JPH06204555A - Semiconductor device for detecting position of incidence - Google Patents

Semiconductor device for detecting position of incidence

Info

Publication number
JPH06204555A
JPH06204555A JP52A JP29872293A JPH06204555A JP H06204555 A JPH06204555 A JP H06204555A JP 52 A JP52 A JP 52A JP 29872293 A JP29872293 A JP 29872293A JP H06204555 A JPH06204555 A JP H06204555A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
conductive layers
incidence
conductive layer
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP52A
Other languages
Japanese (ja)
Inventor
Akinaga Yamamoto
晃永 山本
Hitoshi Tanaka
田中  均
Masayuki Sakakibara
正之 榊原
Yukio Inose
幸男 伊野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP52A priority Critical patent/JPH06204555A/en
Publication of JPH06204555A publication Critical patent/JPH06204555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To furnish a semiconductor device for detecting a position of incidence which can output information on the position of incidence of light or a particle beam as a current or the like. CONSTITUTION:Seven conductive layers 31 to 37 are formed on a semiconductor substrate 1. These conductive layers 31 to 37 have the same concentration of impurities of the same conductivity type respectively and the thicknesses thereof are thinned gradually toward the inside. Therefore the respective resistances between the opposite ends of the conductive layers 31 to 37 are equal to one another. Holes generated by incidence of a spot light flow into the conductive layers 31 to 37 of a P type and divided to position signal electrodes 2a and 2b in the resistance ratio corresponding to the angle of a point of inflow. Accordingly, it is possible to detect information on a rotational angle precisely, and a device thus constituted can be applied to an angle detector, a small-sized rotary encoder, etc., which are small in size and have a high resolution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光や粒子線の入射位置に
ついての情報を、電流等として出力できる入射位置検出
用半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device for detecting an incident position, which can output information about the incident position of light or particle beam as a current or the like.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば特開昭59−17288号公報に示されるものが
あった。この従来例では、まずn型の矩形の半導体基板
の両端部に一対の位置信号電極が設けられる。そして、
これらの間の入射面の中央には、均一な断面積で均一な
不純物濃度のp型の基幹導電層が形成され、この基幹導
電層から入射面に延びるように、複数のp型の分枝導電
層が形成されている。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, there is one disclosed in JP-A-59-17288. In this conventional example, first, a pair of position signal electrodes are provided on both ends of an n-type rectangular semiconductor substrate. And
A p-type basic conductive layer having a uniform cross-sectional area and a uniform impurity concentration is formed in the center of the incident surface between these, and a plurality of p-type branched branches are formed so as to extend from the basic conductive layer to the incident surface. A conductive layer is formed.

【0003】この従来例によれば、光や粒子線の入射に
よって入射面で生成された電荷は、分枝導電層で集めら
れて基幹導電層で抵抗分割される。ここで、基幹導電層
は細く形成されているので、その抵抗値は十分に高く、
精度よく設定することができ、従って検出感度を向上さ
せることができる。
According to this conventional example, the charges generated on the incident surface by the incidence of light or particle beam are collected by the branched conductive layer and resistance-divided by the basic conductive layer. Here, since the basic conductive layer is formed thin, its resistance value is sufficiently high,
It can be set with high accuracy, and thus the detection sensitivity can be improved.

【0004】また、このような分野の別の感応半導体装
置として、特開昭59−127883号公報に示される
ものがあった。この従来例では、まず、半導体基板の表
面に抵抗層を縞状に形成することで、安定な高抵抗層を
容易に形成することができる。そして、縞の間隙部分に
は空乏層が広がっているので、縞の間隙において光の吸
収により発生したキャリアも再結合せずにドリフト電流
とすることができ、このため感度を向上させることがで
きる。
As another sensitive semiconductor device in such a field, there is one disclosed in JP-A-59-127883. In this conventional example, first, a stable high resistance layer can be easily formed by forming the resistance layer in a stripe shape on the surface of the semiconductor substrate. Since the depletion layer spreads in the gaps between the stripes, the carriers generated by the absorption of light in the gaps between the stripes can be used as a drift current without being recombined, and thus the sensitivity can be improved. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
59−17288号公報や特開昭59−127883号
公報に示される従来例は、回転角度検出器やロータリー
エンコーダに用いることができなかった。従来のロータ
リーエンコーダなどは、円周に沿ってスリットを形成し
た回転円板を用い、このスリットの通過光を発光素子と
受光素子のペアで検出していた。このため、装置を小型
化することが難しく、またスリット形成の寸法限界のた
め、分解能も一定の範囲にとどまっていた。
However, the conventional examples disclosed in JP-A-59-17288 and JP-A-59-127883 cannot be used for a rotation angle detector or a rotary encoder. A conventional rotary encoder or the like uses a rotating disk having slits formed along its circumference, and detects light passing through the slits with a pair of a light emitting element and a light receiving element. For this reason, it is difficult to miniaturize the device, and due to the dimensional limit of slit formation, the resolution remains within a fixed range.

