JPH0345508B2 - - Google Patents

Info

Publication number
JPH0345508B2
JPH0345508B2 JP59044593A JP4459384A JPH0345508B2 JP H0345508 B2 JPH0345508 B2 JP H0345508B2 JP 59044593 A JP59044593 A JP 59044593A JP 4459384 A JP4459384 A JP 4459384A JP H0345508 B2 JPH0345508 B2 JP H0345508B2
Authority
JP
Japan
Prior art keywords
battery
gas
electrode
storage material
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59044593A
Other languages
Japanese (ja)
Other versions
JPS60189178A (en
Inventor
Sanehiro Furukawa
Kenji Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59044593A priority Critical patent/JPS60189178A/en
Publication of JPS60189178A publication Critical patent/JPS60189178A/en
Publication of JPH0345508B2 publication Critical patent/JPH0345508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産産業上の利用分野 本発明は電池内空間に水素吸蔵材と気相触媒極
とを備え、長期にわたつて電池内圧力の上昇が防
止された密閉型アルカリ亜鉛蓄電池等の密閉型蓄
電池に関する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention provides a closed type battery that includes a hydrogen storage material and a gas phase catalyst electrode in the internal space of the battery, and prevents the internal pressure from increasing over a long period of time. It relates to sealed storage batteries such as alkaline zinc storage batteries.

(ロ) 従来技術 従来、亜鉛を負極とする密閉型アルカリ亜鉛蓄
電池で代表される密閉型蓄電池は充放電の副反
応、過充電、過放電、電極活物質の自己放電等に
よつて水素ガス及び酸素ガスが発生し電池内圧力
を上昇せしめ電池外装罐の膨張や電解液の漏洩を
引き起すため蓄電池の密閉化を困難としていた。
(b) Prior art Conventionally, sealed storage batteries, such as sealed alkaline zinc storage batteries with zinc as the negative electrode, generate hydrogen gas and Oxygen gas is generated, which increases the internal pressure of the battery, causing expansion of the battery case and leakage of the electrolyte, making it difficult to seal the storage battery.

一般にこの電池内圧力の上昇を防止するために
下記の方法が採用されている。
Generally, the following method is adopted to prevent this increase in battery internal pressure.

第1にニツケル−カドミウム電池に於いて採用
されている方法であつて、極板容量を正極より負
極の方が大なるよう設定し充電の際に正極を先に
満充電にさせ正極から発生する酸素ガスを負極に
吸収せしめて、電池内部で消費できない水素ガス
が負極から発生するのを防止するいわゆるノイマ
ン方式がある。しかしながら、負極での酸素ガス
の吸収速度の小さい場合や、特にアルカリ亜鉛蓄
電池のように負極にデンドライトが発生するもの
では、このデンドライト発生防止のために正負極
間に通気性の悪い微孔性セパレータを配するの
で、酸素ガスが正極に到達し難くノイマン方式に
よる効果を得ることは困難である。
The first is a method used in nickel-cadmium batteries, in which the capacity of the electrode plates is set so that the negative electrode is larger than the positive electrode, and when charging, the positive electrode is fully charged first, so that electricity is generated from the positive electrode. There is a so-called Neumann method in which oxygen gas is absorbed into the negative electrode to prevent hydrogen gas that cannot be consumed inside the battery from being generated from the negative electrode. However, in cases where the absorption rate of oxygen gas at the negative electrode is low, or where dendrites are generated on the negative electrode, such as in alkaline zinc storage batteries, a microporous separator with poor air permeability is used between the positive and negative electrodes to prevent the formation of dendrites. , it is difficult for oxygen gas to reach the positive electrode, making it difficult to obtain the effects of the Neumann method.

第2の方法として、特公昭58−38914号公報等
により提案されるものであつて、電池内に気相触
媒極を設置し水素ガスと酸素ガスを2対1の割合
で結合させて水に戻す方法がある。しかしなが
ら、この方法では水素ガスと酸素ガスとが同時に
存在しないとガス吸収は行なわれない。
The second method, proposed in Japanese Patent Publication No. 58-38914, etc., is to install a gas phase catalyst electrode in the battery and combine hydrogen gas and oxygen gas at a ratio of 2:1 to water. There is a way to get it back. However, in this method, gas absorption is not performed unless hydrogen gas and oxygen gas are present simultaneously.

