JPS59171158A - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPS59171158A
JPS59171158A JP58044753A JP4475383A JPS59171158A JP S59171158 A JPS59171158 A JP S59171158A JP 58044753 A JP58044753 A JP 58044753A JP 4475383 A JP4475383 A JP 4475383A JP S59171158 A JPS59171158 A JP S59171158A
Authority
JP
Japan
Prior art keywords
capacitor
conductive material
area
memory cell
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58044753A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshida
正昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58044753A priority Critical patent/JPS59171158A/en
Publication of JPS59171158A publication Critical patent/JPS59171158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/373DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate the capacitor extending under or around the transistor

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enable to realize a large memory capacity and a small cell area at the same time by making a three dimensional structure wherein a transistor part and a capacitor part have the same plane region in common. CONSTITUTION:The capacitor is composed of a polycrystalline Si 26 buried in the recess of the surface of an Si substrate, an Si dioxide film 25, and the Si substrate 21. Besides, an FET including a polycrystalline Si 22 connected to a word line as the gate, a re-crystalline Si 24 connected to a bit line as a drain electrode, and a re-crystalline Si 26' connected to an electrode 26 accumulating capacitor charges as a source electrode is formed on the capacitor. By this structure, an MOSFET is formed on the capacitor and thus hardly leads to the increase of the Si surface area. The elements are surrounded by a groove completely covered with the film 25, and accordingly an isolation region is unnecessitated. Thereby, it is possible to reduce the area without reducing the memory capacity of the memory cell.

Description

【発明の詳細な説明】 本発明は、半導体メモリセルの構造に関し、さらに詳し
くは小面積でもより大きな記憶容量を実現する半導体メ
モリセルの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor memory cell, and more particularly to a structure of a semiconductor memory cell that realizes a larger storage capacity even in a small area.

電荷の形で2進情報を貯蔵する半導体メモリセルはセル
面積が小さいため高集積大容量メモリセルとして秀れて
いる。特にメモリセルとして1つのトランジスタと1つ
のコンデンサからなるメモリセル(以下1T1Cセルと
略す)は、構成要素も少なくセル面積が小さく出来るた
め、高集積メモリ用セルとして重要で現在大規模ダイナ
ミックRAMに広く用いられている。
Semiconductor memory cells that store binary information in the form of charges have a small cell area, making them excellent as highly integrated, large-capacity memory cells. In particular, memory cells consisting of one transistor and one capacitor (hereinafter abbreviated as 1T1C cells) have few components and can have a small cell area, so they are important as highly integrated memory cells and are currently widely used in large-scale dynamic RAM. It is used.

第1図に従来広く用いられている1T1Cセルの一例の
模式的断面図を示す。第1図においてキャパシタ電極1
3と反転層16の間に記憶容量を形成する。12はスイ
ッチングトランジスタのゲート電極でワード線に接続さ
れており、ビット線に接続されている拡散層14と反転
層16の間の電荷の移動を制御する。又、17は隣接メ
モリセルとの分離領域である。
FIG. 1 shows a schematic cross-sectional view of an example of a conventionally widely used 1T1C cell. In Fig. 1, capacitor electrode 1
A storage capacitor is formed between the inversion layer 16 and the inversion layer 16 . Reference numeral 12 denotes a gate electrode of a switching transistor, which is connected to the word line and controls the movement of charges between the diffusion layer 14 and the inversion layer 16, which are connected to the bit line. Further, 17 is an isolation region from an adjacent memory cell.

この従来例において記憶容量は反転層16上にあるキャ
パシタ電極13の面積と、キャパシタ電極13下の絶縁
膜15の誘電率及び膜厚によって決定される。
In this conventional example, the storage capacity is determined by the area of the capacitor electrode 13 on the inversion layer 16 and the dielectric constant and thickness of the insulating film 15 under the capacitor electrode 13.

即ち、大きな記憶容量を確保する手段として以下の3つ
の方法がある。
That is, there are the following three methods for securing a large storage capacity.

