JPS59221973A - High temperature type battery - Google Patents

High temperature type battery

Info

Publication number
JPS59221973A
JPS59221973A JP58097526A JP9752683A JPS59221973A JP S59221973 A JPS59221973 A JP S59221973A JP 58097526 A JP58097526 A JP 58097526A JP 9752683 A JP9752683 A JP 9752683A JP S59221973 A JPS59221973 A JP S59221973A
Authority
JP
Japan
Prior art keywords
battery
active material
separator
boron nitride
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58097526A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58097526A priority Critical patent/JPS59221973A/en
Publication of JPS59221973A publication Critical patent/JPS59221973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a separator for a fused salt battery with porosity, and good wetting into fused salt and with few changes in thickness, by using inorganic material such as molded body of mangesium compound or boron nitride that is stable against lithium, as the raw material. CONSTITUTION:A battery set up by interposing a separator 2 with 85% porosity of a particle layer formed by injecting a porous magnesia particle between frame bodies made of boron nitride, between a positive electrode 1 that uses iron sulfide as the active material and a negative electrode 3 that used lithium-alumium alloy as the active material, showed a high value of 83% for the coefficient of utilization of the positive electrode active material at the 2.5A charge and discharge. In addition, the thickness of a separator layer after 100 cycles was not changed at the 8-hour rate charge and discharge and the shape change of the plate was also relaxed.

Description

【発明の詳細な説明】 木発明(,1、f:11!iにリチウムあるいはリチウ
ム合金を、ir極に硫化鉄、−r!i!i化鉄などを用
い、セパレータに窒化ホウ素等のリチウムに対し安定な
無機物よt’) /iる枠体に充填した多孔質のマグネ
シア粒子を用いろ溶ta塩電池に閏Jるものである。
[Detailed description of the invention] Wood invention (1, using lithium or lithium alloy for f:11!i, using iron sulfide, -r!i!i iron oxide, etc. for the IR electrode, and using lithium such as boron nitride for the separator) This method uses porous magnesia particles filled in a frame with an inorganic material that is stable against t')/i to form a molten tantalum salt battery.

従’AC,溶融塩を用いる高温形の電池にd5いては、
レバ1ノータ+4質どして、電池の作動渇磨である5o
o’C前後での安定11.溶融塩中での耐蝕性、活物v
°1に・χ・11Jる反応1’l”Qの面から窒化ホウ
素とマグネシアが検ト1されている。窒化ホウ素を素材
とじたヒバレータは、窒化ホウ素をフrルト化Jること
により多孔質にして用いている。このフェルトセパレー
タは多孔度も90%弱の大iJ <’c (1Tiを示
し、電気的絶縁性などの電池のセパレータに要求される
特性を充分に満足しているものの、]2パレータを多孔
質どするためのフェルト化の価格が非常に高い上、活物
質の保持が不充分であるという問題があった。にた窒化
ホウ素はぞのまJ:では溶融塩に濡れないため、窒化ホ
ウ素を゛フェルト化した後、熱分解にJ:りマグネシア
を生成する硝酸マグネシウムなどを用いて繊維の表面に
マグネシアを析出させて、溶融塩への濡れ性を改善する
どいった処理の工程を要した。
For AC, high-temperature batteries using molten salt, d5 is
Lever 1 note + 4 quality, 5 o which is battery operation depletion
Stability around o'C11. Corrosion resistance in molten salt, live material v
Boron nitride and magnesia have been detected from the surface of the reaction 1'l''Q. This felt separator has a porosity of just under 90%, exhibits a large iJ<'c (1Ti), and satisfies the characteristics required for battery separators, such as electrical insulation. , ] 2 The cost of making felt to make the palator porous was extremely high, and there were problems in that the retention of the active material was insufficient. Since it does not get wet, after making boron nitride into a felt, magnesia is precipitated on the surface of the fiber using magnesium nitrate, which produces magnesia by thermal decomposition, to improve wettability to molten salt. It required a processing step.

