JPS59169080A - High temperature type battery - Google Patents

High temperature type battery

Info

Publication number
JPS59169080A
JPS59169080A JP58045081A JP4508183A JPS59169080A JP S59169080 A JPS59169080 A JP S59169080A JP 58045081 A JP58045081 A JP 58045081A JP 4508183 A JP4508183 A JP 4508183A JP S59169080 A JPS59169080 A JP S59169080A
Authority
JP
Japan
Prior art keywords
boron nitride
separator
plate
magnesia
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58045081A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58045081A priority Critical patent/JPS59169080A/en
Publication of JPS59169080A publication Critical patent/JPS59169080A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a separator having good wettability to molten salt and sufficient porosity by using Li or Li alloy as a negative electrode, metal sulfide such as iron sulfide as a positive electrode, and placing a plate-shaped porous boron nitride obtained by using magnesia produced by heat decomposition as a binder between both electrodes. CONSTITUTION:A positive electrode 1 using metal sulfied such as iron sulfied or iron disulfied as an active material and a negative electrode 3 using Li or Li alloy as an active material are used, and a plate formed with porous boron nitride particles are placed between both electrodes. Porous boron nitride particles are prepared in such a way that magnesium nitrate solution corresponding to 20wt% magnesia is added to boron nitride particles having a particle size of, for example, 100-150mu, and they are dried and made in a plate shape, and burned to form a plate-shaped porous separator. Thereby, a battery using the separator which is low cost, easy to handle, and has good wettability to molten salt and sufficient porosity is provided.

Description

【発明の詳細な説明】 本発明は、負極にリブラムあるいはリヂウム合金を、正
極に硫化鉄、二硫化鉄などを用い、セパレータに、熱分
解により生成するマグネシアを結着剤に用いて窒化ホウ
素粒子を板状としたものを用いた溶融塩電池に関するt
)のである。
Detailed Description of the Invention The present invention uses Libram or a lithium alloy for the negative electrode, iron sulfide, iron disulfide, etc. for the positive electrode, and uses magnesia produced by thermal decomposition as a binder for the separator to form boron nitride particles. t regarding a molten salt battery using a plate-shaped
).

従来、溶融塩を用いる高温形の電池においてはレパレー
今材質として、電池の作iFJ+温度である500℃前
後での安定性、溶融塩中での耐蝕性、活物質に対づる反
応性等の面から窒化ホウ素とマグネシアが検討されてい
る。窒化ホウ素を累月とした廿パレータは、窒化ホウ素
をフJ−IL、 l・化することにより多孔質にして用
いでいる。このフェルトセパレータは多孔度も90%弱
の大きな値を示し、活物質の保持、電気的絶縁性などの
電池の1ごパレータに要求される特性を充分に満足して
いるものの、セパレータを多孔質どづ′るためのフェル
1〜化の価格が非常に高いという問題があった。また窒
化ホウ素(′Lそのままでは溶融塩に濡れないため、窒
化ホウ素をフェルト化した後、熱分解にJ:リマグネシ
アを生成する硝酸マグネシウムなどを用いて繊緒の表面
にマグネシアを析出さVて、溶融塩への濡れ性を改善す
るといった処理の■程を要」)だ。
Conventionally, in high-temperature batteries that use molten salt, reparation materials have been selected in terms of stability at around 500°C, which is the iFJ+ temperature of the battery, corrosion resistance in molten salt, reactivity with active materials, etc. Boron nitride and magnesia are being considered. The pallet made of boron nitride is made porous by converting the boron nitride into fluorine. This felt separator has a high porosity of just under 90%, and fully satisfies the characteristics required for a battery's first separator, such as active material retention and electrical insulation. There was a problem in that the cost of forming a ferrite for manufacturing was extremely high. In addition, boron nitride ('L) does not wet the molten salt as it is, so after felting boron nitride, magnesia is precipitated on the surface of the cord using magnesium nitrate, which produces limagnesia, during thermal decomposition. ``Processing such as improving wettability to molten salt is necessary'').

マグネシアは現在までのところ、!1illf化が行わ
れていないため、マグネシア粉末をセパレータに用いる
試みが行われている。しかし粉末を用いるレバレータは
、多孔度が50%前後と小さく、そのために電池での活
物質利用率も低い値にとどまってしまう欠点があった。
Magnesia so far! Since 1illf formation has not been carried out, attempts have been made to use magnesia powder as a separator. However, the leverator using powder has a small porosity of around 50%, which has the disadvantage that the utilization rate of the active material in the battery remains at a low value.

