JPS63231882A - Enclosed type storage battery - Google Patents

Enclosed type storage battery

Info

Publication number
JPS63231882A
JPS63231882A JP62064738A JP6473887A JPS63231882A JP S63231882 A JPS63231882 A JP S63231882A JP 62064738 A JP62064738 A JP 62064738A JP 6473887 A JP6473887 A JP 6473887A JP S63231882 A JPS63231882 A JP S63231882A
Authority
JP
Japan
Prior art keywords
battery
gas
phase reaction
storage battery
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62064738A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ishikura
石倉 良和
Takashi Ueda
上田 高士
Riichi Nakajima
中嶋 利一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62064738A priority Critical patent/JPS63231882A/en
Publication of JPS63231882A publication Critical patent/JPS63231882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make it possible to suppress any increase of gas-pressure in the battery in the caption by on enclosing a gaseous phase reaction-catalyst coated with a specific membrane in an enclosed type storage battery such as a nickel- cadmium storage battery, a nickel-hydrogen storage battery or a lead storage battery, etc. CONSTITUTION:A gaseous phase reaction-catalyst 1 including gas permeable micro-pores whose average pore diameter is less than 1mum, and coated with a water repellent and alkaline resistant membrane 2 is enclosed in a battery. Accordingly, leakage of electrolyte is prevented by and coating of the catalyst 1, gas consumption ability of the catalyst 1 does not decrease and increase of gas-pressure in the battery is surely suppressed.

Description

【発明の詳細な説明】 ビ1 産業上の利用分野 本発明は、ニッケルーカドミクムgt池、ニッケルー水
素蓄電池、鉛蓄電池等の電池の内部に気相反応触媒を設
置した液制限型の密閉型電池に関するものである。
Detailed Description of the Invention B1 Industrial Field of Application The present invention is directed to liquid-restricted closed type batteries in which a gas phase reaction catalyst is installed inside a battery such as a nickel-cadmium GT battery, a nickel-metal hydride battery, or a lead-acid battery. It is related to batteries.

(ロ)従来の技術 ニッケルーカドミウム蓄電池、ニッケルー水素蓄電池、
鉛蓄電池等の密閉型電池は、充電時の副反応、過充電、
過放電及び電極活物質の自己放電等によって電池内で水
素ガス及び酸累ガスが発生するため1%池内のガス圧が
上昇して電池罐の膨張、破裂や電解液の漏洩等の障害が
生じ電池系の密閉化を困難としていた。このため一般に
この種蓄電池では電池に安全弁を配設して、電池内圧力
が一定圧以上になった際に安全弁を作動させて′電池の
内部から外部にガスを放出するようにしている。ところ
が安全弁が作動した際にはガスと共に電解液も電池外部
に放出されることがありこの放出された電解液によって
電2mの周囲に配した機器が損傷することがある。した
がって電池1内のガス圧を上昇させないことが実用上重
要である。
(b) Conventional technology nickel-cadmium storage batteries, nickel-hydrogen storage batteries,
Sealed batteries such as lead-acid batteries are prone to side reactions during charging, overcharging,
Hydrogen gas and acid accumulation gas are generated within the battery due to overdischarge and self-discharge of the electrode active material, which increases the gas pressure within the 1% cell, causing problems such as expansion and rupture of the battery can and leakage of electrolyte. This made it difficult to seal the battery system. For this reason, this type of storage battery is generally equipped with a safety valve, and when the internal pressure of the battery exceeds a certain pressure, the safety valve is activated to release gas from the inside of the battery to the outside. However, when the safety valve is activated, the electrolyte may be discharged to the outside of the battery together with the gas, and the discharged electrolyte may damage equipment placed around the battery. Therefore, it is practically important not to increase the gas pressure within the battery 1.

現在、!池内のガス圧上昇対策としては、負極の容量を
正極の容量よυ大として、充電時に正極から先行してガ
スが発生するようにし、負極からの水素ガス発生を抑え
ると共に正極から発生する酸素ガスを負極で消費する機
構が一般的に用いられている。
the current,! As a countermeasure for increasing gas pressure in the pond, the capacity of the negative electrode is made υ larger than the capacity of the positive electrode, so that gas is generated from the positive electrode first during charging, suppressing hydrogen gas generation from the negative electrode and reducing oxygen gas generated from the positive electrode. A mechanism is generally used in which the energy is consumed at the negative electrode.