ざらに、窒化ホウ素フェルトを用いたセパレータは、極
板の充放電による変形につれて、厚さが疫化してしJ、
い、電池のノを命を短くづ−るどいった欠点があった。
In general, separators using boron nitride felt become thicker as the electrode plates deform due to charging and discharging.
However, there were drawbacks such as shortening the life of the battery.

マグネシアは現在までのところ、繊組化が行われていな
いため、マグネシア粉末をセパレータに用いる試みが行
われている。しかし粉末を用いるt!パレークは、多孔
度が50%前後と小さく、そのたV)に電池での)、う
物質利用率t〕低い伯にとどまつ(シJ、・)、、イれ
に電池III)lてll:、においても、粉末の!ごめ
IIII!汲いか11便で、電解M粉末と共に加圧成形
して仮IRに(するにCどの処理を必要とするどいった
欠点かぁ−)lこ、。
Since magnesia has not been made into fibers to date, attempts have been made to use magnesia powder in separators. But using powder! Pareku has a small porosity of around 50%, and its material utilization rate in batteries remains low. :, even in powder! Gome III! After 11 steps, I press-molded it with electrolytic M powder and made it into a temporary IR.

本発明(,1、こ1′【らの欠fii−を改良し、安価
で取扱いが容易/’f I−、、溶融塩への濡れも良く
、充分な多孔度を右し、if池(’r f)+中、常に
均一(T厚みを有Jるセパレータを使用した電池を提供
1[るものである。
The present invention (1, 1') improves the deficiencies of these, is inexpensive and easy to handle/'f I-, has good wettability to molten salt, has sufficient porosity, The present invention provides a battery using a separator that always has a uniform (T) thickness.

以下その実施例(、二ついて訂)1(Jる。The following is an example (2 editions) 1 (Jru).

多孔質のマグネシア粒子は、平均粒径0 、3 ftの
Φ711マグネシアと、l1rj酌マグネシウムを原わ
1にして胃j告しl、二9、仁ず!T!貿゛(クネシア
に対して、硝配2ングネシウムホ溶液を・マグネシアに
換算して21μ邑%添加し、押し出し造粒法により顆粒
状とした後、この顆粒を10 (+ +1 ’Cぐ焼成
して、多孔Y1でかつ取1枝いに充分耐える強電を有す
る粒子を行だ。
The porous magnesia particles are made of Φ711 magnesia with an average particle size of 0.3 ft, and magnesium as the raw material. T! To Cnesia, add 21 μ% of a solution of 2 gnesium and 21% in terms of magnesia, make it into granules by extrusion granulation method, and then calcinate the granules for 10 (+ +1'C). , particles having pores Y1 and a strong electric current sufficiently able to withstand one branch were prepared.