【0006】そこで本発明は、小型であって分解能の高
い角度検出器や小型のロータリーエンコーダなどに応用
することのできる入射位置検出用半導体装置を提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a semiconductor device for detecting an incident position which can be applied to a small angle detector having a high resolution and a small rotary encoder.

【0007】[0007]

【課題を解決するための手段】本発明に係る入射位置検
出用半導体装置は、一導電型の半導体基板と、光や粒子
線の入射により励起した正孔電子対の一方を収集するた
めに、半導体基板に設けられた電極と、半導体基板の入
射面の両端に設けられて正孔電子対の他方を収集する一
対の位置信号電極と、この一対の位置信号電極を高い抵
抗で接続するように半導体基板上の所定の点を中心とす
る所定半径の円の円周に沿って形成された互いに平行な
複数の導電層とを備え、複数の導電層のそれぞれの両端
間の抵抗値が、互いに等しくなっていることを特徴とす
る。
An incident position detecting semiconductor device according to the present invention comprises a semiconductor substrate of one conductivity type and one of hole-electron pairs excited by incidence of light or a particle beam. The electrodes provided on the semiconductor substrate, the pair of position signal electrodes provided at both ends of the incident surface of the semiconductor substrate for collecting the other of the hole-electron pairs, and the pair of position signal electrodes are connected with high resistance. A plurality of parallel conductive layers formed along the circumference of a circle of a predetermined radius centered on a predetermined point on the semiconductor substrate, the resistance value between the respective ends of the plurality of conductive layers, It is characterized by being equal.

【0008】[0008]

【作用】本発明によれば、光や粒子線の入射により発生
したキャリアは導電層に流れこみ、位置検出電極までの
導電層の長さの比に応じて抵抗分割される。従って、回
転角度に関する情報を精度よく検出することが可能にな
る。
According to the present invention, carriers generated by the incidence of light or particle beams flow into the conductive layer and are resistance-divided according to the ratio of the length of the conductive layer to the position detection electrode. Therefore, it becomes possible to accurately detect the information about the rotation angle.

【0009】[0009]

【実施例】以下、本発明の理解を容易にするため、ま
ず、添付図面の図1ないし図5により本発明と原理が共
通する例を説明し、次いで、図6を参照して、本発明の
実施例を説明する。なお、図面の説明において同一要素
には同一符号を付し、重複する説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to facilitate understanding of the present invention, an example of the principle common to the present invention will be described with reference to FIGS. 1 to 5 of the accompanying drawings, and then the present invention will be described with reference to FIG. An example will be described. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0010】図1は原理が共通する例に係る入射位置検
出用半導体装置の平面図である。図示の通り、半導体基
板1の表面側であるドーナッツ状の入射面の両端部には
一対の位置信号電極2a,2bが設けられ、これらの間
の入射面の外側端部には基幹導電層3が形成されてい
る。この基幹導電層3は図中の点Pを中心とする円の円
周に沿っている。基幹導電層3からは入射面方向に延び
るように、半径方向に分枝導電層4が形成されている
が、これは互いに等角度間隔で複数本となっている。
FIG. 1 is a plan view of a semiconductor device for detecting an incident position according to an example having the same principle. As shown in the figure, a pair of position signal electrodes 2a and 2b are provided at both ends of the donut-shaped incident surface on the front surface side of the semiconductor substrate 1, and the core conductive layer 3 is provided at the outer ends of the incident surface between them. Are formed. The basic conductive layer 3 extends along the circumference of a circle centered on the point P in the figure. The branched conductive layers 4 are formed in the radial direction so as to extend from the basic conductive layer 3 in the direction of the incident surface, and the branched conductive layers 4 are arranged at equal angular intervals.