しかしながら最近の電池の高エネルギー密度化に従い、
正極の容量が増加し正極と負極との容量比が非常に小さ
くなっておυ、充電末期などにおいて負極から水素ガス
が発生し易い傾向にある。
However, with the recent increase in the energy density of batteries,
As the capacity of the positive electrode increases and the capacity ratio between the positive and negative electrodes becomes extremely small, hydrogen gas tends to be generated from the negative electrode at the end of charging.

また、充電によって還元された負極活物質は自己放電に
より酸化し、このとき水素ガスを発生するが1発生した
水素ガスを正、負極間で消費することができないため、
電池内に蓄積して電池内圧力が上昇する。
In addition, the negative electrode active material reduced by charging is oxidized by self-discharge, and at this time hydrogen gas is generated, but the generated hydrogen gas cannot be consumed between the positive and negative electrodes.
Accumulates inside the battery, increasing the battery internal pressure.

これに対処するために特開昭58−85282号公報及
び特開昭58−85283号公報では。
In order to deal with this problem, Japanese Patent Laid-Open No. 58-85282 and Japanese Patent Laid-Open No. 58-85283 disclose.

ガスイオン化触媒を正極に接続し、ガス発生電位を検出
することによシ充電を停止することが提案されている。
It has been proposed to connect a gas ionization catalyst to the positive electrode and stop charging by detecting the gas generation potential.

しかし、この方法では電池の外部に電圧検出回路が別途
必要であるという欠点がある。
However, this method has the disadvantage that a separate voltage detection circuit is required outside the battery.

また特公昭56−5020号公報で示されるように、電
池内に気相反応触媒を設置すると、水素ガスと酸素ガス
を化学反応で水に戻すことが可能となシ、この方法によ
シミ圧検出回路などの外部回路なしで電池内のガス圧上
昇を抑えることが可能となる。ところが、気相反応触媒
は長期間の充放電サイクルで表面が電解液で濡れた状態
となり。
Furthermore, as shown in Japanese Patent Publication No. 56-5020, if a gas-phase reaction catalyst is installed inside the battery, hydrogen gas and oxygen gas can be returned to water through a chemical reaction. It becomes possible to suppress the increase in gas pressure within the battery without the need for an external circuit such as a detection circuit. However, the surface of gas-phase reaction catalysts becomes wet with electrolyte during long-term charge-discharge cycles.

これによシ気相反応触媒とガスとの接触が妨げられるよ
うになって、ガス消費能力が徐々に低下するため、電池
内のガス圧上昇を充分に抑制することができなかった。
This prevents contact between the gas phase reaction catalyst and the gas, and the gas consumption capacity gradually decreases, making it impossible to sufficiently suppress the rise in gas pressure within the battery.

(/1 発明が解決しようとする問題点本発明は前記問
題点に鑑みなされたものであって、密閉型蓄電池内部に
設置した気相反応触媒のガス消費能力の低下を防止し、
電池内のガス圧上昇を抑えようとするものである。
(/1 Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and aims to prevent a decrease in the gas consumption capacity of a gas phase reaction catalyst installed inside a sealed storage battery,
This is an attempt to suppress the rise in gas pressure within the battery.

に))問題点を解決するための手段 本発明の密閉型蓄電池は、カドミウム、水素吸蔵合金、
鉄あるいは鉛から選択された活物質よりなる負極と、ニ
ッケル、酸化銀あるいは酸化鉛から選択された活物質よ
りなる正極を収容してなる電池の内部に、平均孔径1μ
m以下のガス透過性の微孔を有する撥水性の耐アルカリ
性薄膜で被覆した気相反応触媒を設置したことを特徴と
するものである。
)) Means for Solving the Problems The sealed storage battery of the present invention contains cadmium, hydrogen storage alloy,
Inside the battery, which houses a negative electrode made of an active material selected from iron or lead, and a positive electrode made of an active material selected from nickel, silver oxide, or lead oxide, an average pore size of 1 μm is placed.
It is characterized by installing a gas-phase reaction catalyst coated with a water-repellent and alkali-resistant thin film having gas-permeable micropores of less than m.

