described with reference to FIG.

第4図はその平面図であり、第1実施例と異なる点は、
無効入射領域に遮光膜21が設けられていることであ
る。この遮光膜21は検出すべき光や粒子線を透過しな
い材料で形成され、例えばアルミニウムを用いたときに
は半導体基板1との間に絶縁膜が介在させられる。な
お、遮光膜21の下側に第3図のようなキャリア捕獲層
20を設けてもよい。
FIG. 4 is a plan view thereof, and different from the first embodiment,
That is, the light shielding film 21 is provided in the invalid incident region. The light shielding film 21 is formed of a material that does not transmit light to be detected or particle beams, and when aluminum is used, for example, an insulating film is interposed between the light shielding film 21 and the semiconductor substrate 1. The carrier trapping layer 20 as shown in FIG. 3 may be provided below the light shielding film 21.

このようにすれば、無効入射領域への光や粒子線の入射
は完全に防止される。例えば、入射面の前面にレンズが
配設されて用いられたときに、有効入射領域で反射され
た光が上記レンズで再び反射され、無効入射領域に戻っ
てくるときでも、その影響を完全になくすことができ
る。従って、極めて精度よく入射位置を検出することが
可能になる。遮光膜21によって基幹導電層3の抵抗値
が影響を受けると、検出精度そのものを低下させるの
で、例えば基幹導電層3の不純物濃度は1×1013cm
-3程度以上であることが望ましい。
In this way, the incidence of light or particle beam on the invalid incident area is completely prevented. For example, when a lens is disposed on the front surface of the incident surface and used, even when the light reflected in the effective incident area is reflected again in the lens and returns to the invalid incident area, the effect is completely eliminated. It can be lost. Therefore, the incident position can be detected with extremely high accuracy. When the resistance value of the basic conductive layer 3 is affected by the light shielding film 21, the detection accuracy itself is lowered. Therefore, for example, the impurity concentration of the basic conductive layer 3 is 1 × 10 13 cm 2.
-3 or more is desirable.

次に、第5図を参照して、第2および第3実施例を応用
した装置の一例を説明する。
Next, an example of an apparatus to which the second and third embodiments are applied will be described with reference to FIG.

第5図(a)は平面図であり、同図(b)はそのA−A
線断面図である。図示の通り、p型の基幹導電層3は入
射面の下側端部に配設され、この基幹導電層3から有効
入射領域Bにのみ分枝導電層4が平行に延びている。無
効入射領域Cの半導体基板1には、基幹導電層3、分枝
導電層4と同一の工程で形成されたp型のキャリア捕獲
層20か設けられ、その上には絶縁膜7を介してアルミ
ニウムからなる遮光膜21が形成されている。そして、
キャリア捕獲層20の端部には絶縁膜7の開口を介して
コンタクト電極23が設けられ、半導体基板1およびキ
ャリア捕獲層20のそれぞれにオーミック接触すること
で互いに短絡されている。一方、位置信号電極2a,2
bは絶縁膜7を介して基幹導電層3上に延び、一対のシ
ールド膜22a,22bとなっている。
FIG. 5 (a) is a plan view, and FIG. 5 (b) is its A-A.
It is a line sectional view. As shown in the figure, the p-type trunk conductive layer 3 is disposed at the lower end of the incident surface, and the branch conductive layer 4 extends in parallel only from the trunk conductive layer 3 to the effective incident region B. The semiconductor substrate 1 in the ineffective incident region C is provided with a p-type carrier trapping layer 20 formed in the same step as the basic conductive layer 3 and the branched conductive layer 4, and an insulating film 7 is interposed thereabove. A light shielding film 21 made of aluminum is formed. And
A contact electrode 23 is provided at an end of the carrier trapping layer 20 through an opening of the insulating film 7, and is short-circuited by making ohmic contact with each of the semiconductor substrate 1 and the carrier trapping layer 20. On the other hand, the position signal electrodes 2a, 2
b extends on the basic conductive layer 3 through the insulating film 7 to form a pair of shield films 22a and 22b.

次に、第5図に示す装置の作用を説明する。Next, the operation of the device shown in FIG. 5 will be described.

有効入射領域Bに例えば赤外線スポットが入射される
と、半導体基板1中で電子/正孔対が発生し、正孔のみ
が分枝導電層4に流れ込んで光電流となる。この光電流
は基幹導電層3で抵抗分割され、従って赤外線スポット
の入射位置が検出されることになる。
When, for example, an infrared spot is incident on the effective incident region B, an electron / hole pair is generated in the semiconductor substrate 1, and only the hole flows into the branched conductive layer 4 and becomes a photocurrent. This photocurrent is resistance-divided by the basic conductive layer 3, and therefore the incident position of the infrared spot is detected.