また第3の方法として特公昭58−40828号公報
等で最近電池用電極に用いるものとして提案され
るLaNi5系合金などの水素吸蔵材を電池内に設置
し電池内ガス圧の上昇を防止する方法が考えられ
るが、この方法に於いても吸収されるのは水素ガ
スだけで酸素は吸収することはできず、またこの
水素吸蔵材は高価なものであり長期にわたつて水
素を吸収するには多量に必要とするため実用に供
することができなかつた。
A third method is to install a hydrogen storage material such as LaNi5 alloy, which has recently been proposed for use in battery electrodes in Japanese Patent Publication No. 58-40828, etc., to prevent the gas pressure inside the battery from rising. However, even with this method, only hydrogen gas is absorbed, not oxygen, and this hydrogen storage material is expensive, and it is difficult to absorb hydrogen over a long period of time. It was not possible to put it into practical use because it required a large amount.

(ハ) 発明の目的 本発明はかかる点に鑑み電池内気相部に水素吸
蔵材と気相触媒極とを撥水性及び通気性を有する
保護部材で被覆して配設することで、長期にわた
つて電池内圧力の上昇を防止し信頼性の向上した
密閉型蓄電池を提供せしめんとするものである。
(c) Purpose of the invention In view of the above, the present invention provides a hydrogen storage material and a gas phase catalyst electrode covered with a water-repellent and breathable protective member in the gas phase part of the battery, thereby providing a hydrogen storage material that can be used for a long period of time. Therefore, it is an object of the present invention to provide a sealed storage battery that prevents an increase in the internal pressure of the battery and has improved reliability.

(ニ) 発明の構成 本発明の密閉型蓄電池は、負極と正極とを備
え、電池内気相部に水素吸蔵材と気相触媒極とを
接触させ且つ撥水性及び通気性を有する保護部材
で被覆して配設されたものであり、水素吸蔵材及
び気相触媒極が水に覆われ性能劣化を起こすこと
なく効率的に電池内で発生したガスを吸収処理す
る。
(D) Structure of the Invention The sealed storage battery of the present invention includes a negative electrode and a positive electrode, and a hydrogen storage material and a gas phase catalyst electrode are brought into contact with each other in the gas phase portion of the battery, and the battery is covered with a protective member having water repellency and air permeability. The hydrogen storage material and the gas-phase catalyst electrode are covered with water and efficiently absorb and process the gas generated within the battery without causing performance deterioration.

(ホ) 実施例 本発明の一実施例を以下に示し説明する。(e) Examples An embodiment of the present invention will be shown and described below.

〔実施例〕〔Example〕

多孔質ニツケル焼結体に白金を含浸させた後防
水処理のため表面にポリテトラフルオロエチレン
を結着させて気相触媒極を作製し、またミツシユ
メタル、ニツケル及びアルミニウムを
MmNi4.5Al0.5の組成になるように各々秤量し、
その混合物約10gをアーク溶解炉内に収容してア
ルゴン雰囲気中でアーク溶解してなる合金を、ア
ルゴン雰囲気中で粉砕した後約500Kg/cm2の圧力
で加圧成形して通気性を有する多孔性水素吸蔵材
を作製した。そしてこうして作製された気相触媒
極と水素未吸蔵状態の水素吸蔵材とをフツ素樹脂
織布からなる通気性及び撥水性の保護部材で包囲
して周辺部を熱溶着した。
After impregnating a porous nickel sintered body with platinum, polytetrafluoroethylene was bonded to the surface for waterproofing to create a gas phase catalyst electrode.
Weigh each so that the composition is MmNi4.5Al0.5,
Approximately 10 g of the mixture is placed in an arc melting furnace and arc melted in an argon atmosphere.The resulting alloy is then pulverized in an argon atmosphere and then press-formed at a pressure of approximately 500 kg/cm 2 to form porous holes with air permeability. We have fabricated a hydrogen storage material. Then, the gas-phase catalyst electrode thus produced and the hydrogen storage material in a non-hydrogen storage state were surrounded by an air permeable and water repellent protective member made of fluororesin woven fabric, and the peripheral portions were thermally welded.

