JPS63289876A - High-speed response optical position detector - Google Patents

High-speed response optical position detector

Info

Publication number
JPS63289876A
JPS63289876A JP62124373A JP12437387A JPS63289876A JP S63289876 A JPS63289876 A JP S63289876A JP 62124373 A JP62124373 A JP 62124373A JP 12437387 A JP12437387 A JP 12437387A JP S63289876 A JPS63289876 A JP S63289876A
Authority
JP
Japan
Prior art keywords
resistance
stripe
electrodes
semiconductor
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62124373A
Other languages
Japanese (ja)
Other versions
JP2572389B2 (en
Inventor
Hitoshi Tanaka
均 田中
Yukio Inose
伊野瀬 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP12437387A priority Critical patent/JP2572389B2/en
Publication of JPS63289876A publication Critical patent/JPS63289876A/en
Application granted granted Critical
Publication of JP2572389B2 publication Critical patent/JP2572389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To realize a high-speed response without deteriorating the resolving power of a position by a method wherein a second semiconductor layer is constituted by a number of linear semiconductor layers which cross at right angles mutually. CONSTITUTION:A p-type semiconductor resistance layer 2 is formed on an n-type high-resistance semiconductor substrate 1; electrodes 3, 4 are formed on the p-type semiconductor resistance layer. In addition, the p-type semiconductor resistance layer is parallel to directions of the electrodes 3 and 4; one high-resistance stripe 21 and a number of low-resistance stripes 22 crossing at a right angle to the stripe 21 are formed; the stripe 21 and the stripes 22 are connected electrically. Accordingly, when the light is incident, a photoproduction charge generated at an incident position reaches the stripe 21 via the low-resistance stripes 22 as a photoelectric current which is proportional to the incident energy of the light. The photoelectric current is divided in such a way that it is inversely proportional to a resistance value from an arrival point at the stripe 21 to the electrodes 3 and 4; it can be taken out from the electrodes 3 and 4 as an output. By this setup, it is possible to respond to a high-speed modulated light source at high speed without deteriorating the resolving power of a position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入射光の位置を検出する半導体素子よりなる
光位置検出器に係わり、特に位置分解能を低下させるこ
となく、高速応答を可能にした高速応答光位置検出器に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical position detector made of a semiconductor element that detects the position of incident light, and in particular enables high-speed response without reducing position resolution. This invention relates to a high-speed response optical position detector.

〔従来の技術〕[Conventional technology]

一般に光位置検出器(以下PSDと言う)は、テレビジ
ョン用逼像管や固体逼像素子などにおけるような走査を
行わないで、半導体表面におけるLateral  P
hoto  Effectを利用し、入射光の位置で発
生した光生成電荷を位置情報として検出する装置であり
、各分野で広く利用されている。
In general, optical position detectors (hereinafter referred to as PSD) do not perform scanning as in television picture tubes or solid-state picture elements, but rather detect the lateral PSD on the semiconductor surface.
This is a device that uses photo effect to detect photogenerated charges generated at the position of incident light as position information, and is widely used in various fields.

第2図はPSDの断面構造を示す図で、1はn型高抵抗
半導体基板、2はp型半導体抵抗層、3および4は電極
、5はn“層、6は光の入射位置、7は共通電極を示す
FIG. 2 is a diagram showing the cross-sectional structure of the PSD, in which 1 is an n-type high-resistance semiconductor substrate, 2 is a p-type semiconductor resistance layer, 3 and 4 are electrodes, 5 is an n'' layer, 6 is a light incident position, and 7 indicates a common electrode.

図において、p型半導体抵抗N2およびn+層5がn型
高抵抗半導体基板1のそれぞれの面に均一に形成され、
p型半導体抵抗層2の両側に信号取りだし用の一対の電
極3および4が設けられている。
In the figure, a p-type semiconductor resistor N2 and an n+ layer 5 are uniformly formed on each surface of an n-type high resistance semiconductor substrate 1,
A pair of electrodes 3 and 4 for signal extraction are provided on both sides of the p-type semiconductor resistance layer 2.