(1)キャパシタ電極の面積を大きくする。(1) Increase the area of the capacitor electrode.

(2)絶縁膜の膜厚を薄くする。(2) Reduce the thickness of the insulating film.

(3)誘電率の高い絶縁膜を用いる。(3) Use an insulating film with a high dielectric constant.

ところで、これまでメモリの高集積化は微細加工技術の
進展に伴うメモリセルサイズの縮小によって達成されて
おり、従来例の1T1Cセルではキャパシタ電極は減少
する。それ故、1T1Cセルでは絶縁膜の膜厚を薄くす
ることにより大幅な記憶容量の低下を防いでいた。しか
し、絶縁膜の薄膜化はかなり限界に近づいてきており、
精度よく作ることも困難になってきている。
By the way, high integration of memories has been achieved by reducing the size of memory cells along with advances in microfabrication technology, and in conventional 1T1C cells, the number of capacitor electrodes is reduced. Therefore, in the 1T1C cell, a significant decrease in storage capacity was prevented by reducing the thickness of the insulating film. However, the thinning of insulating films is approaching its limit.
It is also becoming difficult to manufacture them with high precision.

すなわち、従来の1T1Cセルでは誘電率の高い絶縁膜
を採用しない限り大きな記憶容量を確保することは難し
い。しかも高誘電率の絶縁膜は現在模索段階で近いうち
に実用化される目途はない。
That is, in the conventional 1T1C cell, it is difficult to secure a large storage capacity unless an insulating film with a high dielectric constant is used. Moreover, insulating films with high dielectric constants are currently in the exploratory stage and there is no prospect that they will be put to practical use in the near future.

以上述べた様に従来型の1T1Cセルは小さなセル面積
で大きな記憶容量を確保することは困難であるという問
題を有している。近年のα粒子による情報破壊の問題か
らメモリセルは少なくとも1個のα粒子入射によって記
憶内容が破壊されない様50fF程度の記憶容量を持つ
ことが望まれており、そのことが従来型の1T1Cセル
の縮小化を一層困難にしている。
As described above, the conventional 1T1C cell has the problem that it is difficult to secure a large storage capacity with a small cell area. Due to the recent problem of information destruction caused by alpha particles, it is desired that memory cells have a storage capacity of about 50 fF so that the memory contents will not be destroyed by the incidence of at least one alpha particle. This makes downsizing even more difficult.

以上述べた従来型の1T1Cセルの問題点は、従来型1
T1Cセルが平面的な構造であることに帰因している。
The problems of the conventional 1T1C cell described above are the problems of the conventional 1T1C cell.
This is due to the fact that the T1C cell has a planar structure.

つまり第1図に示した如くトランジスタ部とキャパシタ
部が別々の平面領域に形成されているからである。即ち
、トランジスタ部とキャパシタ部が同一平面領域を共有
する様な三次元構造にすることにより1T1Cセルの問
題点は大幅に緩和されると考えられる。
That is, as shown in FIG. 1, the transistor section and the capacitor section are formed in separate planar regions. That is, it is thought that the problems of the 1T1C cell can be significantly alleviated by creating a three-dimensional structure in which the transistor section and the capacitor section share the same plane area.

本発明の目的は、上記従来型の1T1Cセルの欠点を改
善し、微小な面積においてもより大きな記憶容量を保有
することが可能な新規な三次元的構造の半導体メモリセ
ルを提供することにある。
An object of the present invention is to provide a semiconductor memory cell with a novel three-dimensional structure that can improve the drawbacks of the conventional 1T1C cell and have a larger storage capacity even in a small area. .