庫)作 用 気相反応触媒を被覆する耐アルカリ性薄膜として、平均
孔径1μm以下のガス透過性の微孔を有する撥水性のも
のを用いると、この薄膜の存狂によって電池内で電解液
と気相反応触媒とが直接接触することを阻止することが
でき、これによシ。
Function: If a water-repellent film with gas-permeable micropores with an average pore diameter of 1 μm or less is used as the alkali-resistant thin film that covers the gas-phase reaction catalyst, the existence of this thin film will prevent the electrolyte and gas from forming inside the battery. It is possible to prevent direct contact with the phase reaction catalyst, thereby preventing it.

気相反応触媒が電解液に覆われて触媒の有効反応面積が
減少することを防止できる。
It is possible to prevent the gas phase reaction catalyst from being covered with the electrolyte and reducing the effective reaction area of the catalyst.

また、気相反応触媒は水素ガス及び酸素ガスに接触する
と化学反応によってこれらを水に戻すことができるが、
この反応は発熱反応であり生成した水は水蒸気となって
触媒を被覆する前記薄膜を通って外部に放出されるため
、気相反応触媒がこの化学反応によって生成する水で覆
われることもない。
In addition, when gas phase reaction catalysts come into contact with hydrogen gas and oxygen gas, they can be converted back into water through a chemical reaction.
Since this reaction is an exothermic reaction and the water produced becomes water vapor and is released to the outside through the thin film covering the catalyst, the gas phase reaction catalyst is not covered with water produced by this chemical reaction.

(へ)実施例 〔実施例1〕 先づ本発明に用いられる気相反応触媒についてg及する
。第1因は、この微孔性薄膜で被覆した気相反応触媒の
断面図である。(1)は気相反応触媒であシ、燃料電池
の電極と同様な方法で作製した。
(F) Examples [Example 1] First, the gas phase reaction catalyst used in the present invention will be described. The first factor is the cross-sectional view of the gas phase reaction catalyst coated with this microporous thin film. (1) was a gas-phase reaction catalyst and was produced in the same manner as a fuel cell electrode.

すなわち、活性炭上にバラジクムを担持させ、これをポ
リテトラフルオロエチレン粉末と混合して熱処理するこ
とで、前記パラジウムを担持した活性炭上にポリテトラ
フルオロエチレンを結着させて防水処理を施した後、加
圧成型を行なって気相反応触媒(1]を作製した。(2
)は平均孔径1μm、膜厚0.20〜0.25μmのフ
ッ素系薄膜からなるガス透過性の微孔性薄膜であり、前
記気相反応触媒(1)をこの撥水性を有する耐アルカリ
性薄膜である微孔性薄膜(21に包み込みその周辺部を
熱溶着することによυ、気相反応触媒(1)を第1因に
示すように微孔性薄膜(2]で被覆しである。
That is, Baladicum is supported on activated carbon, mixed with polytetrafluoroethylene powder and heat treated to bind polytetrafluoroethylene to the activated carbon supporting palladium and subjected to waterproof treatment. A gas phase reaction catalyst (1) was produced by pressure molding. (2
) is a gas-permeable microporous thin film made of a fluorine-based thin film with an average pore diameter of 1 μm and a film thickness of 0.20 to 0.25 μm, and the gas phase reaction catalyst (1) is coated with this water-repellent and alkali-resistant thin film. As shown in the first factor, the gas phase reaction catalyst (1) is covered with the microporous thin film (2) by wrapping it in a certain microporous thin film (21) and thermally welding its peripheral portion.

との微孔性薄膜で被覆した気相反応触媒を用いて1本発
明による密閉型ニッケルーカドミウム蓄電池Aを得た。
A sealed nickel-cadmium storage battery A according to the present invention was obtained using a gas phase reaction catalyst coated with a microporous thin film.

第2図にその断面図を示す。FIG. 2 shows its cross-sectional view.

