JPS6328076A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPS6328076A
JPS6328076A JP61171217A JP17121786A JPS6328076A JP S6328076 A JPS6328076 A JP S6328076A JP 61171217 A JP61171217 A JP 61171217A JP 17121786 A JP17121786 A JP 17121786A JP S6328076 A JPS6328076 A JP S6328076A
Authority
JP
Japan
Prior art keywords
charge
semiconductor substrate
radiation
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61171217A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsutsui
博司 筒井
Matsuki Baba
末喜 馬場
Yasuichi Oomori
大森 康以知
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61171217A priority Critical patent/JPS6328076A/en
Publication of JPS6328076A publication Critical patent/JPS6328076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To avoid cross-talk and improve energy resolution by providing a shielding grid on a radiation incident surface. CONSTITUTION:A semiconductor substrate 6 is made of Si, GaAs, CdTe, HgI or the like and charge clouds (a) of electron-hole pairs are created in the substrate 6 by an incident radiation. On the radiation incident surface of the semiconductor substrate 6, charge collecting electrodes 8 which collect the charge clouds (a) and a shielding grid 9 between the collecting electrodes 8 are provided. The shielding grid 9 is made of material (such as lead Pb or tungsten W) which has high radiation blocking capability and is composed of a shielding layer 9a and an insulating layer 96 which insulates the shielding layer 9a from the charge collecting electrodes 8. A common electrode 7 is provided so as to face the charge collecting electrodes 8 with the semiconductor substrate 6 between.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、診断用X線透過像撮影装置や非破壊検査装置
において透過放射線量検出に用いられる半導体放射線検
出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor radiation detector used for detecting the amount of transmitted radiation in a diagnostic X-ray transmission imaging device or a non-destructive inspection device.

従来の技術 半導体放射線検出器に用いる半導体基板の有感層(放射
線が照射された時に出力信号を得ることのできる層)厚
さは、入射放射線を十分に吸収するに足りる厚さを必要
とし、このような有感層厚さを有する半導体基板を備え
た半導体放射線検出器においては、電荷補集電極間で生
ずるクロストークが問題となる。クロストークについて
第4図を参照しながら説明する。半導体基板101の共
通電極102と電荷補集電極103の間に電圧を印加す
る。ここではP形半導体基板において、共通電極102
に負電圧、電荷補集電極103に正電圧を印加した場合
について説明する。第4図中矢印aで示す紙面表面から
裏面に向って、放射線が入射すると、前記半導体基板1
01内の空乏領域の光電吸収により電子正孔対の電荷雲
すを生じるOP形半導体基板の場合、少数キャリアであ
る電子を前記電荷補集電%103で補集する。1唯10
2 、103への電圧印加により、電界Eが発発生し電
荷雲すは電荷雲半径を拡げながら、前記共通電極1o2
から前記電荷補集電極103方向に移動し、前記電荷補
集電極103に補集され、パルス電流として出力される
。しかしながら、前記電荷補集電極103間の下部で電
荷雲Cが発生した場合、電気力線は隣接する電荷補集電
極103a、103b方向に分かれ、これにともなって
電荷雲Cも、隣接する電荷補集電極103a。
Conventional technology The sensitive layer (layer that can obtain an output signal when irradiated with radiation) of a semiconductor substrate used in a semiconductor radiation detector needs to be thick enough to sufficiently absorb incident radiation. In a semiconductor radiation detector equipped with a semiconductor substrate having such a sensitive layer thickness, crosstalk occurring between charge collecting electrodes becomes a problem. Crosstalk will be explained with reference to FIG. A voltage is applied between the common electrode 102 and the charge collecting electrode 103 of the semiconductor substrate 101 . Here, in the P-type semiconductor substrate, the common electrode 102
A case will be described in which a negative voltage is applied to the charge collection electrode 103 and a positive voltage is applied to the charge collection electrode 103. When radiation is incident from the front surface of the paper toward the back surface as indicated by arrow a in FIG. 4, the semiconductor substrate 1
In the case of an OP type semiconductor substrate in which a charge cloud of electron-hole pairs is generated by photoelectric absorption in a depletion region within 01, electrons, which are minority carriers, are collected by the charge collection current %103. 1 only 10
By applying a voltage to the common electrodes 1o2 and 103, an electric field E is generated and the charge cloud expands the radius of the charge cloud.
The electric current moves toward the charge collecting electrode 103, is collected by the charge collecting electrode 103, and is output as a pulse current. However, when a charge cloud C is generated in the lower part between the charge collection electrodes 103, the lines of electric force are separated in the direction of the adjacent charge collection electrodes 103a and 103b, and accordingly, the charge cloud C is also affected by the adjacent charge collection electrodes. Collector electrode 103a.