このとき、入射された赤外線スポットの一部は有効入射
領域の半導体基板1の表面等で反射され、前方の対物レ
ンズなどの再び反射されて無効入射領域Cに戻ってく
る。ところが、この戻ってきた光は遮光膜21で遮ら
れ、従って電子/正孔対を発生させることはない。な
お、遮光膜21の上に反射防止膜(図示せず)を設けて
おけば、遮光膜21の反射光が対物レンズを介して再び
有効入射領域Bに戻ることはなくなる。
At this time, a part of the incident infrared spot is reflected by the surface of the semiconductor substrate 1 in the effective incident area and the like, and is reflected again by the front objective lens and the like and returns to the invalid incident area C. However, the returned light is blocked by the light shielding film 21, and therefore, electron / hole pairs are not generated. If an antireflection film (not shown) is provided on the light shielding film 21, the reflected light of the light shielding film 21 will not return to the effective incident area B again via the objective lens.

また、半導体基板1の無効入射領域Cでは熱励起により
電子/正孔対が発生する。しかし、この正孔はキャリア
捕獲層20に流れ込んでコンクタト電極23を介して半
導体基板1中の電子と再結合するので、熱雑音を著しく
低減できる。なお、キャリア捕獲層20は基幹導電層3
および分枝導電層4とは接続されていないので、pn接
合容量を増大させることもない。
Further, in the invalid incident region C of the semiconductor substrate 1, electron / hole pairs are generated by thermal excitation. However, since the holes flow into the carrier trapping layer 20 and recombine with the electrons in the semiconductor substrate 1 through the contact electrode 23, thermal noise can be significantly reduced. The carrier trapping layer 20 is the core conductive layer 3
Also, since it is not connected to the branched conductive layer 4, the pn junction capacitance is not increased.

また、アルミニウムから位置信号電極2a,2bは基幹
導電層3の上に絶縁膜7を介して延設され、シールド膜
22a,22bとなっているので、検出精度を高めるこ
とができる。すなわち、表面保護層8にイオンが含まれ
ているときでも、この電荷の影響はシールド膜22a,
22bによって遮断され、基幹導電層3に及ぶことがな
い。従って、基幹導電層3の抵抗を高くするために不純
物濃度を低くしても、基幹導電層3の有効断面積は変動
せず、抵抗値の微視的な経時変化がないため検出精度の
向上が期待できる。
Further, since the position signal electrodes 2a and 2b are made of aluminum and extend over the basic conductive layer 3 via the insulating film 7 to form the shield films 22a and 22b, the detection accuracy can be improved. That is, even when the surface protective layer 8 contains ions, the influence of this charge is due to the shield film 22a,
It is blocked by 22b and does not reach the basic conductive layer 3. Therefore, even if the impurity concentration is lowered in order to increase the resistance of the basic conductive layer 3, the effective cross-sectional area of the basic conductive layer 3 does not change and the resistance value does not change microscopically with time, so that the detection accuracy is improved. Can be expected.

本発明は上記実施例および変形例に限定されず、種々の
態様が可能である。
The present invention is not limited to the above-mentioned embodiments and modified examples, and various modes are possible.

例えば、シールド膜22a,22bは位置信号電極2
a,2bに接続せずに、オープン状態にしたり、別途の
電極を介して外部の電位に接続してもよい。また、半導
体基板1などの材料や基幹導電層3、分枝導電層4の不
純物濃度も、例示のものに限らない。さらに、分枝導電
層4の間隔を入射面における位置によって異ならせても
よく、このようにすれば、入射位置によって要求される
分解能が異なる場合などに用いることができる。さら
に、基幹導電層3は半導体基板1の表面にポリシリコン
を被着形成したり、SnO等の金属薄膜を形成したり
することによっても実現できる。そして、このポリシリ
コン膜や金属薄膜による基幹導電層3に分枝導電層4を
接続すれば、光電流は実施例と同様に抵抗分割されるこ
とになる。
For example, the shield films 22a and 22b are used as the position signal electrode 2
Instead of connecting to a and 2b, it may be opened or connected to an external potential through a separate electrode. Further, the material concentrations of the semiconductor substrate 1 and the like, and the impurity concentrations of the basic conductive layer 3 and the branched conductive layer 4 are not limited to those illustrated. Further, the distance between the branched conductive layers 4 may be different depending on the position on the incident surface, and in this case, the resolution can be used when the required resolution differs depending on the incident position. Further, the basic conductive layer 3 can also be realized by depositing polysilicon on the surface of the semiconductor substrate 1 or forming a metal thin film of SnO 2 or the like. Then, if the branch conductive layer 4 is connected to the basic conductive layer 3 formed of the polysilicon film or the metal thin film, the photocurrent is resistance-divided as in the embodiment.