ここで(3)は公知の焼結式カドミウム負極、(4)は
公知の焼結式ニッケル正極であり、負極との間に介挿し
たセパレータ(5)と共に前記正、負掻を渦巻状に捲回
して電極体が構成される。この電極体を負極端子兼用電
池罐(6)に収容した後、アルカリ電解液を遊離の電解
液が存在しない程度注入し1次いで前記微孔性薄膜(2
)で被覆した気相反応触媒(1)を電極体上部に絶縁シ
ート(7)を介して設置し、しかる後前記電池罐(6)
の開口部に絶縁バッキング(8)を介して正極端子兼用
安全弁付封口蓋(9)を固定することにより密閉して、
公称容量1.5 p、 Hの密閉型ニッケルーカドミク
ム蓄電池を組み立てた。この電池を本発明電池Aとした
Here, (3) is a known sintered cadmium negative electrode, and (4) is a known sintered nickel positive electrode. Together with the separator (5) inserted between the negative electrode, the positive and negative electrodes are spirally connected. The electrode body is formed by winding. After placing this electrode body in the battery case (6) which also serves as a negative electrode terminal, an alkaline electrolyte is injected to the extent that no free electrolyte is present.
) is placed on the upper part of the electrode body via an insulating sheet (7), and then placed in the battery can (6).
The opening is sealed by fixing a sealing lid (9) with a safety valve that also serves as a positive terminal via an insulating backing (8).
A sealed nickel-cadmium storage battery with a nominal capacity of 1.5 p, H was assembled. This battery was designated as Invention Battery A.

また、前記気相反応触媒を被覆する微孔性薄膜を平均孔
径Q、4pmのフッ素系薄膜に代え、その他は同一の本
発明電池(B)、比較として前記微孔性薄膜を孔径5μ
mのフッ素系薄膜に代えて比較電池(C)、前記気相反
応触媒を何も被覆せずに用いて比較電池p1を夫々作製
した。
In addition, the microporous thin film covering the gas phase reaction catalyst was replaced with a fluorine-based thin film with an average pore diameter Q of 4 pm, and the battery of the present invention was otherwise the same (B).
A comparative battery (C) was used in place of the fluorine-based thin film of m, and a comparative battery p1 was prepared using the gas phase reaction catalyst without any coating.

第6図はこれら電池の充放電サイクルの経過に伴う電解
液の重量減少量を示した図面、第4図はこれら電池のサ
イクル特性比較図である。第6図から明らかなように、
気相反応触媒を被覆する微孔性薄膜の平均孔径が1μm
以下のものを使用した際にこの電解液城少鷲が少なく抑
えられている。
FIG. 6 is a diagram showing the amount of weight loss of the electrolytic solution as the charge/discharge cycles of these batteries progress, and FIG. 4 is a comparison diagram of the cycle characteristics of these batteries. As is clear from Figure 6,
The average pore diameter of the microporous thin film covering the gas phase reaction catalyst is 1 μm.
When using the following, this electrolyte is kept to a minimum.

また、第4図から電池の放電容量の低下が第6図の電解
液散の減少と対応して生じていることがわかる。
Furthermore, it can be seen from FIG. 4 that the discharge capacity of the battery decreases in correspondence with the decrease in electrolyte dispersion shown in FIG. 6.

これは、前記微孔性薄膜に孔径の大きいものを用いるほ
ど電解液がこの微孔性薄膜を通して気相反応触媒に到達
し易いため、充放電サイクルの経過に伴って気相反応触
媒表面の電解液による濡れが広がるからと考えられる。
This is because the larger the pore size of the microporous thin film used, the easier it is for the electrolyte to reach the gas phase reaction catalyst through the microporous thin film. This is thought to be because the wetness from the liquid spreads.

このため気相反応触媒を何も被覆しないで用いた比較電
池IDIは勿論。
Therefore, of course, the comparative battery IDI was used without any coating with the gas phase reaction catalyst.

比較電池to+も、この電解液による濡れによって気相
反応触媒の反応面積が減少すると共にガス消費能力が低
下し、これにより電解液の減少及び電池内のガス圧上昇
が起こシ、ついには安全弁が作動してガスを電池の外部
に放出する。これに対して本発明電池[Al及びIB+
では孔径が1μm以下と非常に小さい微孔性薄膜を用い
ているため電解液の侵入を阻止でき、気相反応触媒が電
解液で濡れることを防止できるので、気相反応触媒によ
る酸素ガスと水素ガスの接触反応が円滑に行なわれ電解
液の減少が抑えられ、比較電池に見られる電解液減少に
よる放電容量の低下が防止でき、これによって長期にわ
たって安定した性能が得られたものと考えられる。
In the comparison battery TO+, the reaction area of the gas-phase reaction catalyst was reduced due to wetting by the electrolyte, and the gas consumption capacity was also reduced, resulting in a decrease in the electrolyte and an increase in gas pressure within the battery, which eventually caused the safety valve to close. It activates and releases gas to the outside of the battery. In contrast, the batteries of the present invention [Al and IB+
uses a very small microporous thin film with a pore size of 1 μm or less, which prevents electrolyte from entering and prevents the gas-phase reaction catalyst from getting wet with the electrolyte. It is thought that the gas catalytic reaction was carried out smoothly and the decrease in electrolyte was suppressed, preventing the reduction in discharge capacity due to decrease in electrolyte seen in the comparative batteries, and that this resulted in stable performance over a long period of time.