103bに分割補集される。その結果、この電荷補集電
極103から微小パルス電流として出力される。つまり
出力信号は、前記電荷補集電極103a下部で生じた電
荷雲すと、電荷補集電極103a、103t)間で生じ
た電荷雲Cとから得られるパルス電流であり、このパル
ス電流のうち、電荷雲Cによって得られる微小パルス電
流が変動することにより、放射線のエネルギーに比例し
た出力を生ずることが不可能となる。この分割補集にと
もなう微小パルス信号の発生をクロストークという。
The data is divided and collected in 103b. As a result, this charge collecting electrode 103 outputs a minute pulse current. In other words, the output signal is a pulse current obtained from the charge cloud generated under the charge collection electrode 103a and the charge cloud C generated between the charge collection electrodes 103a and 103t. Of this pulse current, The fluctuation of the minute pulse current obtained by the charge cloud C makes it impossible to produce an output proportional to the energy of the radiation. The generation of minute pulse signals accompanying this division and collection is called crosstalk.

つまり、クロストークが生じた場合、入射放射線エネル
ギーに比例したパルス出力信号が得られず、エネルギー
分解能が低下するといった問題があるわけである。
In other words, when crosstalk occurs, a pulse output signal proportional to the incident radiation energy cannot be obtained, leading to a problem in which the energy resolution decreases.

このクロストークを防止する構成として、特開昭58−
142283号公報が知られている。この構成を第5図
を参照しながら説明する。半導体基板1は、空間的に分
離された単位検出領域1aを有し、この単位検出領域は
、放射線に対する阻止能力が高い物質、例えばW(タン
グステン)スペーサ5によって仕切られている。前記半
導体基板1には、前記半導体基板1内で光電吸収により
生じた電荷雲すを補集する電極2が設けられ、この電極
2に前記半導体基板1を介して電極3が対向して設けら
れ、この電極3の下部にマウント板4が取り付けられて
いる。入射した放射線aは、前記Wスペーサ5によって
、単位検出領域1&に導ひかれ、隣接する前記電極2に
電荷雲すが分割され補集されることをなくし、クロスト
ークを防止していた。
As a structure to prevent this crosstalk, Japanese Patent Laid-Open No. 58-
No. 142283 is known. This configuration will be explained with reference to FIG. The semiconductor substrate 1 has spatially separated unit detection regions 1a, and the unit detection regions 1a are partitioned by a material having a high blocking ability against radiation, such as W (tungsten) spacers 5. The semiconductor substrate 1 is provided with an electrode 2 that collects a charge cloud generated by photoelectric absorption within the semiconductor substrate 1, and an electrode 3 is provided opposite to this electrode 2 with the semiconductor substrate 1 interposed therebetween. , a mount plate 4 is attached to the lower part of this electrode 3. The incident radiation a is guided by the W spacer 5 to the unit detection area 1&, thereby preventing the charge cloud from being split and collected on the adjacent electrode 2, thereby preventing crosstalk.

発明が解決しようとする問題点 しかし上記従来の構成では半導体基板を切断もしくは溝
入れ加工を行なわねばならぬことから以下のような問題
があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional structure, since the semiconductor substrate must be cut or grooved, the following problems arise.

(1)機械的なひずみにより、加工面から約5〜1oO
μmの範囲において、多くのトラップレベルが生じ、放
射線により半導体基板内に生じた電荷が、このトラップ
レベルにトラップされ、加工面近傍“で生じた電荷雲は
十分に電荷補集用の電極2(第6図)に補集されない。
(1) Approximately 5 to 1oO from the machined surface due to mechanical strain
Many trap levels are generated in the μm range, and charges generated in the semiconductor substrate by radiation are trapped in these trap levels, and the charge cloud generated near the processed surface is sufficiently absorbed by the charge collecting electrode 2 ( Figure 6) is not included.