本発明によれば、表面に凹部を有する半導体基板、少な
くとも該半導体基板凹部表面に形成された第1の絶縁性
物質、前記半導体基板凹部内の前記第1の絶縁性物質上
に形成された第1の導電性物質から成るキャパシタと、
前記第1の導電性物質上に第2の絶縁性物質を介して形
成されたゲート電極である第2の導電性物質、該第2の
導電性物質を覆いゲート絶縁膜となる第3の絶縁性物質
、該第3の絶縁性物質に接し前記第1の導電性物質と電
気的に接続されたソース電極である第3の導電性物質、
該第3の導電性物質及び前記第3の絶縁性物質に接して
形成されたチャネル部である半導体物質、該半導体物質
及び前記第3の絶縁性物質に接し形成されたドレイン電
極となる第4の導電性物質から成る電界効果型トランジ
スタ、を備えたことを特徴とする半導体メモリセルが得
られる。
According to the present invention, there is provided a semiconductor substrate having a recessed portion on its surface, a first insulating material formed at least on the surface of the recessed portion of the semiconductor substrate, and a first insulating material formed on the first insulating material within the recessed portion of the semiconductor substrate. a capacitor made of a conductive material;
a second conductive material that is a gate electrode formed on the first conductive material via a second insulating material; a third insulating material that covers the second conductive material and serves as a gate insulating film; a third electrically conductive material that is a source electrode in contact with the third insulating material and electrically connected to the first electrically conductive material;
a semiconductor material serving as a channel portion formed in contact with the third conductive material and the third insulating material; a fourth material serving as a drain electrode formed in contact with the semiconductor material and the third insulating material; A semiconductor memory cell is obtained, characterized in that it includes a field effect transistor made of a conductive material.

以下図面を参照しながら本発明の詳細な説明する。第2
図は本発明の典型的な一実施例の模式的断面図を示すも
ので、図中21は単結晶シリコン基板、22、26は多
結晶シリコン、24、26′、28は多結晶シリコンを
再結晶化させたもの(以後再結晶シリコンと呼ぶ)25
、30、29、31は二酸化シリコン膜を示している。
The present invention will be described in detail below with reference to the drawings. Second
The figure shows a schematic cross-sectional view of a typical embodiment of the present invention, in which 21 is a single crystal silicon substrate, 22 and 26 are polycrystalline silicon, and 24, 26', and 28 are polycrystalline silicon substrates. Crystallized material (hereinafter referred to as recrystallized silicon)25
, 30, 29, and 31 indicate silicon dioxide films.

第2図において、シリコン基板表面の凹部に埋め込まれ
た多結晶シリコン26と、二酸化シリコン膜25、及び
シリコン基板21とによってキャパシタが形成されてい
る。
In FIG. 2, a capacitor is formed by polycrystalline silicon 26 buried in a recessed portion on the surface of a silicon substrate, a silicon dioxide film 25, and a silicon substrate 21.

又、キャパシタ上部にワード線に接続された多結晶シリ
コン22をゲートとし、ビット線に接続された再結晶シ
リコン24をドレイン電極、キャパシタの電荷を蓄積す
る電極26に接続された再結晶シリコン26′をソース
電極とする電界効果型トランジスタが形成されている。
Further, the polycrystalline silicon 22 connected to the word line on the upper part of the capacitor is used as the gate, the recrystallized silicon 24 connected to the bit line is used as the drain electrode, and the recrystallized silicon 26' connected to the electrode 26 that stores the charge of the capacitor. A field effect transistor is formed having the source electrode as the source electrode.

第2図に示した実施例において、ワード線に接続された
スイッチングトランジスタを導通状態にすることにより
ビット線の情報が、ビット線に接続された再結晶シリコ
ン24からチャネル領域を形成する再結晶シリコン28
及びソース電極である再結晶シリコン26′を経て、基
板内に形成された多結晶シリコン26に記憶される。
In the embodiment shown in FIG. 2, information on the bit line is transferred from the recrystallized silicon 24 connected to the bit line by turning on the switching transistor connected to the word line. 28
The data is stored in the polycrystalline silicon 26 formed in the substrate via the recrystallized silicon 26' which is the source electrode.