〔実施例2〕 一方1本発明を鉛蓄電池に適用した時の結果についてg
及する。第5図は1本発明による密閉型鉛蓄電池の縦断
面を示す図である。この鉛蓄電池についてど及すると、
鋳造打ち抜きあるいはエキスバンド加工によシ得た鉛−
カルシウム合金を所定の大きさに裁断し、正極集電体α
〔及び負極集電体συとし、−酸化鉛(F!1)0)と
水よりなる活物質ペーストをローラーにより圧延したシ
ート状活物質を圧着して正極板a2.負極板a3とする
。このようにして得た1枚の正極板と2枚の負極板を用
い、ガラス繊維製のセパレータa4を介して交互に積重
した電極群を樹脂製の電槽αω内に介挿する。
[Example 2] On the other hand, regarding the results when the present invention is applied to a lead-acid battery, g
affect FIG. 5 is a diagram showing a longitudinal section of a sealed lead-acid battery according to the present invention. Regarding this lead acid battery,
Lead obtained by casting punching or expanded band processing.
Cut the calcium alloy into a predetermined size and make the positive electrode current collector α
[and a negative electrode current collector συ, a sheet-like active material prepared by rolling an active material paste consisting of -lead oxide (F!1)0) and water with a roller is pressed to form a positive electrode plate a2. Let it be negative electrode plate a3. Using one positive electrode plate and two negative electrode plates thus obtained, a group of electrodes stacked alternately with glass fiber separators a4 interposed therebetween is inserted into a resin battery case αω.

次いで比重1.60の硫酸電解液を注液して、正。Next, a sulfuric acid electrolyte with a specific gravity of 1.60 was injected to make it positive.

負極板およびセパレータに含浸せしめたのち、電極群上
部に微孔性薄膜(2)で被覆した気相反応触媒(11を
設置し、正、負極外部端子tin、ttsを取り付けた
電槽蓋(161を装着し、密封して容量1AHの密閉型
鉛蓄電池を得、化成処理を行い、完成電池E〜Hを得た
After impregnating the negative electrode plate and separator, a gas phase reaction catalyst (11) coated with a microporous thin film (2) was installed on the upper part of the electrode group, and a container lid (161) with positive and negative electrode external terminals tin and tts attached was installed. was installed and sealed to obtain a sealed lead-acid battery with a capacity of 1 AH, and a chemical conversion treatment was performed to obtain completed batteries E to H.

ここで、電池Eの気相反応触媒を覆った微孔性薄膜の平
均孔径は0.4μm(本発明)、電池Fは1pmC本発
明)、電池Gは5/Jm(比較例)であり、電池Hの気
相反応触媒においては微孔性薄膜による被覆は行なわな
かった。
Here, the average pore diameter of the microporous thin film covering the gas phase reaction catalyst of battery E is 0.4 μm (invention), 1 pm in battery F (invention), and 5/Jm (comparative example) in battery G. The gas phase reaction catalyst of Battery H was not coated with a microporous thin film.

これらの本発明電池J F、比較電池G、Hを用いて実
施例1と同様にして、これら電池の充放電サイクルの経
過に伴う電解液の重量減少量及び電池のサイクル特性の
比較を行った。この結果を第6図、第7図に示す。第6
図よシ気相反応触媒を被覆する微孔性薄膜の平均孔径が
1μm以下のものを使用した際に、この電解液減少量が
少なく抑えられている。また第7因から電池の放電容量
の低下が、第6図の電解液の減少と対応して生じている
ことがわかる。これらの結果は実施例1の結果と一致す
るものである。
Using these inventive batteries JF and comparative batteries G and H, the weight loss of the electrolyte solution and the cycle characteristics of the batteries were compared in the same manner as in Example 1 over the course of charge/discharge cycles of these batteries. . The results are shown in FIGS. 6 and 7. 6th
As shown in the figure, when a microporous thin film covering a gas phase reaction catalyst with an average pore diameter of 1 μm or less is used, the amount of electrolyte decrease is suppressed to a small level. Moreover, it can be seen from the seventh factor that the decrease in the discharge capacity of the battery occurs in correspondence with the decrease in the electrolytic solution shown in FIG. These results are consistent with the results of Example 1.