次にこの多孔Y1y81了の100・〜1 !i 0 
flの粒度のもの及び−上部が開放と41つだ窒化ホウ
素のくし形の枠体を用いて、第1図に示1J:うな本発
明になるリヂf″/ムー硫化鉄電池を相1]、充放電試
験を行った。電池の絹マfは、それぞれ加圧成形」ノだ
正、負極板の間に、第2図に示−J−,1一部が開成と
4につだ窒化ホウ素のくし形の枠体をはさみ、正極底部
と電槽を絶縁7する絶縁板(5)ど」(に、これらを電
槽に挿入後、くし形の枠体のくしの歯の間に、多孔質の
;マグネシア粒子を充1眞することにより行つIL 6
図において(1)Iま硫化鉄を活物質とする正極で、硫
化3人の粉本の50f1から300μの粒度のものに、
電解質の塩11ニリチウムー塩化カリウムの50Izか
ら 150flの粒度のものをISl’7量%添加し、
ハニカム形状の集電体に充填した後、室温にて 100
MPaで加F「成形1ノ、板状としたものでJ与る。i
’T 13、極板表面には活物質保持のための200メ
ツシlのステンレス鋼製の網を看づる。、(2)は本発
明により上部が開放となったくし形の窒化ホウ素の枠体
(4)に多孔質のマグネシア粒子を充LTi ’Jるこ
とにより形成したセパレークで、(3)はリチウム−ア
ルミ2911合金を活物質どする負極である。
Next, this porous Y1y81 100・~1! i 0
Using a comb-shaped frame of boron nitride with a grain size of fl and an open top, an iron sulfide cell according to the present invention was constructed as shown in FIG. , charging and discharging tests were carried out.The silk mats of the battery were press-formed, respectively, between the positive and negative electrode plates, as shown in Figure 2. After inserting the comb-shaped frame into the battery case, insert a porous plate between the teeth of the comb-shaped frame. ;IL performed by filling magnesia particles 6
In the figure, (1) is a positive electrode using iron sulfide as an active material, with a particle size of 50f1 to 300μ.
Electrolyte salt 11 dilithium-potassium chloride with a particle size of 50Iz to 150fl was added at 7% ISl',
After filling the honeycomb-shaped current collector, at room temperature 100
Calculated at MPa, J is applied when forming 1 and making it into a plate shape.i
'T 13, a 200 mesh stainless steel mesh was placed on the surface of the electrode plate to hold the active material. , (2) is a separate lake formed by filling porous magnesia particles into a comb-shaped boron nitride frame (4) with an open top according to the present invention, and (3) is a lithium-aluminum frame. This is a negative electrode that uses 2911 alloy as the active material.

負極も正極ど同様に、ハニカム形状の集電体中に、50
μから300Iノ二1での粒1αのリグラム−アルミニ
ウム合金粉末と5011から 100μまでの粒度の電
解7ゴ粉末1j)弔1?’ % ’i充填り、、室’1
fjn ニT 100M Pil テ加ff成形した板
状体である。負極においても活物質1+AJ、++のl
、:めの200メツシユのステンレスmMの網をイ11
jイl ++ ’4f解質に(J54重量%塩化リヂウ
ムー塩化カリウ11の溶i、411δAを用いた。電池
の1′「動湿麻は470°Cどした。I!I−お、正極
の容量は25Ah及び100△11どし、f1極容串は
正極の1 、3 、ll’4どした。
Like the positive electrode, the negative electrode also has a honeycomb-shaped current collector with 50
Regram-aluminum alloy powder with grain size 1α from μ to 300I and electrolytic 7go powder 1j) grain size from 5011 to 100μ) '% 'i filling, chamber'1
fjn NiT 100M Pil It is a plate-shaped body which has been molded using ffjn. Also in the negative electrode, the active material 1 + AJ, ++ l
,: 200 mesh stainless steel mesh I11
For the solute, 411 δA (a solution of 54% by weight of lithium chloride and potassium chloride 11, 411 δA) was used. The capacity was 25Ah and 100△11, and the capacity of the f1 electrode was 1, 3, and 11'4 for the positive electrode.

本発明(二よる多孔質のマグネシア粒子を窒化ホウ;乞
の枠体の間に流し込むことにより形成した粒子間の多f
11度IJ:85%と大きな値を示し、水銀IE大人法
よ(つ測定し]、二での細孔分イ0は、30μと111
に人さなピークを示した。前者の細孔は粒子間の間隙(
こJ、る6のであり、後省の微小4T細孔は粒子の内部
に分布iするbので(5るが、粒子間の間隙は活物質の
粒径より小さく、レバ1ノータ層で充分に活物+、+4
jが保1寺で゛きるこJ二がわかる。
According to the present invention, porous magnesia particles are formed by pouring porous magnesia particles between the frames of boron nitride;
11 degrees IJ: It shows a large value of 85%, and according to the mercury IE large method (measured), the pore size at 2 is 30μ and 111
showed a small peak. The former pores are the gaps between particles (
This is because the minute 4T pores described later are distributed inside the particles (5), but the gaps between the particles are smaller than the particle size of the active material, and a layer of 1 layer is sufficient. Living things +, +4
You can see that j is Ho1ji and Kiruko J2 is.