それに電池組立て時においても、粉末のため取扱いが不
便で、電解質粉末と杖に加圧成形して板状にするなどの
処理を必要とするといった欠点があった。
In addition, when assembling the battery, it is inconvenient to handle because it is a powder, and it requires processing such as press-molding the electrolyte powder and cane into a plate shape.

本発明は、これらの欠点を改良し、安価で取扱いが容易
な上、溶融塩への濡れも良く、充分な多孔度を有するセ
パレータを使用した電池を提供するものである。
The present invention improves these drawbacks and provides a battery using a separator that is inexpensive, easy to handle, has good wettability to molten salt, and has sufficient porosity.

以下その実施例について詳述する。Examples thereof will be described in detail below.

まず、多孔質の窒化ホウ素粒子の100μから 150
μのものに対して硝酸マグネシウム水溶液をマグネシア
に換算して20重量%添加し、乾燥して板状としたi!
、1ooo℃で焼成することにより多孔質の板状セパレ
ータを製造した。このセパレータを用いて、第1図に示
ザような本発明になるリチウム−硫化鉄電池を組み立て
、充放電試験を行った。
First, from 100μ to 150μ of porous boron nitride particles.
20% by weight of an aqueous magnesium nitrate solution calculated as magnesia was added to μ, and it was dried to form a plate.
, a porous plate-shaped separator was manufactured by firing at 100°C. Using this separator, a lithium-iron sulfide battery according to the present invention as shown in FIG. 1 was assembled and a charge/discharge test was conducted.

図において(1)は硫化鉄を活物質とする正極で、硫化
鉄の粉末の50fノから300μの粒度のものに、電解
質の塩化リグラム−塩化カリウムの50μから150μ
の粒度のものを15重量%添加し、ハニ)Jノ、形状の
東電体に充填した後、室温にて100MPaで加圧成形
し、板状としたものである。なお、極板表面には活物質
保持のための200メツシユのステンレス′Jr4’t
!fの網を右する。(2)は本発明による多、孔質の窒
化ホウ素粒子をマグネシアで固めたセパレータで、(3
)はりヂウムーアルミニウム合金を活物質とする負極で
ある。負極も正極と同様に、ハニカム形状の集電体中に
、50.uから300μまでの粒度のリチウム−アルミ
ニウム合金粉末と50μから10011までの粒度の電
解質粉末15重量%を充填し、室温にて 100MPa
で加圧成形した板状体である。負極においても活物質保
持のための200メツシコのステンレスFf!4製の網
を有り−る。電解質には54重量%塩化リヂウムー塩化
カリウムの溶融塩を用いた。電池の作動温度は470’
Cとした。
In the figure, (1) is a positive electrode that uses iron sulfide as an active material, with a particle size of iron sulfide powder from 50μ to 300μ, and an electrolyte of liggram chloride-potassium chloride from 50μ to 150μ.
After adding 15% by weight of particles having a particle size of 15% by weight and filling it into a TEPCO body in the shape of 100g, it was press-molded at 100MPa at room temperature to form a plate. In addition, 200 mesh stainless steel 'Jr4't is placed on the surface of the electrode plate to hold the active material.
! Move the mesh of f to the right. (2) is a separator made of porous boron nitride particles hardened with magnesia according to the present invention;
) This is a negative electrode that uses a lithium-aluminum alloy as the active material. Similar to the positive electrode, the negative electrode also has a honeycomb-shaped current collector containing 50. Filled with lithium-aluminum alloy powder with a particle size of u to 300μ and 15% by weight of electrolyte powder with a particle size of 50μ to 10011, the pressure was 100MPa at room temperature.
It is a plate-shaped body that is pressure-formed. 200 mesh stainless steel Ff to retain active material even in the negative electrode! There are 4 types of nets. A 54% by weight lithium chloride potassium chloride molten salt was used as the electrolyte. Battery operating temperature is 470'
It was set as C.

なお、正極の容量は25Δhとし、負極容量は正極の1
.3倍とした。
The capacity of the positive electrode is 25Δh, and the capacity of the negative electrode is 1
.. It was tripled.

