JPS60163383A - High temperature battery - Google Patents

High temperature battery

Info

Publication number
JPS60163383A
JPS60163383A JP59018704A JP1870484A JPS60163383A JP S60163383 A JPS60163383 A JP S60163383A JP 59018704 A JP59018704 A JP 59018704A JP 1870484 A JP1870484 A JP 1870484A JP S60163383 A JPS60163383 A JP S60163383A
Authority
JP
Japan
Prior art keywords
magnesia
battery
particles
separator
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59018704A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59018704A priority Critical patent/JPS60163383A/en
Publication of JPS60163383A publication Critical patent/JPS60163383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To decrease the price of a battery and eliminate special operation such as vacuum pouring of electrolyte in battery assembly by manufacturing porous magnesia particles having a specified pore size by using low price magnesia, and using a filling layer of the particles as a separator. CONSTITUTION:Magnesia particles are manufactured by sintering heavy magnesia having a mean particle size of 0.3mum with magnesium nitrate. Magnesium nitrate solution corresponding to 2wt% as magnesia is added to heavy magnesia, and granules having a particle size of about 200mum are prepared and calcined at 600 deg.C to decompose magnesium nitrate and sintered at 1,000 deg.C to obtain porous particles having appropriate strength. Porous particles having a particle size of 100-150mu are filled between electrodes 1 and 3, and a porous magnesia plate 4 having a pore size of 20mum is placed on the particle layer. The periphery of the plate 4 is fixed to electrodes with a flange 5. Thereby, the price of battery is decreased and special operation such as vacuum pouring of electrolyte in battery assembly can be eliminated.

Description

【発明の詳細な説明】 本発明は、電気自動車用あるいは電力貯蔵用電源に使用
できる高温型電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-temperature battery that can be used as a power source for electric vehicles or power storage.

高温型電池とは、電池を常温以上に加熱し、例えば、電
解質の融点以上に加熱して作動させる電池で、電極、隔
壁に秒々の物質を用いたものが報告されている。現在ま
で開発されている高温型電池で最も期待されているのは
、負極にアルカリ金属。
A high-temperature battery is a battery that is operated by heating the battery above room temperature, for example, above the melting point of the electrolyte, and it has been reported that a high-temperature battery uses a second material for electrodes and partition walls. The most promising high-temperature batteries developed to date are alkali metals for the negative electrode.

て用い、正極に金属酸化物あるいは金属硫化物を活物質
として用いる系である。
This is a system in which a metal oxide or metal sulfide is used as an active material in the positive electrode.

これらの溶融塩を用いる高温型の電池においては、電池
の作動温度、電池内の腐蝕環境等の要因から、セパレー
タ材料が限定され、窒化ホウ素。
In high-temperature batteries using these molten salts, the separator material is limited due to factors such as the operating temperature of the battery and the corrosive environment inside the battery, and boron nitride is used.

マグネシア等が使用可能であることが報告されている。It has been reported that magnesia etc. can be used.

電池のセパレータに要求される特性は、電池内での化学
的安定性の他に電池の内部抵抗を小さくし、高いエネル
ギー特性を引き出でため、セパレータの多孔度は大きい
ことが必要である。また、電池の長野白化をはかるため
、セパレータは長時間運転後の極板の変形等を抑制する
のに充分な圧縮強度を有している必要がある。セパレー
タの価格もまた、セパレータを選択する上での大きな因
子となる。
The characteristics required of a battery separator include chemical stability within the battery, as well as low internal resistance of the battery and high energy characteristics, so the separator must have a large porosity. Furthermore, in order to prevent whitening of the battery, the separator must have sufficient compressive strength to suppress deformation of the electrode plates after long-term operation. Separator price is also a major factor in separator selection.