本発明の一実施例である第2図を従来型の1T1Cを示
した第1図と比較して見よう。先づキャパシタ部から比
較しよう。第1図のキャパシタ電極13及び電荷蓄積領
域16はそれぞれ第2図のシリコン基板21及び基板に
埋め込まれた多結晶シリコン26に対応している。この
ことから本発明の半導体メモリセルでは従来型1T1C
セルに較べ同一平面領域で格段に大きな記憶容量を有す
ることが容易に理解されるであろう。シリコン表面積が
等しい場合キャパシタの両電極間の二酸化シリコンの膜
厚を本発明の場合と従来型1T1Cで同一であるとする
と、従来型1T1Cセルの記憶容量は本発明によるメモ
リセルの溝底面部の容量とほぼ同一となり溝側面の容量
分、セルの記憶容量は増加し、溝の深さを深くすること
で容易に記容量を増加させることが可能である。次にM
OSFETを比較してみる。
Let us compare FIG. 2, which is an embodiment of the present invention, with FIG. 1, which shows a conventional 1T1C. Let's start by comparing the capacitor part. Capacitor electrode 13 and charge storage region 16 in FIG. 1 correspond to silicon substrate 21 and polycrystalline silicon 26 embedded in the substrate, respectively, in FIG. 2. Therefore, in the semiconductor memory cell of the present invention, the conventional 1T1C
It will be easily understood that it has a much larger storage capacity in the same plane area than a cell. If the silicon surface area is the same, and if the thickness of the silicon dioxide film between both electrodes of the capacitor is the same in the case of the present invention and the conventional 1T1C cell, then the storage capacity of the conventional 1T1C cell is equal to that of the trench bottom of the memory cell according to the present invention. The storage capacity of the cell increases by the capacity of the groove side surface, and the storage capacity can be easily increased by increasing the depth of the groove. Next M
Let's compare OSFETs.

第1図ではキャパシタの隣りにMOSFETが配置され
ているのに対し、第2図では、キャパシタ上部にMOS
FETが形成されており、殆んどシリコン表面積の増加
につながっていないことがわかるであろう。逆の言い方
をすれば1ビットの情報を記憶させるのに要するシリコ
ン基板の表面積はほぼトランジスタ1個分の大きさでよ
いということである。現在生産されている1T1Cセル
を用いた大容量ダイナミックRAMでは、分離領域を含
めたセル面積に占める記憶容量部の大きさは50%に近
づいており、トランジスタが占める面積よりも大きな面
積となっている。このことから本発明による三次元的構
造を有するメモリセルの記憶容量を減少させることなし
に小面積化が可能であるという利点がいかに有効なもの
かが明白であろう。
In Figure 1, the MOSFET is placed next to the capacitor, while in Figure 2, the MOSFET is placed above the capacitor.
It can be seen that a FET is formed, resulting in little increase in silicon surface area. In other words, the surface area of the silicon substrate required to store one bit of information is approximately the size of one transistor. In currently produced large-capacity dynamic RAMs using 1T1C cells, the storage capacitor portion accounts for nearly 50% of the cell area including the isolation region, which is larger than the area occupied by the transistor. There is. From this, it will be clear how effective the advantage of the present invention is that the area of the memory cell having a three-dimensional structure can be reduced without reducing the storage capacity.

また、従来の1T1Cセルでは素子分離領域が大きな面
積を占めるという問題も有していたが、本発明によれば
第2図から容易に理解出来る様に素子は完全に二酸化シ
リコン膜25で覆われた溝で囲まれており、分離領域の
必要は無い。この点でも本発明は小型化に適した構造で
あると言える。さらにシリコン基板21を接地しておく
ことにより基板を介してのカップリングノイズの影響も
抑えられる。
Furthermore, the conventional 1T1C cell had the problem that the element isolation region occupied a large area, but according to the present invention, as can be easily understood from FIG. 2, the element is completely covered with the silicon dioxide film 25. There is no need for an isolation region. In this respect as well, it can be said that the present invention has a structure suitable for miniaturization. Furthermore, by grounding the silicon substrate 21, the influence of coupling noise via the substrate can be suppressed.