ここでガス透過性の微孔を有する撥水性の耐アルカリ性
薄膜としてフッ素系の薄膜を使用したが他にポリプロピ
レン系、ポリエチレン系、ナイロン系等の薄膜を使用す
ることが可能である。
Here, a fluorine-based thin film was used as the water-repellent and alkali-resistant thin film having gas-permeable micropores, but other thin films such as polypropylene-based, polyethylene-based, nylon-based, etc. can also be used.

実施例においては、ニッケルーカドミウム蓄電池、鉛蓄
電池系について例示したが、他にニッケルー水素蓄電池
、ニッケルー鉄蓄電池、酸化銀−カドミクム蓄電池にお
いても実施しつる。
In the examples, a nickel-cadmium storage battery and a lead-acid battery system were illustrated, but the present invention can also be applied to a nickel-hydrogen storage battery, a nickel-iron storage battery, and a silver oxide-cadmium storage battery.

(ト)  発明の効果 本発明の密閉型蓄電池は電池の内部に、平均孔径1μm
以下のガス透過性の微孔を有する撥水性の耐アルカリ性
薄膜で被覆した気相反応触媒を設置したものであるから
、前記薄膜により気相反応触媒の電解液による濡れが防
止でき1円滑にガスを消費することができるため、電池
内部のガス圧の上昇を抑えることができると共に電解液
態の減少を抑えることができ、より長期間にわたって安
定した性能を得ることができる。
(g) Effects of the invention The sealed storage battery of the present invention has an average pore size of 1 μm inside the battery.
Since the gas-phase reaction catalyst is coated with a water-repellent and alkali-resistant thin film having gas-permeable micropores as shown below, the thin film prevents the gas-phase reaction catalyst from being wetted by the electrolyte. can be consumed, it is possible to suppress an increase in the gas pressure inside the battery, and also to suppress a decrease in the electrolyte state, making it possible to obtain stable performance over a longer period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微孔性薄膜で被覆した気相反応触媒の断面図、
第2.5図は本発明の密閉型蓄電池の断面図、第3.6
図は充放電サイクルと電解液減少量との関係を示す図、
第4,7因は電池のサイクル特性比較図である。 (1)・・・気相反応触媒、(2)・・・微孔性薄膜、
A、B。 J?・・・本発明電池、O,D、G、H・・・比較電池
Figure 1 is a cross-sectional view of a gas phase reaction catalyst coated with a microporous thin film.
Figure 2.5 is a sectional view of the sealed storage battery of the present invention, Figure 3.6
The figure shows the relationship between the charge/discharge cycle and the amount of electrolyte reduction.
The fourth and seventh factors are comparison diagrams of battery cycle characteristics. (1)... Gas phase reaction catalyst, (2)... Microporous thin film,
A, B. J? ...Battery of the present invention, O, D, G, H...Comparative battery.

Claims (2)

【特許請求の範囲】[Claims] (1)カドミウム、水素吸蔵合金、鉄あるいは鉛から選
択された活物質よりなる負極と、ニッケル、酸化銀ある
いは酸化鉛から選択された活物質よりなる正極を収容し
てなる電池の内部に、平均孔径1μm以下のガス透過性
の微孔を有する撥水性の耐アルカリ性薄膜で被覆した気
相反応触媒を設置したことを特徴とする密閉型蓄電池。
(1) Inside a battery, the average 1. A sealed storage battery comprising a gas-phase reaction catalyst coated with a water-repellent and alkali-resistant thin film having gas-permeable micropores with a pore diameter of 1 μm or less.
(2)前記撥水性の耐アルカリ性薄膜が、フッ素系、ポ
リプロピレン系、ポリエチレン系、ナイロン系の薄膜よ
りなることを特徴とする特許請求の範囲第1項記載の密
閉型蓄電池。
(2) The sealed storage battery according to claim 1, wherein the water-repellent, alkali-resistant thin film is made of a fluorine-based, polypropylene-based, polyethylene-based, or nylon-based thin film.
JP62064738A 1987-03-19 1987-03-19 Enclosed type storage battery Pending JPS63231882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064738A JPS63231882A (en) 1987-03-19 1987-03-19 Enclosed type storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064738A JPS63231882A (en) 1987-03-19 1987-03-19 Enclosed type storage battery