次いで活物質としての酸化亜鉛と、添加剤とし
ての酸化水銀とからなる混合粉末にポリテトラフ
ルオロエチレン乳液を加えて混練した後圧延する
ことでシート状になつた亜鉛物質シートを集電板
の両面に圧着して作製された亜鉛極と公知の焼結
式ニツケル極とを組み合わせ、前記通気性及び撥
水性の保護部材で被覆せしめた気相触媒極及び水
素吸蔵材を電池内気相部に配設した単二サイズの
ニツケル−亜鉛蓄電池Aを作製した。第1図はこ
の電池の断面図であり、この図面に於いて、1は
ニツケル極、2は亜鉛極であつてセパレータ3を
介して渦巻状に巻回されて電極群を構成してお
り、この電極群の上方には上部仕切板4を介して
水素吸蔵材5と気相触媒極6とが保護部材7に被
覆されて配設されている。また8は負極端子兼用
の電池罐、9は正極端子兼用の電池蓋であり夫々
亜鉛極、ニツケル極に電相的に接続されている。
10は絶縁パツキングである。
Next, a polytetrafluoroethylene emulsion was added to a mixed powder consisting of zinc oxide as an active material and mercury oxide as an additive, kneaded, and then rolled to form a sheet.The zinc material sheet was then placed on both sides of a current collector plate. A gas-phase catalyst electrode and a hydrogen storage material, which are made by combining a zinc electrode made by pressure-bonding with a known sintered nickel electrode and covered with the air-permeable and water-repellent protective member, and a hydrogen storage material are arranged in the gas phase part of the battery. A AA-sized nickel-zinc storage battery A was produced. FIG. 1 is a cross-sectional view of this battery, and in this drawing, 1 is a nickel electrode, 2 is a zinc electrode, which are spirally wound through a separator 3 to form an electrode group. A hydrogen storage material 5 and a gas phase catalyst electrode 6 are disposed above this electrode group with an upper partition plate 4 interposed therebetween and covered with a protective member 7. Further, 8 is a battery case which also serves as a negative electrode terminal, and 9 is a battery lid which also serves as a positive electrode terminal, which are electrically connected to the zinc electrode and the nickel electrode, respectively.
10 is an insulating packing.

比較例 1 前記実施例に於いて電池内気相部に配設される
水素吸蔵材と気相触媒極を被覆する保護部材のみ
取り除き、その他の条件は同一で比較電池Bを作
製した。
Comparative Example 1 Comparative battery B was prepared under the same conditions as in the previous example except that only the hydrogen storage material disposed in the gas phase portion of the battery and the protective member covering the gas phase catalyst electrode were removed.

比較例 2 前記比較例1に於いて、電池内気相部に水素吸
蔵材のみ配設して気相触媒極を取り除き、その他
の条件は同一で比較電池Cを作製した。
Comparative Example 2 Comparative battery C was prepared under the same conditions as in Comparative Example 1 except that only a hydrogen storage material was disposed in the gas phase portion of the battery and the gas phase catalyst electrode was removed.

比較例 3 前記比較例1に於いて、電池内気相部に気相触
媒極のみ配設して水素吸蔵材を取り除き、その他
は同一で比較電池Dを作製した。
Comparative Example 3 Comparative battery D was prepared in the same manner as in Comparative Example 1 except that only a gas phase catalyst electrode was disposed in the gas phase portion within the battery and the hydrogen storage material was removed.

第2図はこれら電池の内部圧力の比較図であ
り、300mAの電流で5時間充電した後24時間休
止し、次いで300mAの電流で電池電圧が1.0vに
達するまで放電するという条件で充放電を行なつ
たときの充放電サイクルの経過に伴う電池内圧力
の変化を表わしている。尚、図中A乃至Dは同一
符号の電池を示している。第2図より電池内気相
部に水素吸蔵材と気相触媒極とを併設した電池A
及びBは電池C及びDに比し電池内圧力の上昇が
大巾に抑制され、また水素吸蔵材及び気相触媒極
を保護部材で被覆した電池Aは保護部材で被覆さ
れていない電池Bに比し長期にわたる充放電サイ
クルに於いて電池内圧力の上昇が少なく良好であ
ることがわかる。
Figure 2 is a comparison diagram of the internal pressures of these batteries.Charging and discharging were performed under the conditions of charging with a current of 300mA for 5 hours, resting for 24 hours, and then discharging with a current of 300mA until the battery voltage reached 1.0V. It shows the change in the internal pressure of the battery as the charge/discharge cycle progresses. Note that A to D in the figure indicate batteries with the same symbols. From Figure 2, battery A has a hydrogen storage material and a gas phase catalyst electrode installed in the gas phase part of the battery.
In comparison with batteries C and D, the rise in battery internal pressure was significantly suppressed in batteries C and B, and battery A, in which the hydrogen storage material and gas phase catalyst electrode were covered with a protective member, was compared to battery B, which was not covered with a protective member. Compared to this, it can be seen that the increase in internal pressure of the battery during long-term charging and discharging cycles is small, which is favorable.