営)加工面近傍にトラップレベルが存在することにより
、加工面近傍の電界分布が変化して、電荷雲(電荷)に
電界が十分に加わらなくなり、前記電荷雲は十分に前記
電極2に補集されない。
Operation) Due to the existence of a trap level near the machined surface, the electric field distribution near the machined surface changes, and the electric field is no longer sufficiently applied to the charge cloud (charge), so that the charge cloud is sufficiently collected at the electrode 2. Not done.

以上の点から、切断もしくは溝入れ加工を行なった半導
体放射線検出器は、各単位検出領域による分割は良好で
あるが、加工面近傍のトラップレベルによる電荷のトラ
ップが生じ、出力(電流)信号の電流値にばらつきを生
じ、エネルギー分解能の低下の原因となっていた。
From the above points, semiconductor radiation detectors that have been cut or grooved can be divided into unit detection areas well, but charge traps occur due to the trap level near the processed surface, and the output (current) signal is This caused variations in current values, causing a decrease in energy resolution.

またエネルギー分解能を上げるために、半導体基板の有
感厚さを大きくとる必要があり、前記電極2.3に平行
に放射線aを紙面表面から裏面に向って入射する構成と
しており、有効入射面(放射線を有効に入射可能な面)
が小さく、積層にするなどして、所要の有効入射面を構
成していた。
In addition, in order to increase the energy resolution, it is necessary to increase the sensitive thickness of the semiconductor substrate, and the radiation a is made to enter parallel to the electrode 2.3 from the front surface of the paper toward the back surface, so that the effective incident surface ( surface on which radiation can be effectively incident)
is small, and the required effective incident surface was constructed by laminating layers.

本発明は上記の問題を解決するもので、電荷補集電極間
のクロストークを防止するとともに、有効入射面の大な
る、エネルギー分解能に優れた半導体放射線検出器を提
供することを目的とする。
The present invention solves the above problems, and aims to provide a semiconductor radiation detector that prevents crosstalk between charge collecting electrodes, has a large effective incident surface, and has excellent energy resolution.

問題点を解決するための手段 この目的を達成するために、本発明の半導体放射線検出
器は、半導体基板の放射線入射面側に複数個の電荷補集
電極を配設し、前記電荷補集電極間に遮へいグリッドを
設け、前記半導体基板を介して前記電荷補集電極に対向
する共通電極を設けている。
Means for Solving the Problems In order to achieve this object, the semiconductor radiation detector of the present invention includes a plurality of charge collecting electrodes disposed on the radiation incident surface side of the semiconductor substrate, and the charge collecting electrodes A shielding grid is provided in between, and a common electrode is provided opposite to the charge collecting electrode with the semiconductor substrate interposed therebetween.

作  用 上記の構成により、半導体基板の前記遮へいグリッド対
応部に擬似不感層が形成され、この擬似不感層内では、
放射線の入射及び放射線による電荷置の発生はなくなる
。その結果、電荷補集電極間のクロストークを無くする
ことができる。さらK、エネルギー分解能低下の原因で
あるクロストークを無くすることKより、エネルギー分
解能に優れた半導体放射線検出器を実現できる。また電
荷補集電極に鉛直に放射線を受けることにより、その有
効入射面を大きくとることが可能となる。1実施例 以下本発明の実施例について第1図〜第3図を参照しな
がら説明する。
Operation With the above configuration, a pseudo-insensitive layer is formed in the shielding grid corresponding portion of the semiconductor substrate, and within this pseudo-insensitive layer,
The incidence of radiation and the generation of electric charges due to radiation are eliminated. As a result, crosstalk between the charge collecting electrodes can be eliminated. Furthermore, by eliminating crosstalk, which is a cause of a decrease in energy resolution, a semiconductor radiation detector with excellent energy resolution can be realized. Furthermore, by receiving radiation vertically on the charge collecting electrode, it is possible to increase the effective incidence surface. Embodiment 1 Below, embodiments of the present invention will be described with reference to FIGS. 1 to 3.

第1図〜第3図において、半導体基板6は、Si、Ga
As、CdTe、HgI等から形成され、入射した放射
線により電子正孔対の電装置aを生ずる〇前記半導体基
板6の放射線入射面側には、前記電装置aを補集する電
荷補集電極8と、この電荷補集電極8間に遮へいグリッ
ド9が設けられている。
In FIGS. 1 to 3, the semiconductor substrate 6 is made of Si, Ga,
A charge collection electrode 8 is formed from As, CdTe, HgI, etc., and generates an electron-hole pair electric device a by the incident radiation.On the radiation incident surface side of the semiconductor substrate 6, there is a charge collection electrode 8 that collects the electric device a. A shielding grid 9 is provided between the charge collecting electrode 8 and the charge collecting electrode 8.