【0011】上記例の装置の詳細な構成を、図2の平面
図およびA−A線断面図により説明する。例えば、各辺
が1〜50mmのn型のシリコンからなる半導体基板1
の表面側には、1×1013〜1014cm-3程度にp型不
純物を注入した基幹導電層3がリング状に形成されると
共に、同一の工程で分枝導電層4が5μm程度のピッチ
で0.5〜1μm程度の深さに形成される。入射面の両
端には1×1018〜1019cm-3程度にp型不純物を注
入したオーミックコンタクト領域6a,6bが形成さ
れ、これらは上記の基幹導電層3と接続されている。こ
れらの上には、例えば熱酸化Si O2 からなる絶縁膜7
が形成され、オーミックコンタクト領域6a,6b上の
絶縁膜7の開口を介して、例えばアルミニウムからなる
位置信号電極2a,2bとのオーミック接触がとられて
いる。
The detailed structure of the apparatus of the above example will be described with reference to the plan view of FIG. 2 and the sectional view taken along the line AA. For example, a semiconductor substrate 1 made of n-type silicon with each side of 1 to 50 mm
A ring-shaped main conductive layer 3 in which a p-type impurity is implanted at a concentration of about 1 × 10 13 to 10 14 cm −3 is formed on the surface side of, and a branched conductive layer 4 of about 5 μm is formed in the same step. The pitch is formed to a depth of about 0.5 to 1 μm. Ohmic contact regions 6a and 6b, in which p-type impurities are implanted to about 1 × 10 18 to 10 19 cm −3 , are formed at both ends of the incident surface, and these are connected to the above-mentioned basic conductive layer 3. On top of these, an insulating film 7 made of, for example, thermally oxidized SiO 2 is formed.
Is formed, and ohmic contact is made with the position signal electrodes 2a and 2b made of, for example, aluminum through the openings of the insulating film 7 on the ohmic contact regions 6a and 6b.

【0012】そして、これらの上には例えばエポキシ樹
脂からなる表面保護層8が塗布形成され、その開口(図
示せず)を介してワイヤ(図示せず)が位置信号電極2
a,2bにボンディングされている。半導体基板1の裏
面側には、例えば1×1019〜1020cm-3程度のn型
不純物を含むオーミックコンタクト層10が形成され、
この表面には裏面電極11がオーミック接触して設けら
れる。
A surface protective layer 8 made of, for example, an epoxy resin is applied and formed on these, and a wire (not shown) is provided with a wire (not shown) through the opening (not shown).
Bonded to a and 2b. On the back surface side of the semiconductor substrate 1, an ohmic contact layer 10 containing, for example, about 1 × 10 19 to 10 20 cm −3 of n-type impurities is formed.
A back electrode 11 is provided in ohmic contact with this surface.

【0013】次に、上記の例の装置の作用を説明する。
例えば、赤外線スポットが表面側から入射されると、こ
れは表面保護層8および絶縁膜7を透過して半導体基板
1の入射面に達する。これにより半導体基板1で電子/
正孔対が発生すると、電子はオーミックコンタクト層1
0および裏面電極11側へ流れ、正孔はp型の分枝導電
層4に流れ込む。そして、この正孔による光電流は分枝
導電層4を通って基幹導電層3に流れ、この流入点から
位置信号電極2a,2bまでの距離(角度)の比に応じ
た抵抗比により分割される。従って、この半導体基板1
を被測定物に取り付け、この入射面にスポット光を入射
すれば、回転角度に応じた信号が位置信号電極2a,2
bから得られることになる。
Next, the operation of the apparatus of the above example will be described.
For example, when an infrared spot is incident from the front surface side, it passes through the surface protective layer 8 and the insulating film 7 and reaches the incident surface of the semiconductor substrate 1. As a result, the semiconductor substrate 1
When a hole pair is generated, the electron is in ohmic contact layer 1
0 and the back electrode 11 side, and the holes flow into the p-type branched conductive layer 4. Then, the photocurrent due to the holes flows through the branch conductive layer 4 into the basic conductive layer 3 and is divided by the resistance ratio according to the ratio of the distance (angle) from the inflow point to the position signal electrodes 2a and 2b. It Therefore, this semiconductor substrate 1
If a spot light is made incident on this incident surface by attaching the to the object to be measured, a signal according to the rotation angle is generated by the position signal electrodes 2a, 2
It will be obtained from b.