本発明による多孔質の板状セパレータの多孔度は70%
ど窒化ホウ素フTル1〜の89%に(」劣るものの、マ
グネシア粉末レバレータの46%に較べ、充分に多孔質
であり、電池試験においても2.5△充放電時の正極活
物質利用率が83%と高い値を示した。同様の構成でマ
グネシア粉末セパレータを用いた電池では、活物質利用
率は64%にとどまり、窒化ホウ素フェルトセパレータ
を用いたちのも86%と、本発明によるセパレータと同
等の値となった。
The porosity of the porous plate separator according to the present invention is 70%.
Although it is inferior to 89% of boron nitride fluorite, it is sufficiently porous compared to 46% of magnesia powder leverator, and in battery tests, the utilization rate of positive electrode active material during charging and discharging was 2.5△. In a battery with a similar configuration using a magnesia powder separator, the active material utilization rate was only 64%, and in a battery using a boron nitride felt separator, it was 86%. It became the same value.

以上の説明及び実施例から明らかなように、本発明は、
従来のセパレータの欠点を改良し、安価な窒化ホウ素粒
子とマグネシウム化合物を原料として、多孔質で、溶融
塩への濡れも良好なセパレータを用いた溶融塩電池を提
供するものである。
As is clear from the above description and examples, the present invention
The present invention improves the drawbacks of conventional separators and provides a molten salt battery using a separator made of inexpensive boron nitride particles and a magnesium compound, which is porous and has good wettability to molten salt.

本発明によるセパレータを用いた電池は組立て時におい
ても、セパレータの形状が繭状のため取扱いが容易であ
るという利点も、併せて有する。
The battery using the separator according to the present invention also has the advantage that it is easy to handle even during assembly because the separator has a cocoon-like shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる電池の一実施例を示す断面図であ
る。 1・・・・・・正極、2・・・・・・多孔質の窒化ホウ
素粒子をマ5− ズ 1 邑
FIG. 1 is a sectional view showing an embodiment of a battery according to the present invention. 1... Positive electrode, 2... Porous boron nitride particles.

Claims (1)

【特許請求の範囲】[Claims] 負極にリヂウムあるい;:Lリブウ11合金を、正極に
金属硫化物を使用し、極間に、熱分解により生成り−る
マグネシアを結着剤に用いて多孔質の窒化ホ「“ノ素粒
子を板状にしたものを介在させたことを特徴とする高温
形電池、。
Lidium or L Ribou 11 alloy is used for the negative electrode, metal sulfide is used for the positive electrode, and porous nitride foam is used between the electrodes using magnesia produced by thermal decomposition as a binder. A high-temperature battery characterized by intervening plate-shaped particles.
JP58045081A 1983-03-16 1983-03-16 High temperature type battery Pending JPS59169080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58045081A JPS59169080A (en) 1983-03-16 1983-03-16 High temperature type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045081A JPS59169080A (en) 1983-03-16 1983-03-16 High temperature type battery

Publications (1)

Publication Number Publication Date
JPS59169080A true JPS59169080A (en) 1984-09-22

Family

ID=12709374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045081A Pending JPS59169080A (en) 1983-03-16 1983-03-16 High temperature type battery

Country Status (1)

Country Link
JP (1) JPS59169080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020085A4 (en) * 2013-07-10 2017-06-28 Nemeth, Karoly Functionalized boron nitride materials as electroactive species in electrochemical energy storage devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020085A4 (en) * 2013-07-10 2017-06-28 Nemeth, Karoly Functionalized boron nitride materials as electroactive species in electrochemical energy storage devices
US10693137B2 (en) 2013-07-10 2020-06-23 Boron Nitride Power, Llc Functionalized boron nitride materials as electroactive species in electrochemical energy storage devices

Similar Documents

Publication Publication Date Title
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP7042426B2 (en) Solid electrolytes and batteries
JPH11154535A (en) Nonaqueous electrolyte secondary battery
JPS59169080A (en) High temperature type battery
JPS59169075A (en) High temperature type battery
JPH0482156A (en) Electrode for lithium secondary battery
JPH11329444A (en) Nonaqueous electrolyte secondary battery
JPS59173971A (en) High temperature type battery
JPS59169079A (en) High temperature type battery
JPS59169081A (en) High temperature type battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JP2797440B2 (en) Alkaline secondary battery
JPH0434857A (en) Enclosed type alkaline battery and manufacture thereof
JPS60163384A (en) High temperature battery
JPH01105464A (en) Organic electrolyte cell
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPS59191269A (en) High temperature cell
JPS60163383A (en) High temperature battery
JPS5833665B2 (en) Manufacturing method of iron electrode
JPS59221973A (en) High temperature type battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH0345508B2 (en)
JPS60230362A (en) Thermal battery
JPH07326384A (en) Manufacture of carbon felt for sodium-sulfur battery
JPS60189179A (en) Sealed alkaline zinc storage battery