従来の電池においては、窒化ホウ素をセパレータ材料と
し、窒化ホウ素を繊維化した後、フェルト状にしたもの
が用いられてきた。この窒化ホウし、セパレータ重量も
きわめて小さいため、電池に用いた場合、高いエネルギ
ー特性を示す電池が得られている。しかし、窒化ホウ素
は溶融塩に濡れないためセパレータを電池に組込む前に
、熱分解によりマグネシアを生成する硝酸マグネシウム
などを用いてフェルトにマグネシアを添加し、澗れ性を
改善−づ−る工程を必要とする。また窒化ホウ素フェル
1−セパレータは圧縮力により容易に変形してしまうた
め、電池の長財命化がはかれないという問題を有してお
り、ざらに、セパレータを多孔質とするためのフェルト
化の価格が非常に高価であるという欠点がある。そのた
め、溶融塩への濡れが良好なマグネシア等を粉末の形で
セパレータに用いる試みがなされている。
In conventional batteries, boron nitride has been used as a separator material, and the boron nitride is made into fibers and then made into felt. Since this boron nitride and the weight of the separator are extremely small, when used in a battery, a battery exhibiting high energy characteristics can be obtained. However, since boron nitride does not get wet with molten salt, before incorporating the separator into the battery, a process is required to add magnesia to the felt using magnesium nitrate, which produces magnesia through thermal decomposition, to improve the smearing properties. I need. In addition, the boron nitride felt separator is easily deformed by compressive force, making it difficult to extend the life of the battery. The disadvantage is that the price is very high. Therefore, attempts have been made to use magnesia or the like, which has good wettability with molten salt, in the form of a powder for the separator.

このセパレータに粉末を用いる方法は、量産効果が^く
電池の組立てが容易で、セパレータの価格も繊維化の]
−程を要しないため安+111iである。また、粉末を
充填したセパレータ層は十分な圧縮強度を持つことが報
告されている。そのため、高価な窒化ホウ素フ〕−ル1
〜セパレータに代るセパレータとして1νJ待されてい
るものの、粉末の充填層をレバレータとして用いるため
、多孔度が50%前後と小さく、電池のエネルギー特性
が低い値にとどまり、用途が電力貯蔵用等の低率放電゛
C使用される電源用に限定され、また、電解質の注入時
に廿パレータ層中の気泡により粒子が再配列を起こすた
め真空注入の操作が必要となり、また電池操作中にも外
圧等による粒子の移動の問題があった。
This method of using powder for the separator is effective in mass production, easy to assemble the battery, and the price of the separator is lower than that of fiber.
-It is cheap +111i because it does not require much time. It has also been reported that a separator layer filled with powder has sufficient compressive strength. Therefore, expensive boron nitride film 1
~ Although 1νJ is expected to be used as a separator to replace the separator, since a packed layer of powder is used as a lever, the porosity is small at around 50%, and the energy characteristics of the battery remain at a low value, making it suitable for applications such as power storage. It is limited to power supplies used for low-rate discharge, and when injecting electrolyte, air bubbles in the pallet layer cause particles to rearrange, so vacuum injection is required, and external pressure etc. There was a problem with particle movement due to

本発明(jl、これらの欠点を改良し、安価で溶融塩へ
の濡れも良く、充分な多孔度を有し、電池組立時に真空
注入等の特別の操作を必要とせず、また組立時、電池作
動中の粒子の再配列もない上、高い圧縮強度をイjする
セパレータを用いた電池を提供するものである。
The present invention (jl) improves these drawbacks, is inexpensive, has good wettability to molten salt, has sufficient porosity, does not require special operations such as vacuum injection during battery assembly, and does not require any special operations such as vacuum injection during assembly. The present invention provides a battery using a separator that does not cause particle rearrangement during operation and has high compressive strength.

第1図は本発明になる電池σルー実施例を示′?J断面
図であり、以下その実施例について詳)ホする。
FIG. 1 shows an embodiment of the battery σ according to the present invention. This is a cross-sectional view of J, and the embodiment will be described in detail below.

セパレータ材料に安価なマグネシアを用いC1平均細孔
径0.1μmの開孔を有づる多孔質のマグネシア粒子を
製造し、この粒子の充填層をセパレータとした。
Porous magnesia particles having openings with a C1 average pore diameter of 0.1 μm were produced using inexpensive magnesia as a separator material, and a packed bed of these particles was used as a separator.

多孔質のマグネシア粒子は、平均粒径0.3μmの重質
マグネシアを硝酸マグネシウムをバインダーどして多孔
質に焼結さけることにより製造した。
Porous magnesia particles were produced by sintering heavy magnesia having an average particle size of 0.3 μm into a porous state using magnesium nitrate as a binder.

まず重質マグネシアに対して、硝酸マグネシウム水溶液
をマグネシアに換算して2重量%添加し、押し出し造粒
法により約200μmの顆粒状とした後、この顆粒を6
00℃で仮焼し、硝酸マグネシウムを熱分解させ、つい
で1000℃で焼結し・で、多孔質でかつ充分な強度を
有する粒子を得た。
First, 2% by weight of an aqueous magnesium nitrate solution (calculated as magnesia) was added to heavy magnesia, and the granules were made into granules of approximately 200 μm by extrusion granulation.
The particles were calcined at 00°C to thermally decompose magnesium nitrate, and then sintered at 1000°C to obtain porous particles with sufficient strength.