このような構成において、電極3および4の間の距離を
し、抵抗をRLとし、電極3から光入射位置6までの距
離をX、その部分の抵抗をRllとする。光入射位置で
発生した光生成電荷は、光の入射エネルギーに比例する
光電流としてp型半導体抵抗層2に到達し、それぞれの
電極までの抵抗値に逆比例するように分割され、電極3
および4より取り出される。入射光から生成された光電
流をIoとして、電極3および4から取り出される電流
をla、Im とすると、 la =io  ・ (RL  RX ) / RL 
In such a configuration, let the distance between the electrodes 3 and 4 be RL, the resistance be RL, the distance from the electrode 3 to the light incident position 6 be X, and the resistance at that portion be Rll. The photogenerated charge generated at the light incident position reaches the p-type semiconductor resistance layer 2 as a photocurrent proportional to the incident energy of the light, and is divided so as to be inversely proportional to the resistance value up to each electrode.
and 4. If the photocurrent generated from the incident light is Io, and the currents taken out from electrodes 3 and 4 are la and Im, then la = io ・(RL RX ) / RL
.

1、−1゜・RX/RL       ・・・・・・・
・・(1)となる。p型半導体抵抗層2は均一であり、
長さと抵抗値が比例するとすれば、(1)式は、IA−
1゜・ (L−X)/L。
1, -1゜・RX/RL ・・・・・・・・・
...(1). The p-type semiconductor resistance layer 2 is uniform,
If length and resistance value are proportional, equation (1) becomes IA-
1°・(L-X)/L.

+l−1゜・X/L で表わされる6  1Aと1.の比を求めると、Ia 
/Im −(L−X)/X−L/X−1となり、Ia/
Inの値から、入射エネルギーに無関係に光の入射位置
を知ることができる。
+l-1°・X/L 6 1A and 1. Find the ratio of Ia
/Im −(L−X)/X−L/X−1, and Ia/
From the value of In, the incident position of light can be known regardless of the incident energy.

このようにして光の入射位置を求めることができるPS
Dにおいて、位置分解能を上げるためには、対向する電
極間の抵抗を大きくする必要がある。この位置分解能は
、PSDの信号対雑音比に比例し、信号は入射エネルギ
ーの強度に比例し、雑音は電極間の抵抗に反比例するこ
とが知られている。
PS where the incident position of light can be determined in this way
In D, in order to increase the positional resolution, it is necessary to increase the resistance between opposing electrodes. It is known that this positional resolution is proportional to the signal-to-noise ratio of the PSD, where the signal is proportional to the intensity of incident energy, and the noise is inversely proportional to the resistance between the electrodes.

第3図は電極間を高抵抗にした従来のPSDの構造を示
す図で、第3図(イ)はその平面図、第3図(ロ)はそ
のX−X方向断面図であり、第2図と同一の番号は同一
内容を示している。なお、11はp型半導体抵抗層であ
る。
Fig. 3 is a diagram showing the structure of a conventional PSD with high resistance between the electrodes, Fig. 3 (a) is its plan view, Fig. 3 (b) is its sectional view in the The same numbers as in Figure 2 indicate the same contents. Note that 11 is a p-type semiconductor resistance layer.

図において、p型半導体抵抗l111をストライプ状に
して、n壁高抵抗半導体基板lの片面に形成している。
In the figure, p-type semiconductor resistors l111 are formed in stripes on one side of an n-wall high-resistance semiconductor substrate l.

p型半導体抵抗F!Illをストライプ状にするごとに
よって、電極3および4間の抵抗を高くしている。
P-type semiconductor resistance F! The resistance between electrodes 3 and 4 is increased by forming Ill into stripes.

