JPS59169075A - High temperature type battery - Google Patents

High temperature type battery

Info

Publication number
JPS59169075A
JPS59169075A JP58045079A JP4507983A JPS59169075A JP S59169075 A JPS59169075 A JP S59169075A JP 58045079 A JP58045079 A JP 58045079A JP 4507983 A JP4507983 A JP 4507983A JP S59169075 A JPS59169075 A JP S59169075A
Authority
JP
Japan
Prior art keywords
separator
magnesia
battery
porous
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58045079A
Other languages
Japanese (ja)
Other versions
JPH0237661B2 (en
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58045079A priority Critical patent/JPS59169075A/en
Publication of JPS59169075A publication Critical patent/JPS59169075A/en
Publication of JPH0237661B2 publication Critical patent/JPH0237661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery using a separator having good wettability to molten salt and sufficient porosity by using Li or Li alloy as a negative electrode, metal sulfide such as iron sulfide or iron disulfide as a positive electrode, and placing porous magnesia powder between them. CONSTITUTION:Metal sulfide such as iron sulfide or iron disulfide is used in a positive electrode 1, Li or Li alloy is in a negative electrode 3, and porous magnesia powder 2 is filled between them. The porous magnesia powder is prepared in such a way that, for example, magnesium nitrate solution corresponding to 2wt% magnesia is added to densified magnesia having a mean particle size of 0.3mu and they are formed in glanule by a extruding method, then burned. Thereby, a separator which is low cost, easy to handle, and has good wettability to molten salt and sufficient porosity is obtained. A battery is assembled by using this separator.

Description

【発明の詳細な説明】 本発明は、負@i I:リチウムあるいはリチウム合金
を、正極に硫化鉄、71i*化鉄などを用い、セパレー
タに多孔質のンノIネジ?粒子を用いる溶融塩電池に閏
寸ろものである。
[Detailed Description of the Invention] The present invention uses negative @i I: lithium or lithium alloy, iron sulfide, 71i* iron oxide, etc. for the positive electrode, and a porous NNO I screw for the separator. It is suitable for molten salt batteries using particles.

従来、溶融塩を用いる高温形の電池においては、セパレ
ータ材質どIノで、電池の作動濡洩である500℃前後
での安定性、溶融3n中での耐蝕性、活物質に対する反
応性等の而から窒化ホウ素とマグネシアが検討されてい
る。窒化ホウ素を素材としたセパレータは、窒化ホウ素
をフェル1゛・化することにより多孔質にして用いてい
る。このフェルトセパレータは多孔度ら90%弱の大き
な値を示し、電気的絶縁性などの電池のセパレータに要
求される特性を充分に満足しているものの、セパレータ
を多孔質とするためのフェルト化の価格が非常に高い上
、活物質の保持が不充分であるという問題があった。ま
た窒化ホウ素はそのままでは溶融塩に濡れないため、窒
化ホウ素をフェルト化した後、熱分解によりマグネシア
を生成でる硝酸マグネシウムなどを用いて繊維の表面に
マグネシアを析出さけて、溶融塩への濡れ性を改善する
といった処理の工程を要した。
Conventionally, in high-temperature batteries that use molten salt, the separator material has various characteristics such as stability at around 500°C, which is the operating temperature of the battery, corrosion resistance in molten water, and reactivity with active materials. Therefore, boron nitride and magnesia are being considered. A separator made of boron nitride is made porous by converting boron nitride into ferrite. Although this felt separator exhibits a large porosity of just under 90% and fully satisfies the characteristics required for battery separators such as electrical insulation, it is difficult to make felt to make the separator porous. In addition to being very expensive, there were problems in that the retention of the active material was insufficient. In addition, boron nitride does not wet with molten salt as it is, so after making boron nitride into felt, magnesia is precipitated on the surface of the fiber using magnesium nitrate, which produces magnesia through thermal decomposition, to improve its wettability with molten salt. This required a processing step to improve the quality of the product.