次に第1図に示寸様にこの多孔質粒子の100〜150
μの粒度のものを極間に充填し、粒子層の上部に開孔径
20μmの多孔質のマグネシア板(4)を配置し・、マ
グネシア板の周辺部を電槽にスポット溶接したノランジ
部〈5)で固定した。
Next, as shown in FIG.
A porous magnesia plate (4) with a pore size of 20 μm is placed on top of the particle layer, and the peripheral part of the magnesia plate is spot welded to the battery case. ) was fixed.

図に、13いて(1)は硫化鉄を活物質とづる正極で、
硫化鉄の粉末の50μから300μの粒度のものに、電
M質の塩化リチウム−塩化カリウムの50μから150
μの粒度のものを15重量%添加し、ハニカム形状の集
電体に充填した後、室温にて100M1)a′c加圧成
形し、板状としたものである。なお、極板表面には活物
質保持のための325メツシユのステンレス鋼製の網を
有づる。(2)は本発明による多孔質のマグネシア粒子
を極間に充填づることにより形成したセパレータで、(
3)はリチウ11−アルミニウム合金を活物質とする。
In the figure, 13 (1) is a positive electrode that uses iron sulfide as the active material.
Iron sulfide powder with a particle size of 50μ to 300μ, electrolytic lithium chloride-potassium chloride with a particle size of 50μ to 150μ
After adding 15% by weight of particles having a particle size of μ and filling a honeycomb-shaped current collector, the mixture was press-molded at room temperature to form a plate. Note that a 325-mesh stainless steel net was provided on the surface of the electrode plate to hold the active material. (2) is a separator formed by filling porous magnesia particles according to the present invention between the electrodes;
3) uses a lithium-11-aluminum alloy as an active material.

負極である。It is a negative electrode.

負極も正極と同様に、ハニカム形状の集電体中に、50
μから300μまでの粒度のリヂウムーアルミニウム合
金粉末と50μから 100μまでの粒度の電解質粉末
15重量%を充填し、室温にて 100MPaで加圧成
形した板状体である。負極においても活物質保持の7j
めの325メツシユのステンレス鋼製の網を有する。電
解質には54重量%塩化リチウム−塩化カリウムの溶融
塩を用いた。電池の作動温度は470℃とした。なお、
正極の容量は25A hとし、負極容量は正極の1.3
倍とした。
Similar to the positive electrode, the negative electrode also has a honeycomb-shaped current collector with 50
It is a plate-shaped body filled with 15% by weight of lithium-aluminum alloy powder with a particle size of μ to 300 μ and electrolyte powder with a particle size of 50 μ to 100 μ, and press-formed at room temperature at 100 MPa. 7j retains active material even in negative electrode
It has a 325 mesh stainless steel screen. A 54% by weight lithium chloride-potassium chloride molten salt was used as the electrolyte. The operating temperature of the battery was 470°C. In addition,
The capacity of the positive electrode is 25A h, and the capacity of the negative electrode is 1.3
It was doubled.

セパレータ粒子層の上部に多孔質の7グネシア板よりな
る粒子保持体を有する本発明による電池、及び粒子保持
体のない電池を組み2.5Δ充電、5.0△放電でザイ
クル運転し、電池特性を比較した。
A battery according to the present invention having a particle holder made of a porous 7gnesia plate on top of a separator particle layer and a battery without a particle holder were assembled and cycled with 2.5Δ charging and 5.0Δ discharging, and the battery characteristics were determined. compared.