このような構成において、光が入射したとき、光電効果
で光入射位置に発生した光生成電荷は、光の入射エネル
ギーに比例する光電流として、電極3および4までの抵
抗値に逆比例するように分割され、ストライプ11を通
して電極3および4から取り出される。
In such a configuration, when light is incident, the photogenerated charge generated at the light incident position due to the photoelectric effect becomes a photocurrent that is proportional to the incident energy of the light, and is inversely proportional to the resistance value up to electrodes 3 and 4. and is taken out from the electrodes 3 and 4 through the stripe 11.

この場合、第2図に示したような均一に、面状にp型半
導体抵抗層を設けた場合の抵抗に比し1、抵抗層をスト
ライプ状にすることにより高抵抗を達成し、位置分解能
の向上を図っている。
In this case, compared to the resistance when the p-type semiconductor resistance layer is uniformly provided in a planar shape as shown in FIG. We are working to improve this.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、PSDの使用においては、雑音としてP
SDの暗電流と背景光による電流が混入し、測定誤差が
生じ易い、従って暗電流の少ないPSDを用い、背景光
のない状態で使用すると共に、光入射位置からの入射エ
ネルギーを高める必要がある。一方、これらの雑音によ
る誤差を避ける方法として、直流光源をチッッパ等で0
N1OFFさせ、或いはLEDやレーザ等を間欠的に発
光、発振させ、これと同期して検出することにより、直
流分を抑制し、ピークホールド等を行って位置演算を行
う場合が多い、この場合、PSDは高速変調された光源
に対して高速応答することが要求される。応答速度は容
量と抵抗の積に反比例するため、応答速度を上げるため
には、電極間抵抗は小さい方が望ましい、そのためには
、第3図に示したPSDの場合、ストライプ状の抵抗層
の抵抗率を全体にわたって下げる必要が生じるが、この
ようにすると、位置分解能の劣化を招き、好ましい解決
策とは言えない。
However, when using PSD, P
The dark current of the SD and the current due to the background light mix, which tends to cause measurement errors.Therefore, it is necessary to use a PSD with low dark current, use it without background light, and increase the incident energy from the light incidence position. . On the other hand, as a method to avoid errors caused by these noises, the DC light source is
By turning off N1 or intermittently emitting or oscillating an LED or laser, and detecting it in synchronization with this, the DC component is often suppressed and peak hold is performed to perform position calculations. In this case, PSD is required to respond quickly to a light source that is modulated at high speed. Since the response speed is inversely proportional to the product of capacitance and resistance, it is desirable that the inter-electrode resistance be small in order to increase the response speed.To achieve this, in the case of the PSD shown in Fig. 3, it is necessary to Although it becomes necessary to reduce the resistivity over the entire area, this results in a degradation of the positional resolution and is not a desirable solution.

本発明は上記問題点を解決するためのもので、位置分解
能を劣化させることなく、しかも高速応答性を実現する
ことができる高速応答光位置検出器を提供することを目
的とする。
The present invention is intended to solve the above-mentioned problems, and it is an object of the present invention to provide a high-speed response optical position detector that can realize high-speed response without deteriorating the position resolution.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の高速応答光位置検出器は、第1R電
形の半導体基板の表面に第2導電形の半導体層を形成し
、第2導電形の半導体層上に対向する一対の位置検出信
号出力用!極を形成し、第1、或いは第2導電形の半導
体層の表面から入射した粒子線の位置を前記電極の出力
から演算して求める光位置検出器において、第2半導体
層は互いに直交する多数の線形状の半導体層で構成され
ていることを特徴とする。
To this end, the high-speed response optical position detector of the present invention includes a semiconductor layer of a second conductivity type formed on the surface of a semiconductor substrate of a first R conductivity type, and a pair of position detection signals facing each other on the semiconductor layer of the second conductivity type. For output! In an optical position detector in which the position of a particle beam incident from the surface of a semiconductor layer of the first or second conductivity type is calculated from the output of the electrode, the second semiconductor layer has a plurality of particles perpendicular to each other. It is characterized by being composed of linear semiconductor layers.