前記遮へいグリッド9は、放射線に対する阻止能力の高
い物質(鉛Pb、タングステンW等)で形成されている
。前記遮へいグリッド9は遮へい層9aと絶縁層9bか
らなり、遮へい層9aと前記電荷補集電極8間を前記絶
縁層9bで絶縁する。
The shielding grid 9 is made of a material (lead Pb, tungsten W, etc.) that has a high ability to block radiation. The shielding grid 9 is composed of a shielding layer 9a and an insulating layer 9b, and the shielding layer 9a and the charge collecting electrode 8 are insulated by the insulating layer 9b.

半導体基板6を介して、前記電荷補集電極8に対向して
共通電極7が設けられている。
A common electrode 7 is provided opposite the charge collecting electrode 8 with a semiconductor substrate 6 interposed therebetween.

上記の構成について以下にその動作を説明する。The operation of the above configuration will be explained below.

なお説明は半導体基板らがP形半導体で形成されている
場合について行なう。
Note that the description will be given for the case where the semiconductor substrates are made of a P-type semiconductor.

入射した放射線により、前記半導体基板6内に電装置a
が生ずる。この半導体基板6における少数キャリアは電
子であり、電装置aの動きは電子として考える。前記電
荷補集電極間に正電圧、前記共通電極7に負電圧を印加
することにより、電界Eが前記電荷補集電極8から前記
共通電極7方向に加わり、電装置aは前記電荷補集電極
8向きに拡散・移動し、前記電荷補集電極8に補集され
、パルス電流信号として出力される。
Due to the incident radiation, an electric device a is formed inside the semiconductor substrate 6.
occurs. The minority carriers in this semiconductor substrate 6 are electrons, and the movement of the electrical device a is considered as electrons. By applying a positive voltage between the charge collecting electrodes and a negative voltage to the common electrode 7, an electric field E is applied from the charge collecting electrode 8 to the common electrode 7, and the electric device a is connected to the charge collecting electrode. It diffuses and moves in eight directions, is collected by the charge collecting electrode 8, and is output as a pulse current signal.

前記遮へいグリッド9に照射された放射線は前記半導体
基板θ内への入射をさえぎられ、この遮へいグリッド9
の下部の半導体基板6には電装置の生じない擬似不感層
すが形成される。従って、前記電荷補集電極8間には電
装置が発生せず、電荷補集電極8間のクロストークはな
くなる。
The radiation irradiated onto the shielding grid 9 is blocked from entering the semiconductor substrate θ, and this shielding grid 9
A pseudo-insensitive layer is formed on the semiconductor substrate 6 under the semiconductor substrate 6, in which no electrical device is formed. Therefore, no electric device is generated between the charge collecting electrodes 8, and crosstalk between the charge collecting electrodes 8 is eliminated.

次に、電荷補集電極8下の有感層Cと擬似不感層すの境
界で生じた電装置aの動きについて説明する。この電装
置とは半導体基板θ内を、前記電荷補集電極8方向に、
拡散・移動する。
Next, the movement of the electric device a that occurs at the boundary between the sensitive layer C and the pseudo-insensitive layer under the charge collecting electrode 8 will be explained. This electric device is a semiconductor substrate θ in the direction of the charge collection electrode 8,
Spread and move.

前記電荷補集電極8近傍において、電装置aの中心の電
荷密度に対し、電荷密度が10%となる点を電装置aの
端部として、中心から端部までを電荷雲量大半径R(第
2図)とすると、この電荷雲量大半径Rと前記遮へいグ
リッド9の幅L(第2図)が、 L>2R の関係を満たすとき、前記有感層と模本不感層の境界で
生じた電装置aは、隣接する電極の電界の影響を受けず
、分割され前記電荷補集電極8=L。
In the vicinity of the charge collecting electrode 8, the point where the charge density is 10% of the charge density at the center of the electric device a is defined as the end of the electric device a, and the distance from the center to the end is defined as the charge cloud major radius R (the third (Fig. 2), when the large radius R of the charge cloud amount and the width L of the shielding grid 9 (Fig. 2) satisfy the relationship L>2R, the The electric device a is not affected by the electric field of adjacent electrodes and is divided into charge collecting electrodes 8=L.