この理由は、電池Cの場合電池内で発生する水
素ガス及び酸素ガスのうち水素ガスのみ水素吸蔵
材で吸収するため、水素吸蔵材に吸収されない酸
素ガスが電池内に蓄積され、また電池Dの場合に
は水素ガス及び酸素ガスは2:1の比率で消費さ
れるため電池内に水素ガスが残存し蓄積されて行
き電池内圧力を上昇させるのに対し、電池A及び
Bの場合は充電時に負極表面に電析した亜鉛が自
己放電によつて水素ガスを発生すると、
MmNi4.5Al0.5からなる水素吸蔵材が(1)式の左か
ら右の状態に移行して水素化物となつて水素ガス
を吸蔵して電池内圧力の上昇を抑え、 2/nMmNi4.5Al0.5+H2 2/nMmNi4.5Al0.5Hn+Q …(1) 次いで充電時に過充電になると正極から酸素ガ
スが発生すると共に過充電による温度上昇に起因
してMmNi4.5Al0.5は(1)式の右から左の状態に移
行して水素ガスを放出し、これらによつて電池内
に酸素ガスと水素ガスが混在するようになると気
相触媒極で(2)式の反応が起こり酸素ガスと水素ガ
スから水が生成され、常時電池内圧力の上昇が抑
制されるため電池C及びDに比べて電池内の圧力
が低くなつたと考えられ、 H2+1/2O2→H2O …(2) 更に電池Aが電池Bに比べて長期の充放電サイ
クルに於いて電池内圧力が低く抑えられているの
は、電池Bでは長期にわたる充放電サイクルで電
解液によつて水素吸蔵材及び気相触媒極が覆われ
るようになり、水素吸蔵材及び気相触媒極と気体
とが接触する面積が減少して夫々水素吸蔵能力及
び水生成能力が劣化するのに対し、電池Aは水素
吸蔵材及び気相触媒極が撥水性の保護部材で覆わ
れているため、電解液がこの保護部材により水素
吸蔵材及び気相触媒極をぬらすことが防止され、
ガス吸収能力の低下がないためである。
The reason for this is that in the case of battery C, of the hydrogen gas and oxygen gas generated within the battery, only hydrogen gas is absorbed by the hydrogen storage material, so oxygen gas that is not absorbed by the hydrogen storage material is accumulated within the battery. In this case, hydrogen gas and oxygen gas are consumed at a ratio of 2:1, so hydrogen gas remains and accumulates inside the battery, increasing the internal pressure of the battery. When zinc deposited on the negative electrode surface generates hydrogen gas through self-discharge,
The hydrogen storage material made of MmNi4.5Al0.5 transitions from the left to the right state in equation (1), becomes a hydride, absorbs hydrogen gas, suppresses the rise in battery internal pressure, and becomes 2/nMmNi4.5Al0. 5+H 2 2/nMmNi4.5Al0.5Hn+Q...(1) Next, when overcharging occurs during charging, oxygen gas is generated from the positive electrode and due to the temperature rise due to overcharging, MmNi4.5Al0.5 is When the state on the left is reached and hydrogen gas is released, and as a result, oxygen gas and hydrogen gas become mixed in the battery, the reaction of formula (2) occurs at the gas phase catalyst electrode, and the oxygen gas and hydrogen gas are separated from each other. It is thought that the pressure inside the battery is lower than that of batteries C and D because water is generated and the increase in pressure inside the battery is suppressed at all times. The reason why the internal pressure of battery A is kept lower during long charge/discharge cycles compared to battery B is that in battery B, the hydrogen storage material and gas phase catalyst electrode are damaged by the electrolyte during long charge/discharge cycles. As a result, the contact area between the hydrogen storage material and the gas-phase catalyst electrode decreases, degrading the hydrogen storage capacity and water generation capacity, respectively. Since the electrode is covered with a water-repellent protective member, this protective member prevents the electrolyte from wetting the hydrogen storage material and the gas phase catalyst electrode.
This is because there is no decrease in gas absorption capacity.