〔作用〕[Effect]

本発明の高速応答光位置検出器は、第1導電形の高抵抗
半導体基板の上に、第2感電形のストライプ状の抵抗層
を形成するPSDにおいて、さらに第2導電形の互いに
直交するストライプ状の抵抗層を形成することによって
、位置分解能を低下させることなく、応答性を高めて入
射光の位置を測定することができる。
The high-speed response optical position detector of the present invention includes a PSD in which a striped resistance layer of a second electric shock type is formed on a high-resistance semiconductor substrate of a first conductivity type, and further stripes of a second conductivity type that are orthogonal to each other. By forming such a resistive layer, the position of incident light can be measured with increased responsiveness without reducing positional resolution.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明による高速応答光位置検出器の一実施例
の構成を示す図で、同図(イ)は平面図、同図(ロ)は
断面図であり、第2図と同一番号は同一内容を示してい
る。なお、21.22はストライプ形抵抗層である。
FIG. 1 is a diagram showing the configuration of an embodiment of a high-speed response optical position detector according to the present invention, in which (a) is a plan view and (b) is a cross-sectional view, with the same number as in FIG. 2. indicate the same content. Note that 21 and 22 are striped resistance layers.

本発明の高速応答光位置検出器は、従来と同様にn型高
抵抗半導体基板1上にp型半導体抵抗層2を形成し、p
型半導体抵抗層上に電極3および4が設けられているが
、さらにp型半導体抵抗層は電極3および4の方向に平
行で、高抵抗の1本のストライプ21と、ストライプ2
1に直交し、低抵抗の多数のストライプ22が形成して
あり、ストライプ21とストライプ22は電気的に接続
されている。
The fast-response optical position detector of the present invention has a p-type semiconductor resistance layer 2 formed on an n-type high-resistance semiconductor substrate 1, as in the conventional case, and
Electrodes 3 and 4 are provided on the p-type semiconductor resistance layer, and the p-type semiconductor resistance layer is parallel to the direction of the electrodes 3 and 4, and has one high-resistance stripe 21 and a stripe 2.
1, a large number of low resistance stripes 22 are formed, and the stripes 21 and 22 are electrically connected.

このような構成において、光が入射すると、入射位置で
発生した光生成電荷は光の入射エネルギーに比例する光
電流として、低抵抗のストライプ22を経てストライプ
21に到達する。そしてストライプ21の到達点から電
極3および4までの抵抗値に逆比例するように分割され
、電極3および4より出力として取り出すことができ、
この検出値から前述したように光の入射位置を求めるこ
とができる。
In such a configuration, when light is incident, photogenerated charges generated at the incident position reach the stripe 21 via the low resistance stripe 22 as a photocurrent proportional to the incident energy of the light. Then, it is divided in inverse proportion to the resistance value from the reaching point of the stripe 21 to the electrodes 3 and 4, and can be taken out as an output from the electrodes 3 and 4.
From this detected value, the light incident position can be determined as described above.

ところで、前述したようにノイズは電極間抵抗に反比例
するが、第3図の場合は、電極間にストライプが複数並
列に入ることになるため、本発明と同一の電極間抵抗と
するためには、1本当たりのストライプの抵抗が、本発
明のストライプ21の抵抗のストライプ本数倍となる0
例えば、ストライプの本数を10本とし、電極間抵抗を
100にΩにしようとすれば、ストライプ1本当たりの
抵抗はIMΩとなる。そして微小スポット光の入射によ
り、電流は1本または隣接する2本のストライプを流れ
ることになるため、この時の抵抗値はIMΩ或いは50
0にΩということになり、その結果時定数が大きくなっ
て応答性が悪くなる。
By the way, as mentioned above, noise is inversely proportional to the inter-electrode resistance, but in the case of Fig. 3, multiple stripes are inserted in parallel between the electrodes, so in order to achieve the same inter-electrode resistance as in the present invention, it is necessary to , the resistance of one stripe is 0, which is the resistance of stripe 21 of the present invention times the number of stripes.
For example, if the number of stripes is 10 and the interelectrode resistance is 100Ω, the resistance per stripe is IMΩ. Then, due to the incidence of minute spot light, the current flows through one stripe or two adjacent stripes, so the resistance value at this time is IMΩ or 50
0 to Ω, and as a result, the time constant becomes large and the response becomes poor.