〔発明の効果〕〔The invention's effect〕

以上、詳細に説明した通り第1の発明では、無効入射領
域には分枝導電層が存在しないので、ここで電子/正孔
対が発生しても基幹導電層に流れこむ確率は低い。ま
た、pn接合容量も分枝導電層の設けられていない分だ
け少なくなる。従って、無効入射領域が検出信号の雑音
をもたらしたり、検出精度を低下させたりすることがな
い。
As described above in detail, in the first invention, since the branched conductive layer does not exist in the invalid incident region, even if an electron / hole pair is generated here, the probability of flowing into the basic conductive layer is low. Further, the pn junction capacitance is also reduced because the branch conductive layer is not provided. Therefore, the invalid incident area does not cause noise in the detection signal and does not deteriorate the detection accuracy.

また、第2の発明では、無効入射領域が検出信号の雑音
をもたらしたり、検出感度を低下させたりすることがな
い。特に、基幹導電層がシールド膜で覆われているの
で、表面保護層の電荷から基幹導電層を保護することが
できる。
In addition, in the second invention, the invalid incident region does not cause noise in the detection signal and does not reduce the detection sensitivity. In particular, since the core conductive layer is covered with the shield film, the core conductive layer can be protected from the electric charge of the surface protective layer.

また、第3の発明では、無効入射領域には基板と反対導
電型のキャリア捕獲層が設けられているので、熱励起や
レンズからの反射光により電子/正孔対が発生しても、
これらキャリアは捕獲されて基幹導電層に流入すること
がない。
Further, in the third invention, since the carrier trapping layer having a conductivity type opposite to that of the substrate is provided in the invalid incident region, even if an electron / hole pair is generated due to thermal excitation or reflected light from the lens,
These carriers are not captured and flow into the basic conductive layer.

また、第4の発明では、無効入射領域には遮光膜が設け
られているので、レンズからの反射光があったとして
も、無効領域で光電流が生じることがない。このため、
検出信号に含まれる雑音成分が減少し、またレンズの反
射率などにも特に留意する必要がなくなる。
Further, in the fourth aspect of the invention, since the light shielding film is provided in the invalid incident area, even if there is light reflected from the lens, no photocurrent is generated in the invalid area. For this reason,
The noise component included in the detection signal is reduced, and it becomes unnecessary to pay particular attention to the reflectance of the lens.