容−frf25Δhの電池による電池試験によ夕いては
、本発明による多孔質のマグネシア粒子を用いた電池の
2.5△充放電時の正極活物質利用率が83%と高い値
を示した。同様の(14成で多孔度46%のマグネシア
粉末セパレータを用いた電池で′は、活物質利用率は6
496にとどまり、多孔度89%の窒化ホウ素]Jルト
セバ1ノータを用いたものも86%と、本発明にJ二る
セバレ〜りと同智の値となった。
In a battery test using a battery with a capacity of -frf of 25Δh, the battery using the porous magnesia particles according to the present invention showed a high positive electrode active material utilization rate of 83% during charging and discharging of 2.5Δ. In a similar battery using a magnesia powder separator with 14 composition and 46% porosity, the active material utilization rate was 6.
The porosity of boron nitride with a porosity of 89% was 86%, which is the same value as the porosity of the present invention.

さJ)に、極板面積’+(rの100A h電池を粗み
、電池の充放電に、J−る極板の変形の影響をみた。窒
化ホウ素フェルトl!パレ〜りを用いた電池の8時間率
充放電r 100(J−イクル後の極板厚さは、正極で
1.29’iに、負極は電池のふくれが極板の中央にか
たより、最高部でl、J: 1.5倍に達した。イのた
めセパレータ厚さは、電池中火部では初期の1.’3以
下になってしまった。本発明による窒化ホウ素の枠体及
び多孔質のマグネシア粒子をセパレータに用いた電池で
は、同様の条件下でもセパレータ層の厚みの変化は4r
<、極板の形状変化も緩和され、窒化ボウ累〕Tル1〜
t?パレータを用いた電池J、lQも、((〕i命が明
(:!1される。また本発明による100△I)電池の
活物質利用率は、25△11電池ど同)手配°)い1i
liイrzl’、ジノ、=1゜以)の説明及Cf実施例
から明らかなにうに、本発明は、i:r >I<のIご
パレータの火熱を改良し、安価%−S’クネシウl、化
合物を及び市販の窒化ホウ素成形体雪のリヂ・′ツノ、
に列し安定Q: 、lltI機物を原料どIノで、ρ孔
〒1(゛、溶1’i’l! 、1ぬへの濡f1も良好り
士、充分(こ話1勿?++が1尿持され、p〕さの変る
ことのイI−い1了パレータを−用いIこ溶1^11塙
電)也を促11(Jるbのである。
A 100A h battery with a plate area '+(r) was roughened, and the effect of deformation of the plate on charge/discharge of the battery was examined.Battery using boron nitride felt l! 8 hour rate of charge/discharge r 100 (J-The electrode plate thickness after cycling is 1.29'i for the positive electrode, and the battery bulge for the negative electrode is biased towards the center of the electrode plate, and the thickness at the highest part is l, J: The thickness of the separator was reduced to less than 1.5 times the initial thickness in the medium heat section of the battery. In the battery used in
<The shape change of the electrode plate is also alleviated, and the nitrided bow is formed.
T? Batteries J and lQ using pallets are also arranged (()i life is revealed (:!1.Also, the active material utilization rate of the 100△I) battery according to the present invention is the same as that of the 25△11 battery) i1i
As is clear from the explanation of li Irzl', Gino, = 1° or less) and the Cf example, the present invention improves the heat of the I parator with i:r>I<, and reduces the cost by reducing the l, the compound and the commercially available boron nitride molded snow body horn;
Q: , lltI machine is the raw material, ρ hole 〒1 (゛, melt 1'i'l! , 1 nu wet f1 is also good, it's enough (this story 1 course? ++ is held for 1 time, and the change of p] is made using the I-i-i-i-i-i-1-reparator-, which is used to promote the 11 (Jrub).