次に第2図に示した実施例の製造プロセスについて述べ
ておく。溝を利用したキャパシタ部はエッチングにより
溝を形成した後、熱酸化法により二酸化シリコン膜25
を成長させ、溝内部にCVD法等により多結晶シリコン
26を埋めることにより容易に形成できる。MOSFE
T部は、キャパシタ部形成後、全面に二酸化シリコン膜
30を形成し、さらにその上に多結晶シリコンを成長さ
せ、ホトエッチングによりゲート22を形成する。その
後、再び二酸化シリコン膜29を成長させ、ホトエッチ
ング工程により容量部多結晶シリコン上に穴を開け、し
かる後に、ソース、チャネル、ドレインとなる多結晶シ
リコンを被着する。ソース、チャネル、ドレイン領域を
形成する為には、レーザアニール技術とイオン注入技術
を効果的に利用して多結晶シリコンの再結晶化と不純物
プロファイルの形成を行なえば良い。
Next, the manufacturing process of the embodiment shown in FIG. 2 will be described. For the capacitor part using a groove, after forming the groove by etching, a silicon dioxide film 25 is formed by a thermal oxidation method.
This can be easily formed by growing polycrystalline silicon 26 and filling the inside of the trench with polycrystalline silicon 26 by CVD or the like. MOSFE
For the T part, after forming the capacitor part, a silicon dioxide film 30 is formed on the entire surface, polycrystalline silicon is further grown thereon, and a gate 22 is formed by photo-etching. Thereafter, a silicon dioxide film 29 is grown again, a hole is made on the capacitor polycrystalline silicon by a photoetching process, and then polycrystalline silicon that will become the source, channel, and drain is deposited. In order to form the source, channel, and drain regions, laser annealing technology and ion implantation technology may be effectively used to recrystallize polycrystalline silicon and form an impurity profile.

また再結晶化させる部分はソース、ゲート、ドレインに
限るものでなく、多結晶シリコン26から再結晶化して
もよい。
Further, the portions to be recrystallized are not limited to the source, gate, and drain, and may be recrystallized from polycrystalline silicon 26.