マグネシアは現在までのところ、繊誼化が行われていな
いため、マグネシア粉末をセパレータに用いる試みが行
われている。しかし粉末を用いるセパレータは、多孔度
が50%前後と小さく、そのために電池での活物質利用
率も低い値にとどまってしまう。それに電池組立て時に
おいても、粉末のため取扱いが不便で、電解質粉末と共
に加圧成形して板状にするなどの処理を必要とするとい
った欠点があった。
Since magnesia has not been refined to date, attempts have been made to use magnesia powder in separators. However, separators using powder have a small porosity of around 50%, and as a result, the utilization rate of active materials in batteries remains at a low value. Moreover, when assembling a battery, it is inconvenient to handle because it is a powder, and requires processing such as pressure molding together with electrolyte powder to form a plate.

本発明は、これらの欠点を改良し、安価で取扱いが容易
な上、溶融塩への濡れも良く、充分な多孔度を有するセ
パレータを使用した電池を提供するものである。
The present invention improves these drawbacks and provides a battery using a separator that is inexpensive, easy to handle, has good wettability to molten salt, and has sufficient porosity.

以下その実施例について詳述する。Examples thereof will be described in detail below.

多孔質のマグネシア粒子は、平均粒径0.3μの重質マ
グネシアと、硝酸マグネシウムを原料にして製造した。
Porous magnesia particles were produced using heavy magnesia with an average particle size of 0.3 μm and magnesium nitrate as raw materials.

まず重質マグネシアに対して、硝酸マグネシウム水溶液
をマグネシアに換算して2重量%添加し、押し出し造粒
法により顆粒状とした後、この顆粒を1000℃で焼成
して、多孔質でかつ取扱いに充分耐える強度を有する粒
子を得た。
First, 2% by weight of an aqueous magnesium nitrate solution (calculated as magnesia) is added to heavy magnesia, and the extrusion granulation method is used to form granules.The granules are fired at 1000°C to make them porous and easy to handle. Particles with sufficient strength were obtained.

次にこ2の多孔質粒子の100〜150μの粒度のもの
を用いで、第1図に示すような本発明になるリヂウムー
硫化鉄電池を組み、放電試験を行った。
Next, a lithium iron sulfide battery according to the present invention as shown in FIG. 1 was constructed using these two porous particles having a particle size of 100 to 150 microns, and a discharge test was conducted.

図において(1)は硫化鉄を活物質とする正極で、硫化
鉄の粉末の50μから300μの粒喰のものに、電解質
の塩化リヂウムー塩化カリウムの50μから150μの
粒廓のものを15重量%添加し、ハニカム形状のW電体
に充唄した後、室温にて 100MPaで加B成形し、
板状としたものである。なお、極板表面には活物質保持
のための200メツシユのステンレス1’Vの網を有す
る。り2)は本発明による多孔質のマグネシア粒子を極
間に充填することにより形成したセパレータで、(3)
はリチウム−アルミニウム合金を活物質とする負極であ
る。負極も正極と同様に、ハニカム形状の集電体中に、
50μから300μまでの粒度のリチウム−アルミニウ
ム合金粉末と50μから100μまでの粒度の電解質粉
末15重量%を充填し、室温にて100MPaで加圧成
形した板状体である。負極においても活物質保持のため
の200メツシユのステンレス鋼製の網を有する。電M
質には54重量%塩化リチウム−塩化カリウムの溶融塩
を用いた。電池の作動温度は470℃とした。なお、正
極の容量は25△hとし、負極容量は正極の1.3倍と
した。
In the figure, (1) is a positive electrode that uses iron sulfide as an active material, with 15% by weight of iron sulfide powder with grain size of 50 to 300 μ and electrolyte of lithium chloride and potassium chloride with grain size of 50 to 150 μ. After adding it and charging it into a honeycomb-shaped W electric body, it was B-formed at 100 MPa at room temperature.
It is plate-shaped. The surface of the electrode plate has a 200-mesh stainless steel 1'V net for holding the active material. 2) is a separator formed by filling porous magnesia particles according to the present invention between poles;
is a negative electrode using a lithium-aluminum alloy as an active material. Like the positive electrode, the negative electrode also has a honeycomb-shaped current collector.
It is a plate-shaped body filled with 15% by weight of lithium-aluminum alloy powder with a particle size of 50μ to 300μ and electrolyte powder with a particle size of 50μ to 100μ, and press-formed at room temperature at 100 MPa. The negative electrode also has a 200-mesh stainless steel net for holding the active material. Electric M
A 54% by weight lithium chloride-potassium chloride molten salt was used for the quality. The operating temperature of the battery was 470°C. Note that the capacity of the positive electrode was 25Δh, and the capacity of the negative electrode was 1.3 times that of the positive electrode.