【図面の簡単な説明】[Brief explanation of the drawing]

第11)口、1木発明に<rる電池の一実施例を示す1
lli面図、第2図Let本発明になる1lffi )
u!のセパレータ構、、H品である窒化小つ累の枠体を
示1ノだ図である。。 1・・・・・・正447.2・・・・・・窒“化ホウ素
の枠体に多孔質のングンシ)/ 11“!了4−充填し
てイrるレバレーク、3・・・77 目
11) Part 1, showing an embodiment of a battery according to the invention
lli side view, 2nd figure Let 1lffi become the present invention)
u! Fig. 1 is a diagram showing a frame of a small nitrided tube, which is a separator structure of H product. . 1... Positive 447.2... Boron nitride frame with porous material) / 11"! 4 - Filling and irritating lever leak, 3...77th

Claims (1)

【特許請求の範囲】[Claims] ()極にリチウムあるいはリチウム合金を、正極に金属
硫化物を用い、極間にセパレータとして多7Lt′[の
マグネシア粒子を充填した窒化ホウ素管のリチウムl;
二、il l)安定!r無)板物よりなる枠体を介在ざ
1↓ることを1゛j徴どJる高温形電池。
() Lithium l in a boron nitride tube using lithium or lithium alloy for the electrode, metal sulfide for the positive electrode, and filled with magnesia particles of 7 Lt' as a separator between the electrodes;
2. il l) Stable! (r) A high-temperature battery that requires a frame made of a plate to be interposed.
JP58097526A 1983-05-31 1983-05-31 High temperature type battery Pending JPS59221973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097526A JPS59221973A (en) 1983-05-31 1983-05-31 High temperature type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097526A JPS59221973A (en) 1983-05-31 1983-05-31 High temperature type battery

Publications (1)

Publication Number Publication Date
JPS59221973A true JPS59221973A (en) 1984-12-13

Family

ID=14194691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097526A Pending JPS59221973A (en) 1983-05-31 1983-05-31 High temperature type battery

Country Status (1)

Country Link
JP (1) JPS59221973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284361A (en) * 1989-04-25 1990-11-21 Matsushita Electric Ind Co Ltd Manufacture of lithium negative electrode and thermo-battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284361A (en) * 1989-04-25 1990-11-21 Matsushita Electric Ind Co Ltd Manufacture of lithium negative electrode and thermo-battery using the same

Similar Documents

Publication Publication Date Title
US4731310A (en) Cathodic electrode
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP2013140745A (en) Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
JPS59221973A (en) High temperature type battery
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JPS59169075A (en) High temperature type battery
JPS6030063A (en) Sealed type lead-acid battery
JP3263603B2 (en) Alkaline storage battery
JP6071407B2 (en) Al-Si alloy current collector used for positive electrode for nonaqueous electrolyte secondary battery and method for producing the same, positive electrode for nonaqueous electrolyte secondary battery using the current collector and method for producing the same, and non-electrode using the positive electrode Water electrolyte secondary battery
JPS59169081A (en) High temperature type battery
JP7008737B2 (en) Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JPS59191269A (en) High temperature cell
JPH04286864A (en) Secondary battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JPS59173971A (en) High temperature type battery
JPS58115775A (en) Lead-acid battery
US1215907A (en) Paste for storage-battery plates.
SU720580A1 (en) Separator for lead storage battery
JPS59169080A (en) High temperature type battery
JP2023046379A (en) Lead storage battery
RU2306638C1 (en) Positive silver plate for alkali battery and storage battery using proposed plate
JPS58158866A (en) Lead storage battery
JPS59169079A (en) High temperature type battery
JPS60216448A (en) Paste type negative plate for alkaline storage battery
JPS63126175A (en) Closed type lead storage battery