JPH0237661B2 - - Google Patents

Info

Publication number
JPH0237661B2
JPH0237661B2 JP58045079A JP4507983A JPH0237661B2 JP H0237661 B2 JPH0237661 B2 JP H0237661B2 JP 58045079 A JP58045079 A JP 58045079A JP 4507983 A JP4507983 A JP 4507983A JP H0237661 B2 JPH0237661 B2 JP H0237661B2
Authority
JP
Japan
Prior art keywords
separator
magnesia
battery
molten salt
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58045079A
Other languages
Japanese (ja)
Other versions
JPS59169075A (en
Inventor
Yasutoshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP58045079A priority Critical patent/JPS59169075A/en
Publication of JPS59169075A publication Critical patent/JPS59169075A/en
Publication of JPH0237661B2 publication Critical patent/JPH0237661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、負極にリチウムあるいはリチウム合
金を、正極に硫化鉄、二硫化鉄などを用い、セパ
レータに多孔質のマグネシア粒子を用いる溶融塩
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molten salt battery using lithium or a lithium alloy for the negative electrode, iron sulfide, iron disulfide, etc. for the positive electrode, and porous magnesia particles for the separator.

従来、溶融塩を用いる高温形の電池において
は、セパレータ材質として、電池の作動温度であ
る500℃前後での安定性、溶融塩中での耐蝕性、
活物質に対する反応性等の面から窒化ホウ素とマ
グネシアが検討されている。窒化ホウ素を素材と
したセパレータは、窒化ホウ素をフエルト化する
ことにより多孔質にして用いている。このフエル
トセパレータは多孔度も90%弱の大きな値を示
し、電気的絶縁性などの電池のセパレータに要求
される特性を充分に満足しているものの、セパレ
ータを多孔質とするためのフエルト化の価格が非
常に高い上、活物質の保持が不充分であるという
問題があつた。また窒化ホウ素はそのままでは溶
融塩に濡れないため、窒化ホウ素をフエルト化し
た後、熱分解によりマグネシアを生成する硝酸マ
グネシウムなどを用いて繊維の表面にマグネシア
を析出させて、溶融塩への濡れ性を改善するとい
つた処理の工程を要した。
Conventionally, in high-temperature batteries that use molten salt, separator materials have been selected to have stability at around 500°C, the operating temperature of the battery, corrosion resistance in molten salt,
Boron nitride and magnesia are being considered from the viewpoint of reactivity to active materials. A separator made of boron nitride is made porous by turning boron nitride into felt. This felt separator has a high porosity of just under 90%, and fully satisfies the characteristics required for battery separators such as electrical insulation. In addition to being very expensive, there were problems in that the retention of the active material was insufficient. In addition, boron nitride does not wet with molten salt as it is, so after making boron nitride into felt, magnesia is precipitated on the surface of the fiber using magnesium nitrate, which generates magnesia through thermal decomposition, to improve its wettability with molten salt. It took a lot of processing steps to improve this.

マグネシアは現在までのところ、繊維化が行わ
れていないため、マグネシア粉末をセパレータに
用いる試みが行われている。しかし粉末を用いる
セパレータは、多孔度が50%前後と小さく、その
ために電池での活物質利用率も低い値にとどまつ
てしまう。それに電池組立て時においても、粉末
のため取扱いが不便で、電解質粉末と共に加圧成
形して板状にするなどの処理を必要とするといつ
た欠点があつた。
Since magnesia has not been made into fibers to date, attempts have been made to use magnesia powder in separators. However, separators using powder have a small porosity of around 50%, and as a result, the utilization rate of active materials in batteries remains low. In addition, when assembling a battery, it is inconvenient to handle because it is a powder, and it requires processing such as pressure molding together with electrolyte powder to form a plate.

本発明は、これらの欠点を改良し、安価で取扱
いが容易な上、溶融塩への濡れも良く、充分な多
孔度を有するセパレータを使用した電池を提供す
るものである。
The present invention improves these drawbacks and provides a battery using a separator that is inexpensive, easy to handle, has good wettability to molten salt, and has sufficient porosity.

以下その実施例について詳述する。 Examples thereof will be described in detail below.

多孔質のマグネシア粒子は、平均粒径0.3μの重
質マグネシアと、硝酸マグネシウムを原料にして
製造した。まず重質マグネシアに対して、硝酸マ
グネシウム水溶液をマグネシアに換算して2重量
%添加し、押し出し造粒法により顆粒状とした
後、この顆粒を1000℃で焼成して、多孔質でかつ
取扱いに充分耐える強度を有する粒子を得た。
Porous magnesia particles were produced using heavy magnesia with an average particle size of 0.3μ and magnesium nitrate as raw materials. First, 2% by weight of an aqueous magnesium nitrate solution (calculated as magnesia) is added to heavy magnesia, and the extrusion granulation method is used to form granules.The granules are fired at 1000℃ to make them porous and easy to handle. Particles with sufficient strength were obtained.