【0014】次に、図3を参照して図1の変形例を説明
する。同図(a)は、半導体基板1の大きさを半分と
し、180°の角度検出を行なえるようにした例であ
る。このようにすれば、180°以上は回転することが
ない被測定物に設置できるので、傾きセンサなどに用い
ることができる。
Next, a modification of FIG. 1 will be described with reference to FIG. FIG. 1A shows an example in which the size of the semiconductor substrate 1 is halved so that an angle of 180 ° can be detected. With this configuration, the device can be installed on the object to be measured that does not rotate 180 ° or more, and thus can be used for an inclination sensor or the like.

【0015】同図(b)はスポット光の当たらない部分
に分枝導電層4を設けないようにした例である。このよ
うにすれば、半導体基板1と基幹導電層3および分枝導
電層4によるpn接合の総面積を少なくできるので、リ
ーク電流を抑えて感度を向上できる。また、pn接合容
量も少なくなるので、高速、高周波の検出に適してい
る。
FIG. 1B shows an example in which the branch conductive layer 4 is not provided in a portion where spot light does not hit. By doing so, the total area of the pn junction formed by the semiconductor substrate 1, the backbone conductive layer 3 and the branched conductive layer 4 can be reduced, so that the leak current can be suppressed and the sensitivity can be improved. Further, since the pn junction capacitance is reduced, it is suitable for high speed and high frequency detection.

【0016】次に、図4および図5を参照して、図1の
他の変形例を説明する。図4はその平面図であり、図5
はその拡大図およびB−B線、C−C線断面図である。
図示の通り、基幹導電層3が入射面の外側端部に設けら
れており、その上には位置信号電極2a,2bと一体に
シールド膜5a,5bが設けられている。このシールド
膜5a,5bは導電性を有することが必要であり、また
中央部において切り離されている。分枝導電層4が形成
された有効入射領域は入射面の左半分のみであり、それ
以外の無効入射領域にはスポット光が入射されることは
ない。そこで、この例では無効入射領域の半導体基板1
にp型のキャリア捕獲層20aが形成され、更にその上
には例えばアルミニウムからなる遮光膜21bが形成さ
れている。一方、基幹導電層3の外側にもキャリア捕獲
層20aと遮光膜21aが形成され、上記のキャリア捕
獲層20aとキャリア捕獲層20bはコンタクト電極2
2a,22bにより半導体基板1と短絡されている。
Next, another modification of FIG. 1 will be described with reference to FIGS. FIG. 4 is a plan view of FIG.
FIG. 3 is an enlarged view and a cross-sectional view taken along line BB and CC.
As shown in the figure, the basic conductive layer 3 is provided at the outer end of the incident surface, and the shield films 5a and 5b are provided integrally therewith on the position signal electrodes 2a and 2b. The shield films 5a and 5b need to have conductivity, and are separated at the central portion. The effective incident area where the branched conductive layer 4 is formed is only in the left half of the incident surface, and spot light is not incident on the other invalid incident areas. Therefore, in this example, the semiconductor substrate 1 in the invalid incident region
A p-type carrier trapping layer 20a is formed on the above, and a light shielding film 21b made of, for example, aluminum is further formed thereon. On the other hand, the carrier trapping layer 20a and the light-shielding film 21a are also formed outside the basic conductive layer 3, and the carrier trapping layer 20a and the carrier trapping layer 20b are the contact electrodes 2.
The semiconductor substrate 1 is short-circuited by 2a and 22b.