Publications (1)

Publication Number Publication Date
JPS63231882A true JPS63231882A (en) 1988-09-27

Family

ID=13266790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064738A Pending JPS63231882A (en) 1987-03-19 1987-03-19 Enclosed type storage battery

Country Status (1)

Country Link
JP (1) JPS63231882A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041798A1 (en) * 1998-02-11 1999-08-19 Jones William E M The use of catalysts in standby valve-regulated lead acid cells
EP0949706A1 (en) * 1998-04-07 1999-10-13 Eveready Battery Company, Inc. Electrochemical cell incorporating an external hydrogen removing agent
WO1999052169A1 (en) * 1998-04-07 1999-10-14 Eveready Battery Company, Inc. Electrochemical cell incorporating an external hydrogen removing agent
US6285167B1 (en) 1996-11-12 2001-09-04 William E. M. Jones Use of catalysts in standby valve-regulated lead acid cells
JP2003077549A (en) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6660425B2 (en) 1998-12-14 2003-12-09 William E. M. Jones Catalyst design for VRLA batteries
JP2009501047A (en) * 2005-07-15 2009-01-15 サエス ゲッタース ソチエタ ペル アツィオニ Getter device for active systems for transdermal drug delivery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285167B1 (en) 1996-11-12 2001-09-04 William E. M. Jones Use of catalysts in standby valve-regulated lead acid cells
WO1999041798A1 (en) * 1998-02-11 1999-08-19 Jones William E M The use of catalysts in standby valve-regulated lead acid cells
EP0949706A1 (en) * 1998-04-07 1999-10-13 Eveready Battery Company, Inc. Electrochemical cell incorporating an external hydrogen removing agent
WO1999052169A1 (en) * 1998-04-07 1999-10-14 Eveready Battery Company, Inc. Electrochemical cell incorporating an external hydrogen removing agent
US6428922B2 (en) * 1998-04-07 2002-08-06 Eveready Battery Company, Inc. Electrochemical cell incorporating an external hydrogen removing agent
US6660425B2 (en) 1998-12-14 2003-12-09 William E. M. Jones Catalyst design for VRLA batteries
JP2003077549A (en) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009501047A (en) * 2005-07-15 2009-01-15 サエス ゲッタース ソチエタ ペル アツィオニ Getter device for active systems for transdermal drug delivery
US8396547B2 (en) 2005-07-15 2013-03-12 Saes Getters S.P.A. Getter device for active systems for the transdermal release of drugs

Similar Documents

Publication Publication Date Title
US3893870A (en) Hydrogen absorbing material for electrochemical cells
WO2017090219A1 (en) Cylindrical battery
US5830599A (en) Sealed rechargeable battery
WO2004068625A1 (en) Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
JP3012951B2 (en) Metal oxide-hydrogen storage battery and charging method thereof
JPS63231882A (en) Enclosed type storage battery
US4444854A (en) Electrochemical cell having internal short inhibitor
JP3287367B2 (en) Sealed nickel zinc battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0752656B2 (en) Sealed nickel-zinc battery
JPH0438106B2 (en)
JP2555511B2 (en) Alkaline secondary battery
US4318967A (en) Long-life galvanic primary cell
JP4639641B2 (en) Sealed alkaline storage battery
JP3888590B2 (en) Hydride secondary battery assembled battery
KR100307935B1 (en) Alkali accumulators in the form of button-cells
KR100572223B1 (en) Sealed battery
JP2861057B2 (en) Alkaline secondary battery
JP2975640B2 (en) Sealed alkaline storage battery with hydrogen storage alloy negative electrode
JP2926288B2 (en) Nickel-cadmium battery
JP2950863B2 (en) Flat lithium-thionyl chloride battery
JPH044574A (en) Secondary battery
JP2002008632A (en) Electrode plate for battery and battery
JP2513456B2 (en) Metal-hydrogen alkaline battery
JPS60189178A (en) Sealed alkaline zinc storage battery