本発明による多孔質のマグネシア粒子を極間に流し込む
ことにより形成したセパレータの多孔度は79%と大き
な値を示し、その細孔分布は第2図に示すごとく、30
μ前後の細孔と0.1μ以下の微小な細孔が存在する。
The porosity of the separator formed by pouring porous magnesia particles according to the present invention between the poles is as large as 79%, and its pore distribution is as shown in Figure 2.
There are pores around μ and micropores of 0.1 μ or less.

前者の細孔は粒子間の間隙による−6の’Q8’>す、
後者の微小な細孔は粉子の内部に分布するものであるが
、粒子間の間隙は活物質の粒径にり小さく、セパレータ
層で充分に活物質が保持できることがわかる。
The former pores are caused by the gaps between particles.
Although the latter minute pores are distributed inside the powder, the gaps between the particles are small depending on the particle size of the active material, and it can be seen that the separator layer can sufficiently hold the active material.

電池試験においては、本発明による多孔質のマグネシア
粒子を用いた電池の2.5Δ充放電時の正極活物質利用
率が83%と高い値を示した。同様の構成で多孔度46
%のマグネシア粉末セパレータを用いた電池では、活物
¥9利用字は64%にとどまり、多孔度89%の窒化ホ
ウ素フエルトセパレー々を用いたちのも8696と、本
発明によろけパレータと同等の値とノ1つた。
In a battery test, a battery using porous magnesia particles according to the present invention showed a high utilization rate of positive electrode active material at 2.5Δ charging/discharging of 83%. Porosity 46 with similar configuration
In a battery using a magnesia powder separator with a porosity of 89%, the active material usage rate was only 64%, and in a battery using a boron nitride felt separator with a porosity of 89%, the value was 8696, which is equivalent to the value of the porosity of the separator made by the present invention. There was one.

以、トの説明及び実施例から明らかなように、本発明は
、従来のセパレータの欠点を改良し、安価なマグネシウ
l\化合物を原料として、多孔質で、溶融塩への濡れ6
段好なト、充分に活物質が保持されるセパレータを用い
た溶融塩電池を提供するものである。
As is clear from the following description and examples, the present invention improves the drawbacks of conventional separators, uses an inexpensive magnesium compound as a raw material, is porous, and has a molten salt wettability.
An advantageous aspect of the present invention is to provide a molten salt battery using a separator that can sufficiently retain an active material.

本発明による電池の組立ては、電槽内に正、負極板を挿
入した後、極間に多孔質のマグネシア粒5− 子を流し込むという簡単な工程で行えるという利点もイ
バせて有する。
The battery according to the present invention also has the advantage that it can be assembled by a simple process of inserting the positive and negative electrode plates into the battery case and then pouring porous magnesia grains between the electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる電池の一実施例を示寸断面図、第
2図は水銀圧入法により測定した本発明による多孔質の
マグネシア粒子を用いたセパレータの細孔分布図である
。 1・・・・・・正極、2・・・・・・多孔質のマグネシ
ア粒子を用6− 方 I  N 名−1脈生ず(庄ぐ)
FIG. 1 is a sectional view showing an embodiment of a battery according to the present invention, and FIG. 2 is a pore distribution diagram of a separator using porous magnesia particles according to the present invention, measured by mercury intrusion method. 1... Positive electrode, 2... Porous magnesia particles are used.