次にこの多孔質粒子の100〜150μの粒度のもの
を用いて、第1図に示すような本発明になるリチ
ウム−硫化鉄電池を組み、放電試験を行つた。図
において1は硫化鉄を活物質とする正極で、硫化
鉄の粉末の50μから300μの粒度のものに、電解質
の塩化リチウム−塩化カリウムの50μから150μの
粒度のものを15重量%添加し、ハニカム形状の集
電体に充填した後、室温にて100MPaで加圧成形
し、板状としたものである。なお、極板表面には
活物質保持のための200メツシユのステンレス鋼
製の網を有する。2は本発明による多孔質のマグ
ネシア粒子を極間に充填することにより形成した
セパレータで、3はリチウム−アルミニウム合金
を活物質とする負極である。負極も正極と同様
に、ハニカム形状の集電体中に、50μから300μま
での粒度のリチウム−アルミニウム合金粉末と
50μから100μまでの粒度の電解質粉末15重量%を
充填し、室温にて100MPaで加圧成形した板状体
である。負極においても活物質保持のための200
メツシユのステンレス鋼製の網を有する。電解質
には54重量%塩化リチウム−塩化カリウムの溶融
塩を用いた。電池の作動温度は470℃とした。な
お、正極の容量は25Ahとし、負極容量は正極の
1.3倍とした。
Next, a lithium-iron sulfide battery according to the present invention as shown in FIG. 1 was constructed using these porous particles having a particle size of 100 to 150 microns, and a discharge test was conducted. In the figure, 1 is a positive electrode using iron sulfide as an active material, in which 15% by weight of lithium chloride-potassium chloride as an electrolyte with a particle size of 50 to 150 μ is added to iron sulfide powder with a particle size of 50 μ to 300 μ. After filling a honeycomb-shaped current collector, the material was pressure-formed at room temperature at 100 MPa to form a plate. The surface of the electrode plate has a 200-mesh stainless steel mesh to hold the active material. 2 is a separator formed by filling porous magnesia particles according to the present invention between electrodes, and 3 is a negative electrode using a lithium-aluminum alloy as an active material. Similar to the positive electrode, the negative electrode also contains lithium-aluminum alloy powder with a particle size of 50μ to 300μ in a honeycomb-shaped current collector.
It is a plate-shaped body filled with 15% by weight of electrolyte powder with a particle size of 50μ to 100μ and press-formed at 100MPa at room temperature. 200 to retain active material even in the negative electrode
Has mesh stainless steel mesh. A 54% by weight lithium chloride-potassium chloride molten salt was used as the electrolyte. The operating temperature of the battery was 470°C. The capacity of the positive electrode is 25Ah, and the capacity of the negative electrode is the same as that of the positive electrode.
It was set to 1.3 times.

本発明による多孔質のマグネシア粒子を極間に
流し込むことにより形成したセパレータの多孔度
は79%と大きな値を示し、その細孔分布は第2図
に示すごとく、30μ前後の細孔と0.1μ以下の微小
な細孔が存在する。前者の細孔は粒子間の間隙に
よるものであり、後者の微小な細孔は粒子の内部
に分布するものであるが、粒子間の間隙は活物質
の粒径より小さく、セパレータ層で充分に活物質
が保持できることがわかる。
The porosity of the separator formed by pouring porous magnesia particles according to the present invention between the electrodes is as large as 79%, and the pore distribution is as shown in Figure 2, with pores around 30μ and 0.1μ. The following micropores exist. The former pores are due to the gaps between particles, and the latter minute pores are distributed inside the particles, but the gaps between particles are smaller than the particle size of the active material, and the separator layer is sufficient to It can be seen that the active material can be retained.

電池試験においては、本発明による多孔質のマ
グネシア粒子を用いた電池の2.5A充放電時の正
極活物質利用率が83%と高い値を示した。同様の
構成で多孔度46%のマグネシア粉末セパレータを
用いた電池では、活物質利用率は64%にとどま
り、多孔度89%の窒化ホウ素フエルトセパレータ
を用いたものも86%と、本発明によるセパレータ
と同等の値となつた。
In a battery test, a battery using porous magnesia particles according to the present invention showed a high utilization rate of positive electrode active material at 2.5A charging/discharging of 83%. In a battery with a similar configuration using a magnesia powder separator with a porosity of 46%, the active material utilization rate was only 64%, and in a battery using a boron nitride felt separator with a porosity of 89%, it was 86%. It became the same value.