これに対し、本発明の場合では、電極間抵抗を100に
Ωにするためのストライプ21の抵抗は100にΩです
むので、位置分解能を劣化させることなく、応答性を高
めることができる。
On the other hand, in the case of the present invention, the resistance of the stripe 21 in order to make the inter-electrode resistance 100.OMEGA. is only 100.OMEGA., so that the responsiveness can be improved without deteriorating the positional resolution.

なお、ストライプ22は光生成電荷収集用であるため、
位置分解能には関係がなく抵抗は小さい方が望ましく、
ストライプ22に対して2桁乃至3桁小さい方が応答性
が向上する。
Note that since the stripe 22 is for collecting photogenerated charges,
It is not related to the position resolution, and the smaller the resistance, the better.
Responsiveness improves when the width is two to three orders of magnitude smaller than the stripe 22.

また上記実施例では、n型高抵抗基板表面にp型抵抗層
を設け、p型抵抗層上に検出電極を設けるようにしたが
、n型とp型とを逆の関係にしてもよく、ストライプ2
1は必ずしも1本でなくてもよい。
Further, in the above embodiment, a p-type resistance layer is provided on the surface of the n-type high resistance substrate, and a detection electrode is provided on the p-type resistance layer, but the relationship between n-type and p-type may be reversed. stripe 2
1 does not necessarily have to be one.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電極方向に平行なストラ
イプ状の高抵抗層と電極方向に直交する多数のストライ
プ状の低抵抗層で構成されたPSDを適用することによ
り、位置分解能を劣化することなく、高速変調された光
源に高速に応答することができる。また、実際に有効受
光面1mX3鶴のPSDで得られた結果では、応答時間
は従来のPSDでは2.5μsecに対して、本発明の
PSDはlμsecに短縮することができた。
As described above, according to the present invention, by applying a PSD composed of a striped high resistance layer parallel to the electrode direction and a large number of striped low resistance layers perpendicular to the electrode direction, the positional resolution is degraded. It is possible to respond quickly to a high-speed modulated light source without having to do so. Further, according to the results actually obtained with a PSD having an effective light-receiving area of 1 m x 3 cranes, the response time of the conventional PSD was 2.5 μsec, whereas the PSD of the present invention was able to shorten the response time to 1 μsec.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高速応答光位置検出器の構成を示
す図で、同図(イ)は平面図、同図(ロ)は断面図、第
2図はPSDの構成を説明するための断面図、第3図は
従来のPDSの断面図で、同図(イ)は平面図、同図(
ロ)はそのX−X方間断面図である。 1・・・高抵抗半導体基板、2・・・p型半導体抵抗層
、3.4・・・電極、5・・・n+層、6・・・光の入
射位置、7・・・共通電極、11.21・・・電極方向
に平行なストライプ、22は電極方向に直角なストライ
プ。 出  願  人  浜松ホトニクス株式会社代  理 
 人  弁理士 蛭 川 昌 信第3図 (イン (U:J)
FIG. 1 is a diagram showing the configuration of a high-speed response optical position detector according to the present invention, in which (a) is a plan view, (b) is a cross-sectional view, and FIG. 3 is a sectional view of a conventional PDS, and the same figure (a) is a plan view, and the same figure (
B) is a sectional view taken along the line XX. DESCRIPTION OF SYMBOLS 1... High resistance semiconductor substrate, 2... P-type semiconductor resistance layer, 3.4... Electrode, 5... N+ layer, 6... Light incident position, 7... Common electrode, 11.21...Stripe parallel to the electrode direction, 22 is a stripe perpendicular to the electrode direction. Applicant Hamamatsu Photonics Co., Ltd. Representative
Person Patent Attorney Masaaki Hirukawa Figure 3 (In (U:J)