8bに補集されることはなくなる。すなわち、クロスト
ークは発生しないわけである。
8b will no longer be collected. In other words, no crosstalk occurs.

上記の本実施例によれば、遮へいグリッドを設隻 けたことにより、遮へいグリッド下部の擬壬不感層すで
は電装置が発生せず、さらに有感icと擬昏 千年感層すとの境界で生じた電装置は、分割され電荷補
集電極8に補集されることはない。従ってクロストーク
は防止されるものである。
According to the above-mentioned embodiment, since the shielding grid is provided, no electrical equipment is generated in the pseudo-insensitive layer at the bottom of the shielding grid, and furthermore, the boundary between the sensitive IC and the pseudo-insensitive layer is The resulting electric device is not divided and collected by the charge collecting electrode 8. Crosstalk is therefore prevented.

なお前記遮へいグリッド9は、導電性の遮へい層9aと
絶縁層9bからなり、その形状は立方体としているが、
遮へいグリッド9の形状は第3図に示すように、遮へい
層9&の形状を円柱状(例えばワイヤ状)としてもよい
しく第3図A)、!へいグリッド9の形状は立方体とし
て、遮へい層9aの厚さlを変えて、放射線の阻止能力
を調整するものでもよい(第3図B)。また、遮へいグ
リッド9は絶縁物のみで形成してもよい(第3図C)。
The shielding grid 9 is made up of a conductive shielding layer 9a and an insulating layer 9b, and has a cubic shape.
The shape of the shielding grid 9 may be as shown in FIG. 3, and the shape of the shielding layer 9 may be cylindrical (for example, wire-shaped) (FIG. 3A). The shape of the grid 9 may be a cube, and the radiation blocking ability may be adjusted by changing the thickness l of the shielding layer 9a (FIG. 3B). Further, the shielding grid 9 may be formed only of an insulating material (FIG. 3C).

発明の効果 以上の実施例の説明より明らかなように本発明の半導体
放射線検出器によれば、放射線入射面側に遮へいグリッ
ドを設けたことにより、電荷補集電極間に放射線は入射
せず、亀装置の発生は妨げられ、クロストークが防止さ
れる。クロストークが防止されることにより、エネルギ
ー分解能の向上を図ることができる。
Effects of the Invention As is clear from the above description of the embodiments, according to the semiconductor radiation detector of the present invention, since the shielding grid is provided on the radiation incident surface side, radiation does not enter between the charge collecting electrodes, The generation of tortoise devices is prevented and crosstalk is prevented. By preventing crosstalk, it is possible to improve energy resolution.

また、電荷補集電極に鉛直に放射線は入射し、半導体基
板の有効入射面を大きくとることが可能となる。さらに
は、半導体基板になんらの機械的加工を必要とせず、ト
ラップレベルの発生といった問題もない、放射線検出能
力に優れた半導体放射線検出器を実現できるものである
Furthermore, the radiation enters the charge collecting electrode vertically, making it possible to increase the effective incident surface of the semiconductor substrate. Furthermore, it is possible to realize a semiconductor radiation detector that does not require any mechanical processing on the semiconductor substrate, has no problem such as generation of trap levels, and has excellent radiation detection ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体放射線検出器の一実施例を示す
断面図、第2図は同要部断面図、第3図A、B、Cはそ
れぞれ同半導体放射線検出器の遮へいグリッドの種々の
構成を示す断面図、第4図はクロストークを説明する断
面図、第5図は従来の半導体放射線検出器の構成を示す
断面図である06・・・・・・半導体基板、7・・・・
・・共通電極、8・・・・・・電荷補集電極、9・・・
・・・遮へいグリッド0代理人の氏名 弁理士 中 尾
 敏 男 ほか1名6−+導イ参幕仮 第1図     8−電荷″’N乗を極q−iへい7ワ
ツド 第3図 第 4 図 第5図 Φ旗M8永八肘方向
FIG. 1 is a sectional view showing one embodiment of the semiconductor radiation detector of the present invention, FIG. 2 is a sectional view of the same essential part, and FIGS. 3A, B, and C are various shielding grids of the same semiconductor radiation detector, respectively. 4 is a sectional view illustrating crosstalk, and FIG. 5 is a sectional view showing the configuration of a conventional semiconductor radiation detector. 06...Semiconductor substrate, 7...・・・
...Common electrode, 8...Charge collection electrode, 9...
...Name of shielding grid 0 agent Patent attorney Toshio Nakao and one other person 6-+ guide sanmaku tentative figure 1 8-charge'' to the Nth power to pole q-i 7 wt figure 3 figure 4 Figure 5 Φ flag M8 Eihachi elbow direction