【0017】図5(a)は図4の位置信号電極2a,2
b近傍の拡大平面図であり、同図(b),(c)はそれ
ぞれB−B線、C−C線断面図である。図示の通り、シ
ールド膜5a,5bと、キャリア捕獲層20a,20b
と、遮光膜21a,21bはそれぞれ絶縁膜7を介して
積層されている。そして、この絶縁膜7の開口を介して
コンタクト電極22a,22bにより半導体基板1とキ
ャリア捕獲層20a,20bの短絡がされている。更
に、最上部にはエポキシ樹脂などからなる表面保護層8
が積層されている。
FIG. 5A shows the position signal electrodes 2a and 2 of FIG.
It is an enlarged plan view of the vicinity of b, and the same figure (b), (c) is a BB line and CC sectional view, respectively. As shown, the shield films 5a and 5b and the carrier trapping layers 20a and 20b
And the light shielding films 21a and 21b are laminated with the insulating film 7 interposed therebetween. Then, the semiconductor substrate 1 and the carrier trapping layers 20a and 20b are short-circuited by the contact electrodes 22a and 22b through the opening of the insulating film 7. Further, a surface protection layer 8 made of epoxy resin or the like is provided on the uppermost part.
Are stacked.

【0018】次に、上の変形例の作用を説明する。有効
入射領域へのスポット光の入射により発生した正孔は、
分枝導電層4で集められて基幹導電層3に流れこむ。従
って、光電流は流入点の角度に応じた抵抗比で分割され
る。
Next, the operation of the above modification will be described. The holes generated by the spot light incident on the effective incident area are
It is collected by the branched conductive layer 4 and flows into the basic conductive layer 3. Therefore, the photocurrent is divided by the resistance ratio according to the angle of the inflow point.

【0019】一方、有効入射領域以外の半導体基板1中
でも、熱励起などにより電子/正孔対が発生される。し
かしながら、この熱励起による正孔はキャリア捕獲層2
0a,20bに捕獲され、コンタクト電極22a,22
bを介して半導体基板1に流れ込む。すると、同様に熱
励起で発生した電子と流れ込んだ正孔が再結合し、結果
的にキャリアは存在しなくなる。従って、いわゆる熱雑
音を著しく低減させることが可能になる。また、有効入
射領域以外の領域には遮光膜21a,21bが設けられ
ているので、ここへの光の入射は全て排除できる。従っ
て、この点においても雑音成分を大幅に低減できる。
On the other hand, electron / hole pairs are also generated in the semiconductor substrate 1 outside the effective incident region due to thermal excitation or the like. However, holes due to this thermal excitation are generated in the carrier trapping layer 2
0a, 20b and contact electrodes 22a, 22
It flows into the semiconductor substrate 1 via b. Then, similarly, the electrons generated by the thermal excitation and the holes that have flowed in are recombined, and as a result, the carriers do not exist. Therefore, so-called thermal noise can be significantly reduced. Further, since the light-shielding films 21a and 21b are provided in regions other than the effective incident region, it is possible to eliminate all light incident on these regions. Therefore, also in this respect, the noise component can be significantly reduced.

【0020】さらに、基幹導電層3上には絶縁膜7を介
してシールド膜5a,5bが設けられているので、表面
保護層8に含まれる電荷の影響を排除できる。具体的に
は、表面保護層8を構成するエポキシ樹脂などはナトリ
ウムイオン(Na + )を含むことが多く、これがあると
基幹導電層3の有効断面積が変動する。この断面積の変
動は、基幹導電層3を高抵抗にして検出精度を上げるた
めに、基幹導電層3の不純物濃度を低くするほど著し
い。ところが、上記の例では導電性のシールド膜5a,
5bにより基幹導電層3はシールドされるので、上記の
ような不都合が生じることはない。
Further, since the shield films 5a and 5b are provided on the basic conductive layer 3 with the insulating film 7 interposed therebetween, the influence of the charges contained in the surface protective layer 8 can be eliminated. Specifically, the epoxy resin or the like forming the surface protective layer 8 often contains sodium ions (Na + ), and the presence of this causes the effective cross-sectional area of the basic conductive layer 3 to vary. This variation of the cross-sectional area becomes more remarkable as the impurity concentration of the basic conductive layer 3 is lowered in order to increase the resistance of the basic conductive layer 3 and improve the detection accuracy. However, in the above example, the conductive shield film 5a,
Since the core conductive layer 3 is shielded by 5b, the above inconvenience does not occur.

【0021】次に、図6を参照して、本発明の実施例を
説明する。なお、基板の材料、不純物の濃度および電極
の材料等は、上記の本発明と原理が共通な例と同様とす
る。
Next, an embodiment of the present invention will be described with reference to FIG. Note that the material of the substrate, the concentration of impurities, the material of the electrodes, and the like are the same as those of the above-described example having the same principle as the present invention.