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電形の半導体基板の表面に第2導電形の半
導体層を形成し、第2導電形の半導体層上に対向する一
対の位置検出信号出力用電極を形成し、第1、或いは第
2導電形の半導体層の表面から入射した粒子線の位置を
前記電極の出力から演算して求める光位置検出器におい
て、第2半導体層は互いに直交する多数の線形状の半導
体層で構成されていることを特徴とする高速応答光位置
検出器。
(1) A semiconductor layer of a second conductivity type is formed on the surface of a semiconductor substrate of a first conductivity type, a pair of opposing position detection signal output electrodes are formed on the semiconductor layer of the second conductivity type, and the first, Alternatively, in an optical position detector that calculates the position of a particle beam incident from the surface of a second conductivity type semiconductor layer from the output of the electrode, the second semiconductor layer is composed of a number of linear semiconductor layers orthogonal to each other. A high-speed response optical position detector characterized by:
(2)前記互いに直交する多数の線形状の半導体層は、
前記対向する電極方向に対し平行な方向と直交する方向
とで各々異なる抵抗率を持つ半導体層からなる特許請求
の範囲第1項記載の高速応答光位置検出器。
(2) The multiple linear semiconductor layers orthogonal to each other are
2. The high-speed response optical position detector according to claim 1, comprising a semiconductor layer having different resistivities in a direction parallel to and perpendicular to the direction of the opposing electrodes.
JP12437387A 1987-05-21 1987-05-21 High-speed response optical position detector Expired - Lifetime JP2572389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12437387A JP2572389B2 (en) 1987-05-21 1987-05-21 High-speed response optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12437387A JP2572389B2 (en) 1987-05-21 1987-05-21 High-speed response optical position detector

Publications (2)

Publication Number Publication Date
JPS63289876A true JPS63289876A (en) 1988-11-28
JP2572389B2 JP2572389B2 (en) 1997-01-16

Family

ID=14883792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12437387A Expired - Lifetime JP2572389B2 (en) 1987-05-21 1987-05-21 High-speed response optical position detector

Country Status (1)

Country Link
JP (1) JP2572389B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917288A (en) * 1982-07-20 1984-01-28 Hamamatsu Tv Kk Semiconductor device for incident position detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917288A (en) * 1982-07-20 1984-01-28 Hamamatsu Tv Kk Semiconductor device for incident position detection

Also Published As

Publication number Publication date
JP2572389B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US3506837A (en) Pattern-detecting device using series connected photosensitive bodies
JP2001291853A (en) Semiconductor energy detecting element
JP2717839B2 (en) Optical semiconductor device
JPS63289876A (en) High-speed response optical position detector
JPS6262074B2 (en)
US4101924A (en) Semiconductor radiation detector
JP5016771B2 (en) Photodetector for position detection
JPH04313278A (en) Two-dimensional light incidence position detection element
EP0003219A1 (en) Radiation sensing device
JPH04313279A (en) One-dimensional light position detection element
JPS59127883A (en) Photosensitive semiconductor device
JPH01115170A (en) Semiconductor device for incident position detection
JP2972303B2 (en) 2D optical position detector
JPH0738437B2 (en) Image sensor
JPH1130531A (en) Non-contact position and displacement measuring device
JPH07118551B2 (en) Two-dimensional optical position detector
JP2524708Y2 (en) Position sensor
JPH01115169A (en) Semiconductor device for incident position detection
JPH07113529B2 (en) Semiconductor position detector
JPH0820210B2 (en) Optical position detector
JPS6318201A (en) Semiconductor position detector
JPH067052B2 (en) Two-division type semiconductor position detector
CN101171691B (en) Optical detector and optical equipment thereof
JP2001015797A (en) Semiconductor device for detecting light incidence position and manufacture thereof
JPH0770754B2 (en) Method for forming resistance layer in semiconductor optical position detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11