Claims (2)

【特許請求の範囲】[Claims] (1)放射線が入射した場合に電離作用を生ずる半導体
基板と、前記半導体基板の放射線入射面側に配設した複
数個の電荷補集電極と、前記電荷補集電極間に設けた放
射線の透過を不能とする遮へいグリッドと、前記半導体
基板を介して、前記電荷補集電極と対向する共通電極を
備えたことを特徴とする半導体放射線検出器。
(1) A semiconductor substrate that causes ionization when radiation is incident, a plurality of charge collection electrodes arranged on the radiation incident surface side of the semiconductor substrate, and transmission of radiation provided between the charge collection electrodes. What is claimed is: 1. A semiconductor radiation detector comprising: a shielding grid that makes it impossible to perform a charge collecting electrode; and a common electrode that faces the charge collecting electrode with the semiconductor substrate interposed therebetween.
(2)半導体基板は、炭素(Si)、砒化ガリウム(G
aAs)、テルル化カドミウム(CdTe)、ヨウ化水
銀(HgI)のいずれかを用いて構成されたことを特徴
とする特許請求の範囲第1項記載の半導体放射線検出器
(2) The semiconductor substrate is made of carbon (Si), gallium arsenide (G
2. The semiconductor radiation detector according to claim 1, wherein the semiconductor radiation detector is constructed using any one of aAs), cadmium telluride (CdTe), and mercury iodide (HgI).
JP61171217A 1986-07-21 1986-07-21 Semiconductor radiation detector Pending JPS6328076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171217A JPS6328076A (en) 1986-07-21 1986-07-21 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171217A JPS6328076A (en) 1986-07-21 1986-07-21 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPS6328076A true JPS6328076A (en) 1988-02-05

Family

ID=15919209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171217A Pending JPS6328076A (en) 1986-07-21 1986-07-21 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPS6328076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477969A (en) * 1987-09-18 1989-03-23 Shimadzu Corp Semiconductor radiation detecting element
JP2008180713A (en) * 2007-01-23 2008-08-07 General Electric Co <Ge> Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
US8564084B2 (en) 2008-06-16 2013-10-22 Koninklijke Philips N.V. Radiation detection and a method of manufacturing a radiation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477969A (en) * 1987-09-18 1989-03-23 Shimadzu Corp Semiconductor radiation detecting element
JP2008180713A (en) * 2007-01-23 2008-08-07 General Electric Co <Ge> Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
US8564084B2 (en) 2008-06-16 2013-10-22 Koninklijke Philips N.V. Radiation detection and a method of manufacturing a radiation detector

Similar Documents

Publication Publication Date Title
US6034373A (en) Semiconductor radiation detector with reduced surface effects
US6069360A (en) Method and apparatus for electron-only radiation detectors from semiconductor materials
US6037595A (en) Radiation detector with shielding electrode
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
US4472728A (en) Imaging X-ray spectrometer
JP4170411B2 (en) High-speed radiation detector
KR19990008434A (en) Coplanar S-Line Photodiode Assembly
US6350989B1 (en) Wafer-fused semiconductor radiation detector
US4883967A (en) Radiation detector and method of manufacturing the same
EP0642178A2 (en) Semiconductor device for converting light and radiations into electricity
US4292645A (en) Charge splitting resistive layer for a semiconductor gamma camera
US4996432A (en) Radiation detector
JP3309618B2 (en) X-ray CT system
US4119841A (en) Apparatus for the implementation of a method for producing a sectional view of a body
JPS6328076A (en) Semiconductor radiation detector
US4835587A (en) Semiconductor device for detecting radiation
US4060822A (en) Strip type radiation detector and method of making same
US4255660A (en) Detectors of penetrating radiation
JPH01138486A (en) Multichannel type semiconductor radiation detector
US3925669A (en) Stripline radiation detection apparatus
US4411059A (en) Method for manufacturing a charge splitting resistive layer for a semiconductor gamma camera
GB1083287A (en) Solid state photosensitive device
JP2733930B2 (en) Semiconductor radiation detector
US3742215A (en) Method and apparatus for a semiconductor radiation detector
JPH058595B2 (en)