以上の説明及び実施例から明らかなように、本
発明は、従来のセパレータの欠点を改良し、安価
なマグネシウム化合物を原料として、多孔質で、
溶融塩への濡れも良好な上、充分に活物質が保持
されるセパレータを用いた溶融塩電池を提供する
ものである。
As is clear from the above description and examples, the present invention improves the drawbacks of conventional separators, and uses an inexpensive magnesium compound as a raw material to create a porous separator.
The object of the present invention is to provide a molten salt battery using a separator that has good wettability to molten salt and can sufficiently retain an active material.

本発明による電池の組立ては、電槽内に正、負
極板を挿入した後、極間に多孔質のマグネシア粒
子を流し込むという簡単な工程で行えるという利
点も併せて有する。
The battery according to the present invention also has the advantage that it can be assembled by a simple process of inserting the positive and negative electrode plates into the battery case and then pouring porous magnesia particles between the electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる電池の一実施例を示す断
面図、第2図は水銀圧入法により測定した本発明
による多孔質のマグネシア粒子を用いたセパレー
タの細孔分布図である。 1……正極、2……多孔質のマグネシア粒子を
用いたセパレータ、3……負極。
FIG. 1 is a sectional view showing an example of a battery according to the present invention, and FIG. 2 is a pore distribution map of a separator using porous magnesia particles according to the present invention, measured by mercury intrusion method. 1... Positive electrode, 2... Separator using porous magnesia particles, 3... Negative electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 負極にリチウムあるいはリチウム合金を、正
極に金属硫化物を用いた溶融塩電池において、セ
パレータとして平均粒径0.3μのマグネシア粉末か
ら形成した100〜150μの多孔質マグネシア粒子を
正・負極間に介在させたことを特徴とする溶融塩
電池。
1. In a molten salt battery using lithium or lithium alloy for the negative electrode and metal sulfide for the positive electrode, porous magnesia particles of 100 to 150μ made from magnesia powder with an average particle size of 0.3μ are interposed between the positive and negative electrodes as a separator. A molten salt battery characterized by:
JP58045079A 1983-03-16 1983-03-16 High temperature type battery Granted JPS59169075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58045079A JPS59169075A (en) 1983-03-16 1983-03-16 High temperature type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045079A JPS59169075A (en) 1983-03-16 1983-03-16 High temperature type battery

Publications (2)

Publication Number Publication Date
JPS59169075A JPS59169075A (en) 1984-09-22
JPH0237661B2 true JPH0237661B2 (en) 1990-08-27

Family

ID=12709320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045079A Granted JPS59169075A (en) 1983-03-16 1983-03-16 High temperature type battery

Country Status (1)

Country Link
JP (1) JPS59169075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3002656U (en) * 1994-03-31 1994-09-27 藤井電工株式会社 Safety device for fall prevention

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848435B1 (en) 1995-08-28 2007-05-16 Asahi Kasei EMD Corporation Lithium battery and production method thereof
JP5569200B2 (en) * 2010-07-08 2014-08-13 住友電気工業株式会社 Molten salt battery
CN113130840B (en) * 2021-04-19 2022-08-26 中国工程物理研究院电子工程研究所 Thermal battery anode material with high performance and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3002656U (en) * 1994-03-31 1994-09-27 藤井電工株式会社 Safety device for fall prevention

Also Published As

Publication number Publication date
JPS59169075A (en) 1984-09-22

Similar Documents

Publication Publication Date Title
EP0021735B1 (en) Zinc electrode for secondary electrochemical cells and electrochemical cells including said electrode
US2838590A (en) Composite electrode for electric batteries and method of making same
JPH0237661B2 (en)
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JPS59173971A (en) High temperature type battery
JPS59169080A (en) High temperature type battery
JPS59191269A (en) High temperature cell
US3161545A (en) Rechargeable cell and electrode therefor
CN220604716U (en) Lithium ion secondary battery
JPS59169079A (en) High temperature type battery
JPS59169081A (en) High temperature type battery
JPS59221973A (en) High temperature type battery
JPS60163384A (en) High temperature battery
JP3292204B2 (en) Nickel sintered electrode for alkaline storage battery
JPS63190252A (en) Lead storage battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JP3163510B2 (en) Sealed lead-acid battery
JPS58158866A (en) Lead storage battery
SU720580A1 (en) Separator for lead storage battery
CN111048771A (en) Zinc-based battery and preparation method and application thereof
JPH0322355A (en) Sealed lead-acid battery
JPS58175262A (en) Manufacture of nickel electrode for battery
JPH05198299A (en) Pasted lead acid battery
JPH0547944B2 (en)
JPH08180857A (en) Electrode plate for lead-acid battery