以上簡単に述べた様に、本発明による半導体メモリセル
は、従来からよく用いられているMOS製造プロセスで
製造することが出来る。また前述した様に、本発明によ
れば大きな記憶容量と小さなセル面積を同時に実現する
ことが可能であり、高集積化に適した半導体メモリセル
が得られ、非常に有効である。
As briefly described above, the semiconductor memory cell according to the present invention can be manufactured using a MOS manufacturing process that has been commonly used in the past. Further, as described above, according to the present invention, it is possible to simultaneously realize a large storage capacity and a small cell area, and a semiconductor memory cell suitable for high integration can be obtained, which is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の1T1Cメモリセルの模式的断面図、第
2図は本発明によるメモリセルの模式的断面図を示す。 図中の番号はそれぞれ 11・・・・・・・・・シリコン基板、12・・・・・
・・・・ワード線に接続されたゲート電極、13・・・
・・・・・・キャパシタ電極。 14・・・・・・・・・ビット線に接続された拡散層、
15・・・・・・・・・二酸化シリコン膜、16・・・
・・・・・・反転層、17・・・・・・・・・素子分離
領域、21・・・・・・・・・シリコン基板、22、2
6・・・・・・・・・多結晶シリコン、24、26′、
28・・・・・・・・・再結晶シリコン、25、29、
30、31・・・・・・・・・二酸化シリコン膜を示す
。 代理人弁理士内 原  晋 躬1図 第2図
FIG. 1 is a schematic cross-sectional view of a conventional 1T1C memory cell, and FIG. 2 is a schematic cross-sectional view of a memory cell according to the present invention. The numbers in the diagram are 11... Silicon substrate, 12...
...Gate electrode connected to the word line, 13...
・・・・・・Capacitor electrode. 14... Diffusion layer connected to the bit line,
15... Silicon dioxide film, 16...
...Inversion layer, 17...Element isolation region, 21...Silicon substrate, 22, 2
6... Polycrystalline silicon, 24, 26',
28・・・・・・Recrystallized silicon, 25, 29,
30, 31... Indicates a silicon dioxide film. Representative Patent Attorney Shinji Hara Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 表面に凹部を有する半導体基板、少なくとも該半導体基
板凹部表面に形成された第1の絶縁性物質、前記半導体
基版凹部内の前記第1の絶縁性物質上に形成された第1
の導電性物質から成るキャパシタと、前記第1の導電性
物質上に第2の絶縁性物質を介して形成されたゲート電
極である第2の導電性物質、該第2の導電性物質を覆い
ゲート絶縁膜となる第3の絶縁性物質、該第3の絶縁性
物質に接し前記第1の導電性物質と電気的に接続された
ソース電極である第3の導電性物質、該第3の導電性物
質及び前記第3の絶縁性物質に接して形成されたチャネ
ル部である半導体物質、該半導体物質及び前記第3の絶
縁性物質に接し形成されたドレイン電極となる第4の導
電性物質から成る電界効果型トランジスタ、を備えたこ
とを特徴とする半導体メモリセル。
a semiconductor substrate having a recess on its surface; a first insulating material formed on at least the surface of the semiconductor substrate recess; a first insulating material formed on the first insulating material in the semiconductor substrate recess;
a capacitor made of a conductive material, a second conductive material serving as a gate electrode formed on the first conductive material via a second insulating material, and covering the second conductive material; a third insulating material serving as a gate insulating film; a third conductive material serving as a source electrode in contact with the third insulating material and electrically connected to the first conductive material; A semiconductor material serving as a channel portion formed in contact with a conductive material and the third insulating material, and a fourth conductive material serving as a drain electrode formed in contact with the semiconductor material and the third insulating material. A semiconductor memory cell characterized by comprising a field effect transistor consisting of a field effect transistor.
JP58044753A 1983-03-17 1983-03-17 Semiconductor memory cell Pending JPS59171158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044753A JPS59171158A (en) 1983-03-17 1983-03-17 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044753A JPS59171158A (en) 1983-03-17 1983-03-17 Semiconductor memory cell

Publications (1)

Publication Number Publication Date
JPS59171158A true JPS59171158A (en) 1984-09-27

Family

ID=12700195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044753A Pending JPS59171158A (en) 1983-03-17 1983-03-17 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS59171158A (en)

Similar Documents

Publication Publication Date Title
US4951175A (en) Semiconductor memory device with stacked capacitor structure and the manufacturing method thereof
US5492851A (en) Method for fabricating attached capacitor cells in a semiconductor device having a thin film transistor
JPH03209868A (en) Manufacture of ic capacitor and semiconductor ic device
KR100231962B1 (en) Stacked gate eprom split cell with bit line reach-through and interruption immunity
US4388121A (en) Reduced field implant for dynamic memory cell array
KR100435076B1 (en) Method for fabricating a DRAM cell having a trench capacitor
US6746921B2 (en) Method of forming an array of FLASH field effect transistors and circuitry peripheral to such array
JPH03268462A (en) Formation of memory cell
JPH04287366A (en) Semiconductor integrated circuit device and its manufacture
JPH07288313A (en) Capacitor preparation of a semiconductor memory device
JPS59171158A (en) Semiconductor memory cell
JPS6317553A (en) Semiconductor memory storage and its manufacture
US6759298B2 (en) Methods of forming an array of flash field effect transistors and circuitry peripheral to such array
JPS63136559A (en) Semiconductor memory and manufacture thereof
JP2943268B2 (en) Semiconductor memory and manufacturing method thereof
JPH05121693A (en) Semiconductor memory cell
JP3177038B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0370381B2 (en)
JPH0320906B2 (en)
JP2754584B2 (en) Manufacturing method of memory device
JPH0370382B2 (en)
JP2705146B2 (en) MOS type semiconductor device
JP2827377B2 (en) Semiconductor integrated circuit
JPH06342887A (en) Mist-type dynamic random-access memory cell and its manufacture
JPS6254955A (en) Mis semiconductor memory