尚、上記実施例では撥水性及び通気性を有する
保護部材としてフツ素樹脂織布を用いたが、本発
明は上記実施例に限定されるものではなく、他に
シリコン樹脂、ナイロン、ポリプロピレン等の耐
アルカリ樹脂をパラフイン、フツ素樹脂等で防水
処理したものを用いてもよく、また水素吸蔵材と
気相触媒極に撥水能力を付与し気体との接触をさ
またげないものであれば何を用いても構わない。
また上記実施例で用いた水素吸蔵材も
MmNiAl0.5に限定されるものではなく水素を可
逆的に吸蔵、放出できるものであれば何れも用い
ることが可能である。
In the above embodiment, a fluororesin woven fabric was used as a protective member having water repellency and air permeability, but the present invention is not limited to the above embodiment. Alkali-resistant resins waterproofed with paraffin, fluororesin, etc. may be used, or any material may be used as long as it imparts water repellency to the hydrogen storage material and gas phase catalyst electrode and does not hinder contact with gas. You may use it.
In addition, the hydrogen storage material used in the above example
It is not limited to MmNiAl0.5, but any material that can reversibly absorb and release hydrogen can be used.

(ヘ) 発明の効果 本発明の密閉型蓄電池は、負極と正極とを備
え、電池内気相部に水素吸蔵材と気相触媒極とを
接触させ且つ撥水性及び通気性を有する保護部材
で被覆して配設せしめたものであるから、電池内
で発生するガスによる電池内ガス圧の上昇を長期
の充放電サイクルにわたつて抑制することができ
信頼性の向上した密閉型蓄電池を提供できる。
(F) Effects of the Invention The sealed storage battery of the present invention includes a negative electrode and a positive electrode, and a hydrogen storage material and a gas phase catalyst electrode are brought into contact with each other in the gas phase portion of the battery, and the battery is covered with a protective member having water repellency and air permeability. Therefore, it is possible to suppress an increase in the gas pressure inside the battery due to the gas generated within the battery over a long period of charge/discharge cycles, thereby providing a sealed storage battery with improved reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の断面図、第2図は本発明
電池と比較電池の内部圧力比較図である。 1…ニツケル極、2…亜鉛極、3…セパレー
タ、5…水素吸蔵材、6…気相触媒極、7…保護
部材。
FIG. 1 is a sectional view of the battery of the present invention, and FIG. 2 is a diagram comparing the internal pressures of the battery of the present invention and a comparative battery. DESCRIPTION OF SYMBOLS 1... Nickel electrode, 2... Zinc electrode, 3... Separator, 5... Hydrogen storage material, 6... Gas phase catalyst electrode, 7... Protective member.

Claims (1)

【特許請求の範囲】[Claims] 1 負極と正極とを備えた電池の電池内気相部に
水素吸蔵材と気相触媒極とを接触させ且つ撥水性
及び通気性を有する保護部材で被覆して配設せし
めたことを特徴とする密閉型蓄電池。
1. A battery having a negative electrode and a positive electrode is characterized in that a hydrogen storage material and a gas phase catalyst electrode are placed in contact with each other in the gas phase part of the battery, and are covered with a protective member having water repellency and air permeability. Sealed storage battery.
JP59044593A 1984-03-08 1984-03-08 Sealed alkaline zinc storage battery Granted JPS60189178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044593A JPS60189178A (en) 1984-03-08 1984-03-08 Sealed alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044593A JPS60189178A (en) 1984-03-08 1984-03-08 Sealed alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS60189178A JPS60189178A (en) 1985-09-26
JPH0345508B2 true JPH0345508B2 (en) 1991-07-11

Family

ID=12695764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044593A Granted JPS60189178A (en) 1984-03-08 1984-03-08 Sealed alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS60189178A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286068U (en) * 1985-11-19 1987-06-01

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714884A (en) * 1980-07-02 1982-01-26 Hitachi Ltd Video signal transfer system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714884A (en) * 1980-07-02 1982-01-26 Hitachi Ltd Video signal transfer system

Also Published As

Publication number Publication date
JPS60189178A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
CA1235739A (en) Electrochemical cell comprising stable hydride- forming material
EP0723305B1 (en) Nickel positive electrode for use in alkaline storage battery.
GB1579714A (en) Rechargeable electrochemical cells
US3288642A (en) Rechargeable dry cell having gelled electrolyte
US4702978A (en) Electrochemical cell
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0345508B2 (en)
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPS63231882A (en) Enclosed type storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
Willems Investigation of a new type of rechargeable battery, the nickel-hydride cell
JPH0568828B2 (en)
JPS60189179A (en) Sealed alkaline zinc storage battery
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2861057B2 (en) Alkaline secondary battery
JPS58123675A (en) Button-type air cell
JPS6131941B2 (en)
JPS58131668A (en) Rechargeable silver oxide cell
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH028419B2 (en)
JPS5838914B2 (en) nickel zinc alkaline storage battery
JPH0125479Y2 (en)
JPH0636362B2 (en) Metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term