Claims (1)

【特許請求の範囲】[Claims] 負極にり゛f−ウムあるいはリチウム合金を、正極に金
罵硫化物を用い、極間トニ多孔質のマグネシア粒子を介
在さμ゛ることを特徴とする高温形電池。
A high-temperature battery characterized by using lithium or lithium alloy for the negative electrode, metal sulfide for the positive electrode, and having porous magnesia particles interposed between the electrodes.
JP58045079A 1983-03-16 1983-03-16 High temperature type battery Granted JPS59169075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58045079A JPS59169075A (en) 1983-03-16 1983-03-16 High temperature type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045079A JPS59169075A (en) 1983-03-16 1983-03-16 High temperature type battery

Publications (2)

Publication Number Publication Date
JPS59169075A true JPS59169075A (en) 1984-09-22
JPH0237661B2 JPH0237661B2 (en) 1990-08-27

Family

ID=12709320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045079A Granted JPS59169075A (en) 1983-03-16 1983-03-16 High temperature type battery

Country Status (1)

Country Link
JP (1) JPS59169075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008763A1 (en) * 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof
JP2012018844A (en) * 2010-07-08 2012-01-26 Sumitomo Electric Ind Ltd Molten salt battery
CN113130840A (en) * 2021-04-19 2021-07-16 中国工程物理研究院电子工程研究所 Thermal battery anode material with high performance and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3002656U (en) * 1994-03-31 1994-09-27 藤井電工株式会社 Safety device for fall prevention

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008763A1 (en) * 1995-08-28 1997-03-06 Asahi Kasei Kogyo Kabushiki Kaisha Cell and production method thereof
US6287720B1 (en) 1995-08-28 2001-09-11 Asahi Kasei Kabushiki Kaisha Nonaqueous battery having porous separator and production method thereof
JP2012018844A (en) * 2010-07-08 2012-01-26 Sumitomo Electric Ind Ltd Molten salt battery
CN113130840A (en) * 2021-04-19 2021-07-16 中国工程物理研究院电子工程研究所 Thermal battery anode material with high performance and preparation method thereof
CN113130840B (en) * 2021-04-19 2022-08-26 中国工程物理研究院电子工程研究所 Thermal battery anode material with high performance and preparation method thereof

Also Published As

Publication number Publication date
JPH0237661B2 (en) 1990-08-27

Similar Documents

Publication Publication Date Title
US3625765A (en) Production of battery electrode
JPS59169075A (en) High temperature type battery
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JPS59163754A (en) Pasted positive plate for alkaline storage battery
JPS59173971A (en) High temperature type battery
JPS59169081A (en) High temperature type battery
CN220604716U (en) Lithium ion secondary battery
JPS59169080A (en) High temperature type battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JPS63190252A (en) Lead storage battery
JPS59191269A (en) High temperature cell
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JPS59221973A (en) High temperature type battery
JPS59169079A (en) High temperature type battery
JPH04507171A (en) Porous lithium electrode and battery equipped with the same
JPS60163384A (en) High temperature battery
SU720580A1 (en) Separator for lead storage battery
JPS58158866A (en) Lead storage battery
JPS5833665B2 (en) Manufacturing method of iron electrode
JPH05198299A (en) Pasted lead acid battery
JP2855677B2 (en) Sealed lead-acid battery
JP2014032798A (en) Nonaqueous electrolyte secondary battery
JPS61114470A (en) Plate for lead storage battery
JPH0322355A (en) Sealed lead-acid battery
JPS58175262A (en) Manufacture of nickel electrode for battery