【0022】図6(a)はその平面図であり、同図
(b)はB−B線断面図である。図示の通り、半導体基
板1上には7本の導電層31〜37が形成されている。
これら導電層31〜37はそれぞれ同一導電型の不純物
濃度を同一濃度に有し、その太さが内側に向って徐々に
細くなっている。このため、各導電層31〜37の両端
間の抵抗は互いに同一となっている。
FIG. 6 (a) is a plan view thereof, and FIG. 6 (b) is a sectional view taken along line BB. As illustrated, seven conductive layers 31 to 37 are formed on the semiconductor substrate 1.
These conductive layers 31 to 37 have the same conductivity type impurity concentration and the same concentration, and the thickness thereof gradually decreases toward the inside. Therefore, the resistances between both ends of the conductive layers 31 to 37 are the same.

【0023】この例によれば、スポット光の入射により
発生した正孔は、p型の導電層31〜37に流れ込み、
流入点の角度に応じた抵抗比で位置信号電極2a,2b
に分割される。従って、角度センサや傾きセンサなどに
用いることが可能である。
According to this example, the holes generated by the incident spot light flow into the p-type conductive layers 31 to 37,
Position signal electrodes 2a, 2b with a resistance ratio according to the angle of the inflow point
Is divided into Therefore, it can be used as an angle sensor, an inclination sensor, or the like.

【0024】本発明は上記に限定されず、種々の態様が
可能である。例えば、絶縁膜を介して設けられるシール
ド膜は位置信号電極に接続せずに、半導体基板に接続し
たり、別途の電極を介して外部のアースに接続してもよ
い。また、半導体基板などの材料や導電層の不純物濃度
も、例示のものに限られない。さらに、導電層は半導体
基板の表面にポリシリコンを被着形成したり、Sn O2
等の金属薄膜を形成したりすることによっても実現でき
る。
The present invention is not limited to the above, and various modes are possible. For example, the shield film provided via the insulating film may be connected to the semiconductor substrate without being connected to the position signal electrode, or may be connected to an external earth via a separate electrode. Further, the material such as the semiconductor substrate and the impurity concentration of the conductive layer are not limited to those illustrated. Further, the conductive layer is formed by depositing polysilicon on the surface of the semiconductor substrate or SnO 2
It can also be realized by forming a metal thin film such as.

【0025】[0025]

【発明の効果】以上、詳細に説明した通り、本発明で
は、光や粒子線の入射により発生したキャリアは導電層
に流れこみ、位置検出電極までの導電層の長さの比に応
じて抵抗分割されるので、回転角度に関する情報を精度
よく検出することが可能になる。従って、小型であって
分解能の高い角度検出器や小型のロータリーエンコーダ
などに応用することができるという効果を奏する。
As described above in detail, in the present invention, the carriers generated by the incidence of light or particle beam flow into the conductive layer and the resistance is increased according to the ratio of the length of the conductive layer to the position detection electrode. Since it is divided, it becomes possible to accurately detect information about the rotation angle. Therefore, there is an effect that it can be applied to a small angle detector having a high resolution, a small rotary encoder, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と原理が共通する例に係る入射位置検出
用半導体装置の平面図。
FIG. 1 is a plan view of a semiconductor device for detecting an incident position according to an example having the same principle as the present invention.

【図2】図1の拡大図および断面図。FIG. 2 is an enlarged view and a cross-sectional view of FIG.

【図3】図1の変形例の平面図。FIG. 3 is a plan view of a modified example of FIG.

【図4】図1の他の変形例の平面図。FIG. 4 is a plan view of another modified example of FIG.

【図5】図4の拡大図および断面図。5 is an enlarged view and a sectional view of FIG.