粒子保持体のない電池は85サイクルを越えた段階から
充IjM電気最に対する放電電気量の比であるΔh効串
が低下し始め、100サイクルで電池の内部短絡が生じ
に0電池を解体して調査したところ、セパレータ層上部
で極板が異常膨張し、極板が接触していた。これは、組
立て工程の溶融塩注入時に、セパレータ層上部の粒子が
気泡と共に、極板の上部に移動し、セパレータ層上部の
粒子の充填率が著しく低下したため、その部分の耐圧縮
性が低下し、極板が膨張したためと考えられる。本発明
になる電池r:Gよ、溶融塩注入時の粒子の再配列が起
きないため、以上の様な寿命低下をまねく問題は生じず
、200サイクルをすぎて、なお、良好な電池特性を示
している。
For batteries without a particle holder, the Δh effect, which is the ratio of discharged electricity to charged IjM electricity, began to decrease after 85 cycles, and at 100 cycles an internal short circuit occurred in the battery, causing the battery to be dismantled. Upon investigation, it was found that the electrode plates had expanded abnormally above the separator layer and were in contact with each other. This is because during the injection of molten salt during the assembly process, the particles at the top of the separator layer moved to the top of the electrode plate along with air bubbles, and the filling rate of particles at the top of the separator layer decreased significantly, resulting in a decrease in the compression resistance of that part. This is thought to be due to the expansion of the electrode plate. Battery R:G according to the present invention does not have the problem of shortening the lifespan as mentioned above because the particles do not rearrange when the molten salt is injected, and it still maintains good battery characteristics even after 200 cycles. It shows.

以上の説明及びマグネシア粉末をセパレータに用いた実
施例から明らかなように、本発明は、従来のセパレータ
の欠点を改良し、簡単な工程で長寿命化のはかれる電池
を提供りるものである。なお、実施例ではマグネシアを
セパレータ材料としたが、電池内の環境に耐える物質を
粉末としてセパレータに用いても、同様の効果が期待で
きる。
As is clear from the above description and the examples in which magnesia powder was used in the separator, the present invention improves the drawbacks of conventional separators and provides a battery with a longer life span through a simple process. In the examples, magnesia was used as the separator material, but similar effects can be expected even if a powder of a substance that can withstand the environment inside the battery is used for the separator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる電池の一実施例を示す断面図であ
る。 1・・・正極、2・・・セパレータ、3・・・負極、4
・・・粒子保持体 :′X1 ] 3
FIG. 1 is a sectional view showing an embodiment of a battery according to the present invention. 1...Positive electrode, 2...Separator, 3...Negative electrode, 4
... Particle holder:'X1 ] 3

Claims (1)

【特許請求の範囲】[Claims] 1、負極にアルカリ金属、アルカリ土類金属又はこれら
の合金を、正極に金属酸化物又は金属硫化物を用い、電
解質としてアルカリ金属やアルカリ土類金属のイオンを
含む溶融塩を用いる高温型電池において、無機物よりな
る粒子を介在させ、その粒子層の電池内空間側表面に粒
子保持体を位置させることを特徴とする高温型電池。
1. In high-temperature batteries that use alkali metals, alkaline earth metals, or alloys thereof for the negative electrode, metal oxides or metal sulfides for the positive electrode, and molten salt containing alkali metal or alkaline earth metal ions as the electrolyte. A high-temperature battery characterized in that particles made of an inorganic substance are interposed therebetween, and a particle holder is positioned on the surface of the particle layer facing the battery interior space.
JP59018704A 1984-02-03 1984-02-03 High temperature battery Pending JPS60163383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018704A JPS60163383A (en) 1984-02-03 1984-02-03 High temperature battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018704A JPS60163383A (en) 1984-02-03 1984-02-03 High temperature battery

Publications (1)

Publication Number Publication Date
JPS60163383A true JPS60163383A (en) 1985-08-26

Family

ID=11979026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018704A Pending JPS60163383A (en) 1984-02-03 1984-02-03 High temperature battery

Country Status (1)

Country Link
JP (1) JPS60163383A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210574A (en) * 1981-03-05 1982-12-24 Us Government Electrochemical battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210574A (en) * 1981-03-05 1982-12-24 Us Government Electrochemical battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
JPH0624154B2 (en) Electrochemical cell
US4792505A (en) Electrodes made from mixed silver-silver oxides
US3409474A (en) Hydrogen storing electrode and process for its manufacture
US3489610A (en) Battery having a porous insoluble hydrous inorganic oxide separator
US3471330A (en) Battery with an electrolyte of solid alkali particles
US3446668A (en) Inorganic battery separator and battery
JPS60163383A (en) High temperature battery
JPH0447676A (en) Manufacture of sealed storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH05101831A (en) Thermal battery
US3161545A (en) Rechargeable cell and electrode therefor
JPS60212958A (en) Hydrogen absorption electrode
JPS638587B2 (en)
JPS59169075A (en) High temperature type battery
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JPS60163384A (en) High temperature battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JPH07134997A (en) Thermal battery
JPS59169080A (en) High temperature type battery
JPH09245847A (en) Storage battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPS60163385A (en) High temperature battery