さらに、第5の発明では、レンズからの反射光があった
としても、無効領域で光電流が生じることはないし、基
幹導電層がシールド膜で覆われているので、表面保護層
の電荷から基幹導電層を保護することができる。
Further, in the fifth invention, even if there is light reflected from the lens, no photocurrent is generated in the ineffective region, and since the core conductive layer is covered with the shield film, the charge of the surface protective layer is changed to the core. The conductive layer can be protected.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例に係る入射位置検出用半導
体装置の平面図、第2図は第1図の拡大図および断面
図、第3図および第4図は第2および第3実施例の平面
図、第5図は第2および第3実施例を応用した装置の構
成図である。 1…半導体基板、2a,2b…位置信号電極、3…基幹
導電層、4…分枝導電層、6a,6b…オーミックコン
タクト領域、7…絶縁膜、8…表面保護層、9a,9b
…ワイヤ、10…オーミックコンタクト層、11…裏面
電極、20…キャリア捕獲層、21…遮光膜、22a,
22b…シールド層、23…コンタクト電極。
FIG. 1 is a plan view of a semiconductor device for detecting an incident position according to a first embodiment of the present invention, FIG. 2 is an enlarged view and a sectional view of FIG. 1, and FIGS. 3 and 4 are second and third views. FIG. 5 is a plan view of the embodiment, and FIG. 5 is a configuration diagram of an apparatus to which the second and third embodiments are applied. DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2a, 2b ... Position signal electrode, 3 ... Basic conductive layer, 4 ... Branch conductive layer, 6a, 6b ... Ohmic contact region, 7 ... Insulating film, 8 ... Surface protective layer, 9a, 9b
... wire, 10 ... ohmic contact layer, 11 ... back electrode, 20 ... carrier trapping layer, 21 ... light-shielding film, 22a,
22b ... Shield layer, 23 ... Contact electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】有効入射領域および無効入射領域を含む入
射面が設定される一導電型の半導体基板と、光や粒子線
の入射により励起した正孔電子対の一方を収集するため
に、前記半導体基板に設けられた電極と、前記半導体基
板の入射面の両端に設けられて前記正孔電子対の他方を
収集する一対の位置信号電極と、この一対の位置信号電
極を高い抵抗で接続するように前記半導体基板に形成さ
れた基幹導電層と、この基幹導電層から前記入射面の有
効入射領域に延びるように形成された反対導電型の不純
物を含む複数の分枝導電層とを備えることを特徴とする
入射位置検出用半導体装置。
1. A semiconductor substrate of one conductivity type in which an incident surface including an effective incident area and an invalid incident area is set, and one of a hole electron pair excited by the incidence of light or a particle beam, for collecting one of The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. And a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the basic conductive layer to the effective incident area of the incident surface. A semiconductor device for detecting an incident position, characterized by:
【請求項2】有効入射領域および無効入射領域を含む入
射面が設定される一導電型の半導体基板と、光や粒子線
の入射により励起した正孔電子対の一方を収集するため
に、前記半導体基板に設けられた電極と、前記半導体基
板の入射面の両端に設けられて前記正孔電子対の他方を
収集する一対の位置信号電極と、この一対の位置信号電
極を高い抵抗で接続するように前記半導体基板に形成さ
れた基幹導電層と、この基幹電層から前記入射面の有効
入射領域に延びるように形成された反対導電型の不純物
を含む複数の分枝導電層と、 絶縁膜を介して前記基幹導電層を覆うように形成され、
表面保護層の電荷の影響から前記基幹導電層をシールド
する導電性のシールド膜と、 を備えることを特徴とする入射位置検出用半導体装置。
2. A semiconductor substrate of one conductivity type in which an incident surface including an effective incident region and an invalid incident region is set, and one of a hole electron pair excited by the incidence of light or a particle beam, in order to collect one of the pairs. The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A trunk conductive layer formed on the semiconductor substrate, a plurality of branch conductive layers containing impurities of opposite conductivity type formed so as to extend from the trunk conductive layer to the effective incident area of the incident surface, and an insulating film Is formed so as to cover the basic conductive layer through
An incident position detecting semiconductor device, comprising: a conductive shield film that shields the core conductive layer from the influence of charges of the surface protective layer.
【請求項3】有効入射領域および無効入射領域を含む入
射面が設定される一導電型の半導体基板と、光や粒子線
の入射により励起した正孔電子対の一方を収集するため
に、前記半導体基板に設けられた電極と、前記半導体基
板の入射面の両端に設けられて前記正孔電子対の他方を
収集する一対の位置信号電極と、この一対の位置信号電
極を高い抵抗で接続するように前記半導体基板に形成さ
れた基幹導電層と、この基幹導電層から前記入射面の有
効入射領域に延びるように形成された反対導電型の不純
物を含む複数の分枝導電層と、前記入射面の無効入射領
域に形成された反対導電型の不純物を含むキャリア捕獲
層とを備えることを特徴とする入射位置検出用半導体装
置。
3. A semiconductor substrate of one conductivity type in which an incident surface including an effective incident area and an invalid incident area is set, and one of a hole-electron pair excited by the incidence of light or a particle beam, in order to collect one of the pairs. The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A trunk conductive layer formed on the semiconductor substrate, a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the trunk conductive layer to the effective incident region of the incident surface, and An incident position detecting semiconductor device, comprising: a carrier trapping layer containing an impurity of opposite conductivity type formed in an ineffective incident region of the surface.
【請求項4】前記キャリア捕獲層は前記半導体基板と電
気的に短絡されている特許請求の範囲第3項記載の入射
位置検出用半導体装置。
4. The semiconductor device for incident position detection according to claim 3, wherein the carrier trapping layer is electrically short-circuited with the semiconductor substrate.
【請求項5】有効入射領域および無効入射領域を含む入
射面が設定される一導電型の半導体基板と、光や粒子線
の入射により励起した正孔電子対の一方を収集するため
に、前記半導体基板に設けられた電極と、前記半導体基
板の入射面の両端に設けられて前記正孔電子対の他方を
収集する一対の位置信号電極と、この一対の位置信号電
極を高い抵抗で接続するように前記半導体基板に形成さ
れた基幹導電層と、この基幹導電層から前記入射面の有
効入射領域に延びるように形成された反対導電型の不純
物を含む複数の分枝導電層と、前記入射面の無効入射領
域を覆うように形成された遮光膜とを備えることを特徴
とする入射位置検出用半導体装置。
5. A semiconductor substrate of one conductivity type in which an incident surface including an effective incident area and an invalid incident area is set, and one of a hole electron pair excited by the incidence of light or a particle beam, for collecting one of the electron pairs. The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A trunk conductive layer formed on the semiconductor substrate, a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the trunk conductive layer to the effective incident region of the incident surface, and A light-shielding film formed so as to cover the invalid incident area of the surface.
【請求項6】有効入射領域および無効入射領域を含む入
射面が設定される一導電型の半導体基板と、光や粒子線
の入射により励起した正孔電子対の一方を収集するため
に、前記半導体基板に設けられた電極と、前記半導体基
板の入射面の両端に設けられて前記正孔電子対の他方を
収集する一対の位置信号電極と、この一対の位置信号電
極を高い抵抗で接続するように前記半導体基板に形成さ
れた基幹導電層と、この基幹導電層から前記入射面の有
効入射領域に延びるように形成された反対導電型の不純
物を含む複数の分枝導電層と、前記入射面の無効入射領
域を覆うように形成された遮光膜と、 絶縁膜を介して前記基幹導電層を覆うように形成され、
表面保護層の電荷の影響から前記基幹導電層をシールド
する導電性のシールド膜と、 を備えることを特徴とする入射位置検出用半導体装置。
6. A semiconductor substrate of one conductivity type in which an incident surface including an effective incident area and an invalid incident area is set, and one of a hole electron pair excited by the incidence of light or a particle beam, for collecting one of the pairs. The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A trunk conductive layer formed on the semiconductor substrate, a plurality of branched conductive layers containing impurities of opposite conductivity type formed so as to extend from the trunk conductive layer to the effective incident region of the incident surface, and A light-shielding film formed so as to cover the invalid incident area of the surface, and formed so as to cover the core conductive layer via an insulating film,
An incident position detecting semiconductor device, comprising: a conductive shield film that shields the core conductive layer from the influence of charges of the surface protective layer.
JP27367687A 1987-10-29 1987-10-29 Incident position detection semiconductor device Expired - Fee Related JPH0644641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27367687A JPH0644641B2 (en) 1987-10-29 1987-10-29 Incident position detection semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27367687A JPH0644641B2 (en) 1987-10-29 1987-10-29 Incident position detection semiconductor device