【図6】本発明に係る実施例の平面図および断面図。FIG. 6 is a plan view and a sectional view of an embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1…半導体基板、2a,2b…位置信号電極、3…基幹
導電層、4…分枝導電層、5a,5b…シールド膜、6
a,6b…オーミックコンタクト領域、7…絶縁膜、8
…表面保護層、10…オーミックコンタクト層、11…
裏面電極、20a,20b…キャリア捕獲層、21a,
21b…遮光膜、22a,22b…コンタクト電極、3
1〜37…導電層。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2a, 2b ... Position signal electrode, 3 ... Basic conductive layer, 4 ... Branch conductive layer, 5a, 5b ... Shield film, 6
a, 6b ... Ohmic contact region, 7 ... Insulating film, 8
... Surface protective layer, 10 ... Ohmic contact layer, 11 ...
Back electrode, 20a, 20b ... Carrier trapping layer, 21a,
21b ... Shading film, 22a, 22b ... Contact electrode, 3
1-37 ... Conductive layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊野瀬 幸男 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Inose 1 126-1, Nomachi, Hamamatsu City, Shizuoka Prefecture Hamamatsu Photonics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板と、光や粒子線の
入射により励起した正孔電子対の一方を収集するため
に、前記半導体基板に設けられた電極と、前記半導体基
板の入射面の両端に設けられて前記正孔電子対の他方を
収集する一対の位置信号電極と、この一対の位置信号電
極を高い抵抗で接続するように前記半導体基板上の所定
の点を中心とする所定半径の円の円周に沿って形成され
た互いに平行な複数の導電層とを備え、前記複数の導電
層のそれぞれの両端間の抵抗値が、互いに等しくなって
いることを特徴とする入射位置検出用半導体装置。
1. A semiconductor substrate of one conductivity type, an electrode provided on the semiconductor substrate for collecting one of hole-electron pairs excited by incidence of light or particle beam, and an incident surface of the semiconductor substrate. A pair of position signal electrodes provided at both ends of the pair for collecting the other of the hole-electron pairs, and a predetermined point centered on a predetermined point on the semiconductor substrate so as to connect the pair of position signal electrodes with a high resistance. An incident position characterized by comprising a plurality of conductive layers parallel to each other formed along the circumference of a circle of radius, and resistance values between both ends of each of the plurality of conductive layers being equal to each other. Semiconductor device for detection.
JP52A 1993-11-01 1993-11-29 Semiconductor device for detecting position of incidence Pending JPH06204555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52A JPH06204555A (en) 1993-11-01 1993-11-29 Semiconductor device for detecting position of incidence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52A JPH06204555A (en) 1993-11-01 1993-11-29 Semiconductor device for detecting position of incidence

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27367587A Division JPH0658975B2 (en) 1987-10-29 1987-10-29 Incident position detection semiconductor device

Publications (1)

Publication Number Publication Date
JPH06204555A true JPH06204555A (en) 1994-07-22

Family

ID=17863436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52A Pending JPH06204555A (en) 1993-11-01 1993-11-29 Semiconductor device for detecting position of incidence

Country Status (1)

Country Link
JP (1) JPH06204555A (en)

Similar Documents

Publication Publication Date Title
JP3411580B2 (en) Ionizing radiation detector
KR19990008434A (en) Coplanar S-Line Photodiode Assembly
JPH0832100A (en) Photodetector
WO2001075977A1 (en) Semiconductor energy detector
EP0642178A2 (en) Semiconductor device for converting light and radiations into electricity
WO2020121851A1 (en) Light detection device
US4896200A (en) Novel semiconductor-based radiation detector
JP4571267B2 (en) Radiation detector
US4146904A (en) Radiation detector
JPH06204555A (en) Semiconductor device for detecting position of incidence
JPH0658975B2 (en) Incident position detection semiconductor device
JPH0644640B2 (en) Incident position detection semiconductor device
CN100372131C (en) Semiconductor position sensor
US4060822A (en) Strip type radiation detector and method of making same
JP2574341B2 (en) Multi-channel semiconductor radiation detector
JP2006080306A (en) Photodiode array and spectroscope
JP3197512B2 (en) Semiconductor radiation detector
JP2676814B2 (en) Multi-type light receiving element
JPS59124177A (en) Planar diffusion type electromagnetic wave detecting diode
WO2023149284A1 (en) Photodetector
JPH0620160B2 (en) Semiconductor position detector
JPH01115169A (en) Semiconductor device for incident position detection
JPH0644641B2 (en) Incident position detection semiconductor device
JPH0719170Y2 (en) Semiconductor radiation detector
JP3364989B2 (en) Avalanche photodiode for split optical sensor