Publications (2)

Publication Number Publication Date
JPH01115172A JPH01115172A (en) 1989-05-08
JPH0644641B2 true JPH0644641B2 (en) 1994-06-08

Family

ID=17530996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27367687A Expired - Fee Related JPH0644641B2 (en) 1987-10-29 1987-10-29 Incident position detection semiconductor device

Country Status (1)

Country Link
JP (1) JPH0644641B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124889A (en) * 1976-04-12 1977-10-20 Matsushita Electronics Corp Semiconductor photoelectric transducer
JPS5917288A (en) * 1982-07-20 1984-01-28 Hamamatsu Tv Kk Semiconductor device for incident position detection

Also Published As

Publication number Publication date
JPH01115172A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
US6215123B1 (en) Forming contacts on semiconductor substrates, radiation detectors and imaging devices
US4965212A (en) Optical sensor
US6410922B1 (en) Forming contacts on semiconductor substrates for radiation detectors and imaging devices
US4499654A (en) Method for fabricating semiconductor photodetector
JP4208172B2 (en) Photodiode and light receiving element with built-in circuit using the same
US20030183770A1 (en) Forming contacts on semiconductor substrates for radiation detectors and imaging devices
JPH0644641B2 (en) Incident position detection semiconductor device
JPS60241277A (en) Semiconductor device
JP4335104B2 (en) Photodiode array and spectrometer
JPH0644640B2 (en) Incident position detection semiconductor device
JPS58222563A (en) Semiconductor photodetecting device
JP3047114B2 (en) Linear image sensor
JP2676814B2 (en) Multi-type light receiving element
JP2945698B2 (en) Optical semiconductor device
JPH01115169A (en) Semiconductor device for incident position detection
JPS6328076A (en) Semiconductor radiation detector
KR20230056659A (en) light detection device
JP3191967B2 (en) Solid-state imaging device
JPH0945952A (en) X-ray detector and two-dimensional sensor matrix array
JPH0237746B2 (en)
JPH0719170Y2 (en) Semiconductor radiation detector
JPH06204555A (en) Semiconductor device for detecting position of incidence
JPH0658975B2 (en) Incident position detection semiconductor device
JPH02284478A (en) Photoelectric conversion device
JPS59108456A (en) Solid-state image pickup element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees