JPS59168230A - Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine - Google Patents

Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine

Info

Publication number
JPS59168230A
JPS59168230A JP4345783A JP4345783A JPS59168230A JP S59168230 A JPS59168230 A JP S59168230A JP 4345783 A JP4345783 A JP 4345783A JP 4345783 A JP4345783 A JP 4345783A JP S59168230 A JPS59168230 A JP S59168230A
Authority
JP
Japan
Prior art keywords
engine
temperature
fuel injection
acceleration
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4345783A
Other languages
Japanese (ja)
Inventor
Hidetoshi Amano
天野 英敏
Shinichi Abe
阿部 眞一
Mitsuharu Taura
田浦 光晴
Toshiaki Mizuno
利昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP4345783A priority Critical patent/JPS59168230A/en
Priority to US06/588,101 priority patent/US4543937A/en
Publication of JPS59168230A publication Critical patent/JPS59168230A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Abstract

PURPOSE:To improve the accelerating performance of an engine at the time of warming up the engine when the weather is extremely cold, by correcting the basic fuel injection time by use of a first and a second engine warming and accelerating correction factors selected respectively according to the accelerating condition and the engine temperature and a starting-temperature correcting value attenuated with time passed after starting of the engine. CONSTITUTION:In operation of an engine, a basic injection time TP is at first detected from a prescribed memory map in a control circuit 61 on the basis of an intake-pressure signal S4 given from an intake-pressure sensor 11 and an engine-speed signal S10 given from an Ne- sensor 57 attached to a distributor 55. At the same time, a starting-temperature correcting value attenuated with time passed after starting of the engine is determined from an intake- air temperature signal S5 given from an intake-air temperature sensor 15 at the time of starting the engine or just after starting of the engine, and a first and a second engine warming and accelerating correction factors are read out respectively from prescribed memories according to the rate of acceleration and the temperature of the engine. A fuel injection valve 7 disposed in an intake passage 5 is driven and controlled by correcting the basic injection time TP according to the above correcting value and the correction factors at the time of accelerating an engine while warming up the same.

Description

【発明の詳細な説明】 本発明は内燃機関の燃料噴射量制御方法および燃料噴射
制御装置に関し、特に、黍m寺尋畦魂に設けられた燃料
噴射弁から噴射されて吸入空気と混合された混合気を、
比較的長い距離の吸気道ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection amount control method and a fuel injection control device for an internal combustion engine, and particularly relates to a fuel injection amount control method and a fuel injection control device for an internal combustion engine. the mixture,
It has a relatively long intake tract.

かかる燃料噴射制御装置では、例えば吸気管内の絶対圧
力とエンジン回転数とに基づいて、基本燃料噴射時間、
すなわち、噴射弁の基本開弁時間を演算し、この基本燃
料噴射時間に対して、エンジンの暖機状態、過渡状態を
含むエンジンの運転状態に応じて種々の補正演算を施し
て、最終燃料噴射時間を求めている。
In such a fuel injection control device, the basic fuel injection time,
That is, the basic valve opening time of the injection valve is calculated, and the final fuel injection is determined by performing various correction calculations on this basic fuel injection time depending on the operating state of the engine, including the warm-up state and transient state of the engine. I'm looking for time.

エンジン暖機中における加速時には、暖機加速増量補正
と呼ばれる燃料噴射制御が次のようKして行なわれてい
る。例えば加速量を吸気管圧力の変化量により定義する
場容には、まず、吸気管圧力の変化量を検出してその変
化量に応じた第1の補正係数を選択し、次いで、エンジ
ン冷却水温を検出してその水温に応じた第2補正係数を
選択し、これら補正係数に基づいて暖機加速増量係数を
求めて基本燃料噴射時間を補正している。
During acceleration during engine warm-up, fuel injection control called warm-up acceleration increase correction is performed as follows. For example, when the amount of acceleration is defined by the amount of change in intake pipe pressure, first, the amount of change in intake pipe pressure is detected and a first correction coefficient corresponding to the amount of change is selected, and then the engine coolant temperature is is detected and a second correction coefficient corresponding to the water temperature is selected, and a warm-up acceleration increase coefficient is determined based on these correction coefficients to correct the basic fuel injection time.

しかしながら、エンジン暖機中における加速時の増量を
算出する際に、第2の補正係数は、燃料噴射弁からエン
ジン燃焼室までの吸気通路の壁面温度に応じて選択する
のがより好ましい。すなわち、第2の補正係数を用いる
のは、エンジン冷間時においては暖機後に比べて燃料の
気化が促進されないということを考慮しているためであ
るが、燃料の気化は噴射弁からエンジン燃焼室までの吸
気通路の壁面温度に依存しているからである。
However, when calculating the increase during acceleration during engine warm-up, the second correction coefficient is more preferably selected in accordance with the wall temperature of the intake passage from the fuel injection valve to the engine combustion chamber. In other words, the reason why the second correction coefficient is used is to take into consideration that fuel vaporization is not promoted when the engine is cold compared to after it is warmed up. This is because it depends on the wall temperature of the intake passage leading to the room.

上述したように、エンジン暖機加速中の第2の補正係数
をエンジン冷却水温に対応させて定めると、極寒時の暖
機運転では、長時間にわたって、燃料噴射弁下流の吸気
通路の壁面温度の上昇がエンジン冷却水温の上昇に追従
しないので、最適な量の燃料がエンジン燃焼室へ供給さ
れずエンジンの加速性能が悪化する慣れがある。
As mentioned above, if the second correction coefficient during engine warm-up acceleration is determined in accordance with the engine cooling water temperature, during warm-up operation in extremely cold weather, the wall temperature of the intake passage downstream of the fuel injection valve will decrease over a long period of time. Since the increase in engine cooling water temperature does not follow the increase in engine cooling water temperature, the optimal amount of fuel is not supplied to the engine combustion chamber, resulting in deterioration of engine acceleration performance.

また、吸気通路の外壁面にライザ部を設けてエンジン冷
却水を循環させ、これにより燃料を温めて気化を促進す
るようKしたエンジンにおいても、極低温時でのエンジ
ン暖機中の加速時には上述したと同様の問題がある。
In addition, even in engines in which a riser is provided on the outer wall of the intake passage to circulate engine cooling water, thereby warming the fuel and promoting vaporization, the above-mentioned problem occurs when accelerating during engine warm-up at extremely low temperatures. I have a similar problem.

本発明の第一の目的は、このような従来の問題を解消し
て、極寒時における暖機中の加速運転性能を改善した内
燃機関の燃料噴射量制御方法を提案することにある。
A first object of the present invention is to solve such conventional problems and to propose a fuel injection amount control method for an internal combustion engine that improves acceleration performance during warm-up in extremely cold weather.

本発明の第二の目的は、このような従来の問題を解消し
て、極寒時における暖機中の加速運転性能を改善した内
燃機関の燃料噴射制御装置を提供することにある。
A second object of the present invention is to provide a fuel injection control device for an internal combustion engine that solves these conventional problems and improves acceleration performance during warm-up in extremely cold weather.

弁から噴射されて吸入空気と混合された混合気をエンジ
ン燃焼室まで導び〈比較的長い距離の吸気通路とを有す
る内燃機関の燃料噴射量を制御するにあたり、エンジン
回転数およびエンジン負荷に基づいて基本燃料噴射時間
を演算すると共に、エンジン加速状態に応じて選択され
る第1の暖機加速補正係数と、エンジン運転中のエンジ
ン温度に応じて選択される第2の暖気加速補正係数と、
エンジン始動時または始動・直後のエンジン温度に応じ
て選択されて始動後の経過時間に応じて減衰される始動
温補正値とに基づいて、暖機中の加速時における上記基
本燃料噴射時間を補正することを特徴とする。
The air-fuel mixture injected from the valve and mixed with intake air is guided to the engine combustion chamber (based on the engine speed and engine load in order to control the fuel injection amount of an internal combustion engine that has a relatively long intake passage). A first warm-up acceleration correction coefficient is selected according to the engine acceleration state, and a second warm-up acceleration correction coefficient is selected according to the engine temperature during engine operation.
The above basic fuel injection time during acceleration during warm-up is corrected based on a starting temperature correction value that is selected depending on the engine temperature at or immediately after engine starting and is attenuated depending on the elapsed time after starting. It is characterized by

射弁から噴射されて吸入空気と混合された混合気をエン
ジン燃焼室まで導び〈比較的長い距離の吸気通路とを有
する内燃機関の燃料噴射制御装置において、エンジン始
動中を検出する始動検出手段と、エンジン温度を検出す
る温度検出手段と、エンジン回転数を検出する回転数検
出手段と、エンジン負荷を検出する負荷検出手段と、エ
ンジンの加速状態を検出する加速検出手段と、始動時の
エンジン温度に対応した始動温補正値を記憶した第1の
記憶手段と、エンジンの加速状態に対応した係数を記憶
した第3の記憶手段と、回転数検出手段で検出されたエ
ンジン回転数と負荷検出手段で検出されたエンジン負荷
とに基づいて基本燃料噴射時間を演算する演算手段と、
始動検出手段によりエンジン始動中が検出されていると
きに温度検出手段によシ検出されているエンジン始動温
度を格納する第1の格納手段と、エンジン始動後の経過
時間に応じて、第1の格納手段に格納されているエンジ
ン始動温度に基づいて、第1の記憶手段から読出された
始動温補正値を減算する減算手段と、その減算手段によ
る最新の結果データを逐次書き換えて格納する第2の格
納手段と、加速検出手段により検出されたエンジン加速
状態を逐次書き換えて最新のエンジン加速状態を格納す
る第3の格納手段と、エンジン運転中に温度検出手段に
より検出されたエンジン温度を逐次書き換えて最新のエ
ンジン温度を格納する第4の格納手段と、第2の格納手
段から読出された始動温補正値と、第3の格納手段から
読出されたエンジン加速状態に基づいて第2の記憶手段
から読出された第1の暖機加速補正係数と、第4の格納
手段から読出されたエンジン温度に基づいて第3の記憶
手段から読出された第2の暖機加速補正係数とに基づい
て、基本燃料噴射時間を補正する補正手段と、その補正
手段により補正された補正噴射時間だけ燃料噴射弁を駆
動する噴射信号を出力する手段とを具備したことを特徴
とする。
In a fuel injection control device for an internal combustion engine that guides an air-fuel mixture injected from an injection valve and mixed with intake air to an engine combustion chamber and has a relatively long intake passage, a start detection means detects when the engine is starting. , a temperature detection means for detecting the engine temperature, a rotation speed detection means for detecting the engine speed, a load detection means for detecting the engine load, an acceleration detection means for detecting the acceleration state of the engine, and a temperature detection means for detecting the engine speed. A first storage means that stores a starting temperature correction value corresponding to the temperature, a third storage means that stores a coefficient corresponding to an acceleration state of the engine, and an engine rotation speed and load detected by the rotation speed detection means. calculation means for calculating a basic fuel injection time based on the engine load detected by the means;
a first storing means for storing the engine starting temperature detected by the temperature detecting means when the engine starting is detected by the starting detecting means; a subtraction means for subtracting the starting temperature correction value read from the first storage means based on the engine starting temperature stored in the storage means; and a second subtraction means for sequentially rewriting and storing the latest result data from the subtraction means. a third storage means for sequentially rewriting the engine acceleration state detected by the acceleration detection means to store the latest engine acceleration state; and a third storage means for sequentially rewriting the engine temperature detected by the temperature detection means during engine operation. a fourth storage means for storing the latest engine temperature; and a second storage means based on the starting temperature correction value read from the second storage means and the engine acceleration state read from the third storage means. Based on the first warm-up acceleration correction coefficient read from the engine temperature and the second warm-up acceleration correction coefficient read from the third storage means based on the engine temperature read from the fourth storage means, The present invention is characterized by comprising a correction means for correcting the basic fuel injection time, and a means for outputting an injection signal that drives the fuel injection valve by the corrected injection time corrected by the correction means.

本発明によれば、エンジン始動時または始動直後のエン
ジン温度に応じた始動温補正値を選択し、この値をエン
ジン始動後の経過時間に応じて減衰させるとともに、エ
ンジン加速状態に応じて第1の暖機加速補正係数を選択
し、また、エンジン運転中のエンジン温度に応じて第2
の暖機加速補正係数を選択し、これら第1および第2の
暖機加速補正係数と減衰された始動温補正値とに基づい
て基本燃料噴射時間を補正するととKより、エンジン暖
機中における加速時の燃料噴射量を増量するようKした
ので、燃料噴射弁から燃焼室までの吸気通路の壁面温度
を検出する必要がなく、セ/すの追加や、それにと本な
う新たな配線の引き回しや制御回路の入力端子を増加す
るという問題を誘発することなく、特に極寒時での暖機
中におけるエンジン加速性能を従来に比べて向上できる
According to the present invention, the starting temperature correction value is selected in accordance with the engine temperature at or immediately after the engine starting, and this value is attenuated in accordance with the elapsed time after the engine starting, and the first correction value is attenuated in accordance with the engine acceleration state. The warm-up acceleration correction coefficient is selected, and the second warm-up acceleration correction coefficient is selected depending on the engine temperature during engine operation.
If a warm-up acceleration correction coefficient is selected and the basic fuel injection time is corrected based on these first and second warm-up acceleration correction coefficients and the attenuated starting temperature correction value, then Since the amount of fuel injected during acceleration is increased, there is no need to detect the wall temperature of the intake passage from the fuel injection valve to the combustion chamber. The engine acceleration performance during warm-up, especially in extremely cold weather, can be improved compared to the conventional technology without causing problems such as increasing the number of input terminals for the control circuit or routing.

以下、図面に基づいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明に係る燃料噴射制御装置を適用した自動
車用内燃機関の構成例を示す。エアフィルタ1はインレ
ットバイブ3を介してスロットルボディ5と接続されて
いる。スロットルボディ5には、その上流側に燃料噴射
弁7が設けられ、燃料噴射弁7の下流にはアクセルペダ
ル(不図示)と連動して吸入空気量を調節する吸気絞シ
弁9が設けられ、吸気絞り弁9の下流には、その部位の
絶対圧力を測定する吸気管絶対圧力上ンサ11が設けら
れている。更に、吸気絞り弁9の開度位置を測定する弁
開度位置センサ2と、吸気絞り弁9が全閉しているとき
にのみオンするアイドルスイッチ4と、例えば吸気絞り
弁9の開度が40度以上のときにのみオンするパワース
イッチ6とが、吸気絞り弁9に関連して取付けられてい
る。
FIG. 1 shows an example of the configuration of an internal combustion engine for an automobile to which a fuel injection control device according to the present invention is applied. The air filter 1 is connected to a throttle body 5 via an inlet vibe 3. The throttle body 5 is provided with a fuel injection valve 7 on its upstream side, and an intake throttle valve 9 is provided downstream of the fuel injection valve 7 to adjust the amount of intake air in conjunction with an accelerator pedal (not shown). , an intake pipe absolute pressure sensor 11 is provided downstream of the intake throttle valve 9 to measure the absolute pressure at that location. Furthermore, there is a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9, an idle switch 4 that is turned on only when the intake throttle valve 9 is fully closed, and a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9. A power switch 6, which is turned on only when the temperature is 40 degrees or higher, is attached in association with the intake throttle valve 9.

スロットルボディ5は、エンジンの各気筒と接続された
分岐管を有するインテークマニホルド13と接続され、
インテークマニホルド13には、その内の吸気温度を測
定する吸気温上ンサ15が設けられている。インテーク
マニホルド13の分岐前の底壁13aには、エンジン冷
却水が循環され(11) て混合気を加熱するためのライザ部17が設けられてい
る。
The throttle body 5 is connected to an intake manifold 13 having branch pipes connected to each cylinder of the engine,
The intake manifold 13 is provided with an intake temperature riser 15 that measures the temperature of the intake air therein. A riser portion 17 is provided on the bottom wall 13a of the intake manifold 13 before branching, through which engine cooling water is circulated (11) to heat the air-fuel mixture.

19は周知慣例のエンジン本体であり、ピストン21と
シリンダ23とシリンダヘッド25とによシ燃焼室27
が画成されていて、吸気弁29を介して燃焼室27に吸
入された混合気が点火プラグ31により着火される。シ
リンダ23の周囲にはウォータジャケット33が形成さ
れ、そのウォータジャケット33にエンジン冷却水が循
環されてシリンダ23を含む部品が冷却される。そして
、シリンダブロック35の外壁にはウォータジャケット
33内のエンジン冷却水温を測定するエンジン冷却水温
センサ37が設けられている。
Reference numeral 19 designates a well-known engine body, which includes a piston 21, a cylinder 23, a cylinder head 25, and a combustion chamber 27.
The air-fuel mixture sucked into the combustion chamber 27 via the intake valve 29 is ignited by the ignition plug 31 . A water jacket 33 is formed around the cylinder 23, and engine cooling water is circulated through the water jacket 33 to cool parts including the cylinder 23. An engine coolant temperature sensor 37 is provided on the outer wall of the cylinder block 35 to measure the temperature of the engine coolant in the water jacket 33.

シリンダヘッド25の図示しない排気ポートにはエキゾ
ーストマニホルド39が接続され、その下流側に、排気
ガス中の残留酸素濃度を測定する0、センサ41が設け
られている。エキゾーストマニホルド39は、三元触媒
43を介して排気管45と接続されている。
An exhaust manifold 39 is connected to an exhaust port (not shown) of the cylinder head 25, and a sensor 41 for measuring the residual oxygen concentration in the exhaust gas is provided downstream of the exhaust manifold 39. The exhaust manifold 39 is connected to an exhaust pipe 45 via a three-way catalyst 43.

47はエンジン本体19に接続された変速装置(12) であシ、その最終出力軸の回転数により車両の速度を測
定する車速センサ49が取付けられている。
Reference numeral 47 denotes a transmission (12) connected to the engine body 19, and a vehicle speed sensor 49 is attached thereto to measure the speed of the vehicle based on the rotational speed of its final output shaft.

また、51はキースイッチ、53はイグナイタ、55は
ディストリビュータであり、ディストリビュータ55に
は、所定のクランク角度θ1毎にオン・オフ信号を出力
するNeセンサ57が設けられ、その出力信号によジエ
ンジン回転数と所定のクランク角度位置を知ることがで
き、また、上記角度θ1より大きい角度θ2毎にオン・
オフ信号を出力するGセンサ59が設けられ、その出力
信号により気筒判別と上死点位置検出が行なわれる。
Further, 51 is a key switch, 53 is an igniter, and 55 is a distributor. The distributor 55 is provided with an Ne sensor 57 that outputs an on/off signal at every predetermined crank angle θ1, and the output signal is used to control the engine. It is possible to know the rotation speed and predetermined crank angle position, and also to turn on/off at every angle θ2 larger than the above angle θ1.
A G sensor 59 that outputs an off signal is provided, and cylinder discrimination and top dead center position detection are performed based on the output signal.

また、60はバッテリを示す。Further, 60 indicates a battery.

制御回路61は、弁開度位置センサ2、アイドルスイッ
チ4、パワースイッチ6、吸気圧センサ11、吸気温上
ンサ15、エンジン冷却水温センサ37.0.センサ4
1、車速センサ49、キースイッチ51.Neセンサ5
7、Gセンサ59およびバッテリ60とそれぞれ接続さ
れていて、弁開度信号81.アイドル信号S2、パワー
信号S3、吸気圧信号84.吸気温信号85.水温信号
S6、空燃比信号87.車速信号S8、イグニション信
号89.エンジン回転数信号S10、気筒判別信号S1
1およびバッテリ電圧信号814が各センサから入力さ
れる。また、制御回路61は。
The control circuit 61 includes a valve opening position sensor 2, an idle switch 4, a power switch 6, an intake pressure sensor 11, an intake temperature riser 15, an engine coolant temperature sensor 37.0. sensor 4
1, vehicle speed sensor 49, key switch 51. Ne sensor 5
7, G sensor 59 and battery 60, respectively, and receive a valve opening signal 81. Idle signal S2, power signal S3, intake pressure signal 84. Intake temperature signal 85. Water temperature signal S6, air-fuel ratio signal 87. Vehicle speed signal S8, ignition signal 89. Engine speed signal S10, cylinder discrimination signal S1
1 and battery voltage signal 814 are input from each sensor. Moreover, the control circuit 61.

燃料噴射弁7とイグナイタ53にも接続されていて、所
定の演算に基づいて、燃料噴射信号812および点火信
号813を出力する。
It is also connected to the fuel injection valve 7 and the igniter 53, and outputs a fuel injection signal 812 and an ignition signal 813 based on predetermined calculations.

制御回路61は、第2図に示すように、各種機器を制御
する中央演算処理装置(CPU)61 a、予め各種の
数値やプログラムが書き込まれたリードオンリメモリ(
R,OM) 6 l b、演算過程の数値やフラグが所
定の領域に書き込まれるランダムアクセスメモリ(RA
M)61 c、アナログ入力信号をディジタル信号に変
換するA/Dコンバータ(ADC)61d、各種ディジ
タル信号が入力され、各種ディジタル信号が出力される
入出力インタフェース(Ilo)61e、エンジン停止
時に補助電源から給電されて記憶を保持するバックアッ
プメモリ(BU−RAM)61 f%及びこれら各機器
がそれぞれ接続されるパスライン61fから構成されて
いる。後述するプログラムはROM61bに予め書き込
まれている。
As shown in FIG. 2, the control circuit 61 includes a central processing unit (CPU) 61a that controls various devices, and a read-only memory (in which various numerical values and programs are written in advance).
R, OM) 6 l b, Random access memory (RA
M) 61c, A/D converter (ADC) 61d that converts analog input signals into digital signals, input/output interface (Ilo) 61e that receives various digital signals and outputs various digital signals, and auxiliary power supply when the engine is stopped. It is composed of a backup memory (BU-RAM) 61f% which is supplied with power from the BU-RAM and holds memory, and a path line 61f to which each of these devices is connected. A program to be described later is written in advance in the ROM 61b.

上述したエンジンにおいては、第3図に示すフローチャ
ートに従って燃料が噴射される。第3図を参照するに、
手順P1において、基準位置信号であるエンジン回転数
信号S1に基づいてエンジン回転数Neを読込むととも
に吸気管圧力信号S4に基づいて吸気管圧力、4y P
 Mを読込む。手順P2において、回転数Neと吸気管
圧力PMとに基づいて、第4図のマツプから基本噴射時
間TPを求め、手順P3において、エンジンの運転条件
に応じて補正演算処理を実行して補正後の噴射時間τを
求める。
In the engine described above, fuel is injected according to the flowchart shown in FIG. Referring to Figure 3,
In step P1, the engine speed Ne is read based on the engine speed signal S1, which is a reference position signal, and the intake pipe pressure, 4yP, is read based on the intake pipe pressure signal S4.
Load M. In step P2, the basic injection time TP is determined from the map shown in FIG. 4 based on the rotational speed Ne and the intake pipe pressure PM, and in step P3, a correction calculation process is executed according to the engine operating conditions to determine the corrected time. Find the injection time τ.

ここで、手順P3の補正演算処理による補正噴射時間τ
の演算について詳述する。
Here, the corrected injection time τ obtained by the correction calculation process in step P3
The operation of is explained in detail.

噴射時間τは、一般に次式によシ求められる。The injection time τ is generally determined by the following formula.

r=TPxFWLxFAFx(1+FTC)xFTHA
−(1)ここで:’rp=基本燃料噴射時間 FWL=暖機増量係数 FAF=空燃比フィードバック補正係数FTC=過渡時
空燃比補正係数 ’ (15) FTHA=吸気温補正係数 そこで、第5図に示すで演算ルーチンに基づいて各係数
が算出されて噴射時間τが求められる。
r=TPxFWLxFAFx(1+FTC)xFTHA
-(1) Where: 'rp = Basic fuel injection time FWL = Warm-up increase coefficient FAF = Air-fuel ratio feedback correction coefficient FTC = Transient air-fuel ratio correction coefficient' (15) FTHA = Intake temperature correction coefficient Therefore, in Fig. 5 Each coefficient is calculated based on the arithmetic routine shown in the figure, and the injection time τ is determined.

すなわち、手順pHで暖機増量係数FWLの演算処理を
実行し、手順P12で空燃比フィードバック補正係数P
APの演算処理を実行し、手順P13で過渡時空燃比補
正係数FTCの演算処理を実行し、手順P14で(T’
HA+k)を演算して補正係数FTHAを求める。そし
て、手順P15において、上記第(1)式を演算する。
That is, the calculation process of the warm-up increase coefficient FWL is executed at the step pH, and the air-fuel ratio feedback correction coefficient P is executed at the step P12.
The calculation process of AP is executed, the calculation process of the transient air-fuel ratio correction coefficient FTC is executed in step P13, and the calculation process of (T'
HA+k) to find the correction coefficient FTHA. Then, in step P15, the above equation (1) is calculated.

手順pH〜P13の各演算処理について説明する前に、
本発明の特徴部分である始動源補正値ADDの演算処理
の一例および吸気管圧力PMの演算処理の一例について
説明する。
Before explaining each calculation process of steps pH to P13,
An example of the calculation process of the starting source correction value ADD and an example of the calculation process of the intake pipe pressure PM, which are the characteristic parts of the present invention, will be described.

始動源補正値ADDは、エンジン温度を代表するエンジ
ン冷却水温度またはエンジンオイル温度等と燃料噴射弁
から燃焼室までの吸気通路、例えバインテークマニホル
ドの壁面温度との温度差、特に極寒時にエンジンが十分
暖機されるまでの上記温度差を補償するための本のであ
る。
The starting source correction value ADD is the temperature difference between the engine cooling water temperature or engine oil temperature, which represents the engine temperature, and the wall temperature of the intake passage from the fuel injection valve to the combustion chamber, such as the intake manifold, especially when the engine is running in extremely cold weather. This book is for compensating for the above temperature difference until it is sufficiently warmed up.

(16) (始動源補正値ADDの演算処理) 所定のタイミングで第6図に示す補正値ADD演算処理
ルーチンが起動されると、先づ手順P21でエンジン始
動中か否かが判断される。この判断は、エンジン回転数
信号810に基づいて実行される。肯定判断されると、
すなわち始動中であると、手順P22において、そのと
きの吸気温信号S5に基づいてエンジン始動温度として
の始動吸気温度THAを読込む。次いで、手順P23で
、ROM6 l bに予め書き込まれている第7図に示
す補正値ADDと吸気温THAとのマツプから、読込ま
れた始動吸気温度THAに基づいて補正値ADDを読込
む。手順P24においては、読込まれた補正値ADDを
所定数αだけ減衰させるべき一定の周期が経過したか否
かが判断され、肯定判断されれば手順P25に進む。手
順P25では、(ADD−α)を求めてその結果を新た
な補正値ADDとして所定の記憶領域に格納する。次い
で、手順P26において、補正値ADDが零より小さい
か否かを判断して肯定判断ならば手順P27で補正値A
DDを零としてADD演算ルーチンを終了し、否定判断
ならば手順P27をスキップしてADD演算ルーチンを
いったん終了させる。エンジンが始動された後にこのル
ーチンが起動されたときには、手順P21で否定判断さ
れて手順P24にジャンプし、その手順で肯定判断され
れば手順P25〜P27が実行され、否定判断されれば
手順P25〜P27がスキップされて一連の手順が終了
する。
(16) (Calculation process of starting source correction value ADD) When the correction value ADD calculation process routine shown in FIG. 6 is activated at a predetermined timing, it is first determined in step P21 whether or not the engine is being started. This determination is performed based on the engine speed signal 810. If a positive judgment is made,
That is, if the engine is being started, in step P22, the starting intake air temperature THA as the engine starting temperature is read based on the intake air temperature signal S5 at that time. Next, in step P23, the correction value ADD is read based on the read starting intake air temperature THA from the map of the correction value ADD and the intake air temperature THA shown in FIG. 7, which is written in advance in the ROM 6 lb. In step P24, it is determined whether a certain period for attenuating the read correction value ADD by a predetermined number α has elapsed, and if an affirmative determination is made, the process proceeds to step P25. In step P25, (ADD-α) is calculated and the result is stored in a predetermined storage area as a new correction value ADD. Next, in step P26, it is determined whether the correction value ADD is smaller than zero, and if the judgment is affirmative, the correction value ADD is set in step P27.
The ADD calculation routine is ended by setting DD to zero, and if the determination is negative, step P27 is skipped and the ADD calculation routine is temporarily ended. When this routine is started after the engine has been started, a negative determination is made in step P21 and the process jumps to step P24. If an affirmative determination is made in that step, steps P25 to P27 are executed, and if a negative determination is made in that step, steps P25 to P27 are executed. ~P27 is skipped and the series of procedures ends.

上述したように、エンジン始動時の吸気温THAに基づ
いて読込まれた始動源補正値ADDは、第8図に示すよ
うに予め定められた周期毎に一定数αが減衰される。補
正値ADDは、エンジン始動後の経過時間に応じて単調
減衰されるものであり、エンジンの仕様に応じて、第7
図に示したエンジン始動源に対する補正値ADDのマツ
プ及び減衰所定値αが定められ、これにより、インテー
クマニホルドの壁面温度が、燃料を霧化するのに十分力
温度に達したときに、補正値ADDO値が零または零に
近い値と々るようになる。々お、始動直後のエンジン温
度に応じて補正値ADDを選択してもよい。
As described above, the starting source correction value ADD read based on the intake air temperature THA at the time of engine starting is attenuated by a constant number α at each predetermined period as shown in FIG. The correction value ADD is monotonically attenuated according to the elapsed time after the engine starts, and the seventh
A map of the correction value ADD and a predetermined attenuation value α for the engine starting source shown in the figure are determined, so that when the wall surface temperature of the intake manifold reaches a temperature sufficient to atomize the fuel, the correction value ADD is determined. The ADDO value becomes zero or a value close to zero. Alternatively, the correction value ADD may be selected depending on the engine temperature immediately after starting.

(吸気管圧力PMの演算処理) 第9図に示す吸気管圧力PMの演算処理は、第10図に
示すように所定周期毎に繰返して実行されるものであり
、まず、手順P31では、吸気管絶対圧力信号S4をデ
ィジタル値に変換し、手順P32においてその値PMi
  をレジスタRo−4L。
(Calculation process of intake pipe pressure PM) The calculation process of intake pipe pressure PM shown in FIG. 9 is repeatedly executed at predetermined intervals as shown in FIG. The pipe absolute pressure signal S4 is converted into a digital value, and the value PMi is converted into a digital value in step P32.
to register Ro-4L.

に所定周期毎に順次格納する。次いで手順P33では、
例えば時点t−2において、レジスタR3に格納されて
いる吸気管圧力PM、から、時点t−4のタイミングで
レジスタR1に格納されている吸気管圧力PM、、−4
を減算し、その減算結果DPM、をレジスタDR,に格
納する。そして、手順P34に進み、例えば時点t。に
おいて、レジスタDR0に格納されているDPMoから
レジスタDB、に格納されているDPM、を減算し、そ
の減算結果DDPMをレジスタDDR,に格納する。手
順P35では、レジスタDDKに格納されている吸気管
圧力PMの2回微分値DDPMを基(19) 準値REFIと比較し、DDPM≧REF1ならば非同
期噴射ルーチン(不図示)−・ジャンプする。
are sequentially stored at predetermined intervals. Next, in step P33,
For example, from the intake pipe pressure PM stored in the register R3 at time t-2, to the intake pipe pressure PM stored in the register R1 at time t-4, -4
is subtracted, and the subtraction result DPM is stored in the register DR. Then, the process proceeds to step P34, for example at time t. , DPM stored in register DB is subtracted from DPMo stored in register DR0, and the subtraction result DDPM is stored in register DDR. In step P35, the second differential value DDPM of the intake pipe pressure PM stored in the register DDK is compared with the standard value REFI (19), and if DDPM≧REF1, the asynchronous injection routine (not shown) jumps.

DDPM(REFIならばこの手順を終了する。DDPM (If REFI, end this procedure.

このようKして各時点のタイミングで各レジスタに格納
されている吸気管圧力PMは基本燃料噴射時間TPの演
算に用いられ、吸気管圧力PMの1回微分値DPMは同
期加速増量の演算に用いられ、2回微分値DDPMは非
同期加速増量の演算に用いられる。
In this way, the intake pipe pressure PM stored in each register at each timing is used to calculate the basic fuel injection time TP, and the one-time differential value DPM of the intake pipe pressure PM is used to calculate the synchronous acceleration increase. The second differential value DDPM is used to calculate the asynchronous acceleration increase.

次いで、第5図の各手順における各係数の演算処理につ
いて説明する。
Next, the calculation processing of each coefficient in each procedure of FIG. 5 will be explained.

■ 暖機増量係数FWLの演算処理 暖機増量係数FWLの演算手順の一例を第11図に示す
。手順P41で、水温信号S6に基づいてエンジン冷却
水温THWを読込み、エンジン回転数信号5IOK基づ
いてエンジン回転数Neを読込むと共K、第6図に示す
ルーチンで演算された補正値ADDをも読込む。手順P
42では、読込まれた最新の水温THWに基づいて、第
12図に示すエンジン冷却水温と補正係数FWLφとの
(20) マツプから補正係数FWLφを求める。次いで手1[P
43では、読込まれた最新のエンジン回転数Neに基づ
いて、第13図に示すエンジン回転数Neと補正係数K
WLとのマツプから補正係数KWLを求める。そして手
順P44において(補正係数F’WLφ十補正値ADD
)x補正係数KWL+1,0の演算を実行して暖機増量
係数FWLを求めて、この一連の手順を終了する。
(2) Calculation process for warm-up increase coefficient FWL An example of the calculation procedure for warm-up increase coefficient FWL is shown in FIG. 11. In step P41, the engine cooling water temperature THW is read based on the water temperature signal S6, the engine speed Ne is read based on the engine speed signal 5IOK, and the correction value ADD calculated in the routine shown in FIG. 6 is also read. It's crowded. Procedure P
At step 42, the correction coefficient FWLφ is determined from the (20) map of the engine cooling water temperature and the correction coefficient FWLφ shown in FIG. 12, based on the latest water temperature THW that has been read. Next, move 1 [P
43, based on the latest engine speed Ne that has been read, the engine speed Ne and correction coefficient K shown in FIG.
A correction coefficient KWL is obtained from the map with WL. Then, in step P44 (correction coefficient F'WLφ + correction value ADD
) x correction coefficient KWL+1, 0 is calculated to obtain the warm-up increase coefficient FWL, and this series of procedures ends.

■ フィードバック補正係数FAFの演算処理フィード
バック補正係数FAFの演算手順の一例を第14図に示
す。手順P51では、空燃比信号S7を読込む。手順P
52でけ空燃比信号S7の電圧値を基準値REF2と比
較し、信号S7が基準値REF2より大きい場合には、
空燃比が過濃であると判断して空燃比を希薄側にすべく
手順を実行する。すなわち、手順P53で補正係数FA
Fが1.0より小さいか否かを判断し、否定判断された
場合には手順P54で補正係数FAFを1.0とし、肯
定判断ならば(1,0−β)の結果を補正係数FAFと
してFAF演算処理の手順を終了する。
(2) Calculating processing of feedback correction coefficient FAF An example of the calculation procedure of feedback correction coefficient FAF is shown in FIG. 14. In step P51, the air-fuel ratio signal S7 is read. Procedure P
52, the voltage value of the air-fuel ratio signal S7 is compared with the reference value REF2, and if the signal S7 is larger than the reference value REF2,
It is determined that the air-fuel ratio is too rich and steps are taken to make the air-fuel ratio lean. That is, in step P53, the correction coefficient FA
It is determined whether F is smaller than 1.0, and if the determination is negative, the correction coefficient FAF is set to 1.0 in step P54, and if the determination is affirmative, the result of (1,0-β) is set to the correction coefficient FAF. The FAF arithmetic processing procedure ends.

一方、手順P52で信号S7が基準値R,EF2よシ小
さい場合には、空燃比が希薄であると判断して空燃比を
過濃側にすべき手順を実行する。すなわち、手順P56
で補正係数FAFが1.0より大きいか否かを判断し、
否定判断された場合には手順P57で補正係数FAFを
1.0とし、肯定判断ならば(1,0+β)の結果を補
正係数FAF’としてFAP演算処理の手順を終了する
On the other hand, if the signal S7 is smaller than the reference values R and EF2 in step P52, it is determined that the air-fuel ratio is lean, and a procedure to make the air-fuel ratio rich is executed. That is, step P56
Determine whether the correction coefficient FAF is greater than 1.0,
If the judgment is negative, the correction coefficient FAF is set to 1.0 in step P57, and if the judgment is affirmative, the result of (1,0+β) is set as the correction coefficient FAF' and the procedure of the FAP calculation process is ended.

また、手順P52で信号S7が基準値REF 2と等し
ければ手順P59で補正係数FAF’を1.0としてこ
の処理を終了する。
Further, if the signal S7 is equal to the reference value REF2 in step P52, the correction coefficient FAF' is set to 1.0 in step P59, and this process ends.

なお、手JIiP53、P56でそれぞれ否定判断され
たときに補正係数FAFを1.0とするのは、空燃比信
号S7が基準値以下から以上に変ったこと、および基準
値以上から以下に変ったことを監視し、それぞれの変化
の際に、補正係数FAFをいったん1.0にするためで
ある。また、手Jl[P55゜P2Oにおけるβは予め
定められた値である。
Note that the reason why the correction coefficient FAF is set to 1.0 when negative judgments are made in JIiP53 and P56 is that the air-fuel ratio signal S7 has changed from below the reference value to above, and from above the reference value to below. This is to monitor this and once change the correction coefficient FAF to 1.0 at each change. Further, β in hand Jl[P55°P2O is a predetermined value.

この演算手順により求められるフィードバック補正係数
FAFを空燃比信号S7とともに第15図に示す。この
図を参照するに、信号S7が基準値REF2より大きく
なる際および基準値REF2より小さくなる際に、まず
補正係数FAFが1.0にスキップされ、その後、信号
S7が基準値以上であれば逐次所定数βが減算され、信
号S7が基準値以下であれば逐次所定数βが加算される
The feedback correction coefficient FAF obtained by this calculation procedure is shown in FIG. 15 together with the air-fuel ratio signal S7. Referring to this figure, when the signal S7 becomes larger than the reference value REF2 or smaller than the reference value REF2, the correction coefficient FAF is first skipped to 1.0, and then, if the signal S7 is greater than or equal to the reference value A predetermined number β is sequentially subtracted, and if the signal S7 is less than the reference value, a predetermined number β is sequentially added.

なお、第15図に示すように、空燃比信号S7け波形整
形されて用いられる。
Note that, as shown in FIG. 15, the air-fuel ratio signal S7 is waveform-shaped and used.

■ 過渡時空燃比補正係数FTCの演算処理補正係数F
TCの演算手順の一例を第16図に示す。々お1本実施
例では、暖機中における加速増量における補正係数FT
Cだけを考える。手順P61で、第9図に示すルーチン
で得られている吸気管圧力PMの変化量DPMkを読込
む。手順P62では、その変化量DPMkに基づいて、
第17図に示す変化量DPMI’と吸気管圧力変化量に
よる暖機加速補正係数ΔFTCφとのマツプから補正係
数へPTCφを求める。次いで手順P63において、既
に求められている補正係数FTCφ(23) に手順P62で求められた補正係数△FTCφを加算し
、この加算結果を新だな補正係数FTCφとして手順P
64に進む。手順P64においては、得られた補正係数
FTCφを所定数γだけ減衰させるべき一定の周期が経
過したか否かが判断され、肯定判断されれば手順Pfi
5に進む。手順P65では、(F”I’ Cφ−γ)l
を求めてその結果を新たな補正係数FTCφとして所定
の記憶領域に格納する。次いで手順P66において、補
正係数FTCφが零より小さいか否かを判断して肯定判
断ならば手順P67で補正係数FTCφを零として次の
手順P68に進む。手順P64または手順P66で否定
判断された場合にも手順P68ヘジャンプする。
■ Transient air-fuel ratio correction coefficient FTC calculation processing correction coefficient F
An example of the TC calculation procedure is shown in FIG. In this embodiment, the correction coefficient FT for acceleration increase during warm-up is
Consider only C. In step P61, the amount of change DPMk in intake pipe pressure PM obtained by the routine shown in FIG. 9 is read. In step P62, based on the amount of change DPMk,
The correction coefficient PTCφ is determined from the map of the change amount DPMI' shown in FIG. 17 and the warm-up acceleration correction coefficient ΔFTCφ based on the intake pipe pressure change amount. Next, in step P63, the correction coefficient △FTCφ obtained in step P62 is added to the already obtained correction coefficient FTCφ (23), and this addition result is used as a new correction coefficient FTCφ in step P.
Proceed to step 64. In step P64, it is determined whether a certain period for attenuating the obtained correction coefficient FTCφ by a predetermined number γ has elapsed, and if an affirmative determination is made, step Pfi
Proceed to step 5. In step P65, (F"I' Cφ-γ)l
is calculated and the result is stored in a predetermined storage area as a new correction coefficient FTCφ. Next, in step P66, it is determined whether the correction coefficient FTCφ is smaller than zero, and if the judgment is affirmative, the correction coefficient FTCφ is set to zero in step P67, and the process proceeds to the next step P68. If a negative determination is made in step P64 or step P66, the process also jumps to step P68.

手順P68では、水温信号S6に基づいてエンジン冷却
水温THWを読込み、手順P69において、この冷却水
温THWに基づいて、第18図に示す冷却水温THWと
水温による暖機加速補正係数KTCとのマツプから補正
係数KTCを読込む。
In step P68, the engine coolant temperature THW is read based on the water temperature signal S6, and in step P69, based on this coolant temperature THW, the engine coolant temperature THW is calculated from the map of the coolant temperature THW and the warm-up acceleration correction coefficient KTC according to the water temperature shown in FIG. Read the correction coefficient KTC.

次いで手順P70では、第6図に示すルーチンで(24
) 求められた始動温補正値ADDを読み込んで手順P71
に進む。手順P71では、上述の手順で求められた補正
係数FTCφ、KTCおよびADDによシ、FTCφx
 (KTC+ADD71−1.0)を演算して暖機加速
補正係数FTCを求める。
Next, in step P70, the routine (24) shown in FIG.
) Read the obtained starting temperature correction value ADD and proceed to step P71.
Proceed to. In step P71, according to the correction coefficient FTCφ, KTC and ADD obtained in the above procedure, FTCφx
(KTC+ADD71-1.0) is calculated to obtain the warm-up acceleration correction coefficient FTC.

上述の手順P61〜P65で求められる補正係数FTC
を吸気管圧力PMおよび吸気管圧力の変化量DPMと共
に第19図に示す。この図を参照するに、各時点での変
化量DPMが基準値REF1を越える度毎にFTCφに
所定の値△FTCφが加算され、各時点の間では、補正
係数FTCφが所定周期毎にrづつ減算される。
Correction coefficient FTC obtained in the above steps P61 to P65
is shown in FIG. 19 together with the intake pipe pressure PM and the amount of change DPM in the intake pipe pressure. Referring to this figure, a predetermined value △FTCφ is added to FTCφ every time the amount of change DPM exceeds the reference value REF1 at each time point, and between each time point, the correction coefficient FTCφ is increased by r every predetermined period. Subtracted.

以上のようにして第5図の手順pH〜P13における係
数FWL%FAFおよびFTCが求められると、手順P
1’5で、TPxFWLxFAFx(1+FTC)xF
THAが演算されて補正後の噴射時間τが求められ、第
3図の手順P4に戻る。
When the coefficients FWL%FAF and FTC in the procedure pH to P13 in FIG. 5 are determined as described above, the procedure P
1'5, TPxFWLxFAFx(1+FTC)xF
THA is calculated to determine the corrected injection time τ, and the process returns to step P4 in FIG.

第3図を参照するに、手順P4において電圧補正演算が
実行される。すなわち、第20図に示す電圧補正演算ル
ーチンが実行され、手順P81でバッテリ電圧信号81
4に基づいてバッテリ電圧BVが読込まれ、手順P82
において、そのバッテリ電圧BVに基づいて、第21図
に示すバッテリ電圧BVと電圧補正係数τ■のマツプか
ら電圧補正係数τVが求められる。そして、手順P83
において、(t”+τV)が実行されて最終噴射時間F
τが求められる。そして、再び第3図の手順P5に戻り
、噴射タイミングであれば、手順P6において、制御回
路61かも噴射弁7に向けて噴射信号812が出力され
、これによシ噴射弁7が駆動される。
Referring to FIG. 3, voltage correction calculation is performed in step P4. That is, the voltage correction calculation routine shown in FIG. 20 is executed, and in step P81 the battery voltage signal 81 is
The battery voltage BV is read based on step P82.
Based on the battery voltage BV, the voltage correction coefficient τV is determined from the map of the battery voltage BV and the voltage correction coefficient τ■ shown in FIG. And step P83
, (t”+τV) is executed to determine the final injection time F
τ is required. Then, returning to step P5 in FIG. 3 again, if it is the injection timing, in step P6, the control circuit 61 outputs an injection signal 812 to the injection valve 7, thereby driving the injection valve 7. .

なお、第5図の手順P14による吸気温補正係数FTH
Aは、温度により異々る吸入空気の密度を補償するため
である。
In addition, the intake temperature correction coefficient FTH according to step P14 in FIG.
A is to compensate for the density of the intake air, which varies depending on the temperature.

また、以上の実施例では、基本燃料噴射時間TPを、エ
ンジン回転数と吸気管圧力とKより求めるようKしてい
るが、エンジン回転数と吸入空気量とによシ基本燃料噴
射時間TPを求めるようにしてもよい。更に、上記実施
例では、暖機増量係数FWLを、エンジン回転数をも加
味し求めているが、エンジン回転数を加味しなくてもよ
い。更にまた、始動温補正値ADDを始動時吸気温TH
Aに応じて選択するようにしたが、エンジン始動中の冷
却水温THWやエンジンオイル温度あるいはシリンダブ
ロック温度に応じて選択するようにしてもよい。
In addition, in the above embodiment, the basic fuel injection time TP is calculated from the engine speed, the intake pipe pressure, and K, but the basic fuel injection time TP is determined depending on the engine speed and the intake air amount. You may ask for it. Further, in the above embodiment, the warm-up increase coefficient FWL is determined by taking into account the engine speed, but it is not necessary to take the engine speed into account. Furthermore, the starting temperature correction value ADD is set to the starting intake temperature TH.
Although the selection is made in accordance with A, the selection may be made in accordance with the cooling water temperature THW, engine oil temperature, or cylinder block temperature during engine startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した自動車用内燃機関の一例を示
す構成図、第2図はその制御回路の一例を示す詳細ブロ
ック図、第3図は燃料噴射の手順の一例を示すフローチ
ャート、第4図はエンジン回転数Neと吸気管圧力PM
とから基本燃料噴射時間TPを読出するためのマツプの
一例を示す線図、第5図は補正噴射時間τを求める手順
の一例を示すフローチャート、第6図は始動温補正値A
DDを求める手順の一例を示すフローチャート、第7図
は始動時吸気温THAと始動温補正値ADDとの関係を
示すグラフ、tlcs図はその始動温補正値ADDの時
間減衰を示す線図、第9図は吸気管圧力PMの演算処理
の一例を示すフローチャー(27) ト、第10図は第9図の各手順を説明するための線図、
第11図は暖機増量係数FWLの演算処理の一例を示す
フローチャート、第12図はエンジン水温THWと暖機
補正係数F’WLφとの関係を示すグラフ、第13図は
エンジン回転数Neと暖機補正係数KWLとの関係を示
すグラフ、第14図はフィードバック補正係数F A、
 Fの演算処理の一例を示すフローチャート、第15図
は空燃比信号S7と補正係数FAFの時間変化を示すタ
イムチャート、第16図は暖機加速増量係数FTCの演
算処理の一例を示すフローチャート、第17図は吸気管
圧力の変化量DPMと暖機加速補正係数△FTCφとの
関係を示すグラフ、第18図はエンジン水温THWと暖
機加速補正係数KTCとの関係を示すグラフ、第19図
は吸気管圧力PM。 その変化量DPMと補正係数FTCφの時間変化を示す
タイムチャート、第20図は最終燃料噴射時間Fτの演
算処理の一例を示すフローチャート、第21図はバッテ
リ電圧BVと電圧補正係数−rVとの関係を示すグラフ
である。 (28) 7・・・噴射弁、  9・・・吸気絞り弁、  11・
・・吸気管圧力センサ、  13・・・インテークマニ
ホルド、15・・・吸気温センサ、  17・・・ライ
ザ部、19・・・エンジン本体、  27・・・燃焼室
、 33・・・ウォータジャケット、  37・・・エ
ンジン冷却水温センサ、41・・・0.センサ%  4
9・・・車速センサ、51・・・キースイッチ、53・
・・イグナイタ、  55・・・ディストリビュータ、
  57・・・Neセンサ、  59・・・Gセンサ、
 61・・・制御回路。 (29)−22 第3図 第5図 第6図 第7図 226− 第9図 第11図 第12図 工I〉ン水ミATHW 第13図 エージ/口阜1軟Ne 第19図 第20図 第21図 手続補正書 特許庁長官 殿 1、事件の表示 昭和58年特許願第43457号 2、発明の名称 内燃機関の燃料噴射量制御方法および燃料噴射制御装置
3、補正をする者 事件との関係特許出願人 名 称  (320)I〜ヨタ自動車株式会社 (ほか
1名)4、代理人 7、補正の対像 明細書の発明の詳細な説明の欄および図面。 8、補正の内容 (1)明細書第21頁第11行「手順P51」〜明細書
第23頁第9行を次のように訂正する。 「手順P51において、フィードバック条件が成立して
いるか否かを判断する。例えば、始動状態でなく、始動
後増中でなく、エンジン水THWが40℃以」−であり
、パワー増量中でなく、リーン制御中でない時に、フィ
ードバック制御の条件が成立する。フィードバック制御
の条件が成立していなければ、手順P52でフィードバ
ック補正係数FA F  を1.0としてフィードバッ
ク制御が実行されないようにして、この手順を終了する
。条件が成立していれば手順P53に進む。手順P53
では、空燃信号S7を読込む。手順P54では空燃比信
号S7の電圧値を基準値R,EF2と比較し、信号S7
が基準値RE F 2より大きい場合には、空燃比が過
濃であると判断して空燃比を稀薄側にすべく手順を実行
する。 すなわち、手順P55でフラグCA F Lを雰として
手順P56に進み、フラグCAFRが零か否かを判断す
る。初めて過濃側へ移行した時にはフラグCAFRが零
であるので手順P58へ進み、R,AM61Cに格納さ
れている補正係数FAFから所定の値α1を減じ、その
結果を新たな補正係数FAFとする。手順P59におい
ては、フラグCAFRを1とする。従って、手順P54
において連続して二回以上過濃と判断されれば、二回目
以降に通過する手順P56では必ず否定判定され、手順
P57において、補正係数FAFから所定の値β1を減
じ、その結果を新たな補正係数FAFとしてFAF演算
を終了する。 一方、手順P54で信号S7が基準値REF2より小さ
い場合には、空燃比が稀薄であると判断して空燃比を過
濃側にすべき手順を実行する。すなわち1手順P90に
おいて、フラグCAFRを零として手順P91に進み、
フラグCAFLが零か否かを判断する。初めて稀薄側へ
移行した時にはフラグCAFLが零であるので手順P9
2に進み、補正係数FAFに所定の値α2を加算し、そ
の結果を新たな補正係数FAFとする。手順P93にお
いてはフラグCA F Lを1とする。従って。 手順P5/lにおいて連続して二回以上稀薄と判断され
れば二回目以降に通過する手順P91では必ず否定判定
され、手順■〕94において、補正係数FAFに所定の
値β2を加算し、その結果を新たな補正係数FAFとし
てFAF演算を終了する。 なお、手MP57.P58.P92.P94におけろβ
1.β2.β1およびβ2は予め定められた値である。 二の演算手順により求られるフィードバック補正係数F
 A Fを空燃比信号S7とともに第15図に示す。こ
の図を参照するに、信号S7が基準値RE F2より大
きくなる際および基準値RE F 2より小さくなる際
に、まず、補正係数FAFがβ1あるいはβ2だけスッ
キプされ、その後、信号S7が基準値共−1−であれば
逐次所定数01が減算され、信号S7が基準値以下であ
れば逐次所定数β2が加算される。」 3− (2)第14図および第15図を添付図面のとおり改め
ろ。 以上 4− 内・シ軟汁 −231− ’f ’AIC,工し □4,7
FIG. 1 is a block diagram showing an example of an automobile internal combustion engine to which the present invention is applied, FIG. 2 is a detailed block diagram showing an example of its control circuit, FIG. 3 is a flowchart showing an example of a fuel injection procedure, and FIG. Figure 4 shows engine speed Ne and intake pipe pressure PM.
Fig. 5 is a flowchart showing an example of the procedure for calculating the corrected injection time τ, and Fig. 6 is a diagram showing an example of a map for reading out the basic fuel injection time TP from the starting temperature correction value A.
A flowchart showing an example of the procedure for determining DD, FIG. 7 is a graph showing the relationship between the intake air temperature THA at startup and the starting temperature correction value ADD, and a tlcs diagram showing the time decay of the starting temperature correction value ADD. 9 is a flowchart (27) showing an example of the calculation process of the intake pipe pressure PM, and FIG. 10 is a diagram for explaining each procedure in FIG.
Fig. 11 is a flowchart showing an example of the calculation process for the warm-up increase coefficient FWL, Fig. 12 is a graph showing the relationship between the engine water temperature THW and the warm-up correction coefficient F'WLφ, and Fig. 13 is a graph showing the relationship between the engine speed Ne and the warm-up correction coefficient F'WLφ. A graph showing the relationship with the machine correction coefficient KWL, FIG. 14 is the feedback correction coefficient FA,
FIG. 15 is a time chart showing changes over time in the air-fuel ratio signal S7 and the correction coefficient FAF. FIG. 16 is a flow chart showing an example of the calculation process for the warm-up acceleration increase coefficient FTC. Figure 17 is a graph showing the relationship between intake pipe pressure change amount DPM and warm-up acceleration correction coefficient △FTCφ, Figure 18 is a graph showing the relationship between engine water temperature THW and warm-up acceleration correction coefficient KTC, and Figure 19 is a graph showing the relationship between engine water temperature THW and warm-up acceleration correction coefficient KTC. Intake pipe pressure PM. A time chart showing the change over time in the amount of change DPM and the correction coefficient FTCφ, Fig. 20 is a flowchart showing an example of the calculation process of the final fuel injection time Fτ, and Fig. 21 shows the relationship between the battery voltage BV and the voltage correction coefficient -rV. This is a graph showing. (28) 7...Injection valve, 9...Intake throttle valve, 11.
... Intake pipe pressure sensor, 13... Intake manifold, 15... Intake temperature sensor, 17... Riser section, 19... Engine body, 27... Combustion chamber, 33... Water jacket, 37...Engine coolant temperature sensor, 41...0. Sensor% 4
9...Vehicle speed sensor, 51...Key switch, 53.
...Igniter, 55...Distributor,
57...Ne sensor, 59...G sensor,
61...Control circuit. (29)-22 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 226- Fig. 9 Fig. 11 Fig. 12 Fig. I> Water Mi ATHW Fig. 13 Age/Mouth 1 Soft Ne Fig. 19 Fig. 20 Figure 21 Procedural amendments Commissioner of the Japan Patent Office 1. Indication of the case 1982 Patent Application No. 43457 2. Name of the invention Fuel injection amount control method and fuel injection control device for internal combustion engines 3. Person making the amendment Related Patent Applicant Name (320) I~Yota Jidosha Co., Ltd. (and 1 other person) 4. Agent 7. Detailed description of the invention column and drawings in the amended counterpart specification. 8. Contents of the amendment (1) Page 21 of the specification, line 11 "Procedure P51" to page 23 of the specification, line 9 are corrected as follows. "In step P51, it is determined whether the feedback conditions are satisfied. For example, the engine water is not in a starting state, the power is not increasing after starting, and the engine water THW is 40 degrees Celsius or higher," and the power is not increasing. The conditions for feedback control are met when lean control is not in progress. If the conditions for feedback control are not satisfied, the feedback correction coefficient FA F is set to 1.0 in step P52 so that feedback control is not executed, and this procedure ends. If the conditions are met, the process advances to step P53. Step P53
Now, read the air/fuel signal S7. In step P54, the voltage value of the air-fuel ratio signal S7 is compared with the reference values R, EF2, and the voltage value of the air-fuel ratio signal S7 is compared with the reference value R, EF2.
If is larger than the reference value RE F 2, it is determined that the air-fuel ratio is too rich, and a procedure is executed to make the air-fuel ratio lean. That is, in step P55, the flag CAFL is set to zero, and the process proceeds to step P56, where it is determined whether or not the flag CAFR is zero. Since the flag CAFR is zero when shifting to the over-concentration side for the first time, the process proceeds to step P58, where a predetermined value α1 is subtracted from the correction coefficient FAF stored in R, AM61C, and the result is set as a new correction coefficient FAF. In step P59, the flag CAFR is set to 1. Therefore, step P54
If it is determined that the concentration is overconcentrated twice or more in a row, a negative determination is always made in step P56 passed from the second time onwards, and in step P57, a predetermined value β1 is subtracted from the correction coefficient FAF, and the result is used as a new correction. The FAF calculation is completed as the coefficient FAF. On the other hand, if the signal S7 is smaller than the reference value REF2 in step P54, it is determined that the air-fuel ratio is lean, and a procedure to make the air-fuel ratio rich is executed. That is, in step P90, the flag CAFR is set to zero and the process proceeds to step P91.
It is determined whether the flag CAFL is zero. When moving to the lean side for the first time, the flag CAFL is zero, so step P9
2, a predetermined value α2 is added to the correction coefficient FAF, and the result is set as a new correction coefficient FAF. In step P93, the flag CA F L is set to 1. Therefore. If it is determined that it is diluted twice or more in succession in step P5/l, a negative determination is always made in step P91 passed from the second time onwards, and in step 94, a predetermined value β2 is added to the correction coefficient FAF. The FAF calculation is completed using the result as a new correction coefficient FAF. In addition, hand MP57. P58. P92. β in P94
1. β2. β1 and β2 are predetermined values. Feedback correction coefficient F obtained by the second calculation procedure
AF is shown in FIG. 15 together with the air-fuel ratio signal S7. Referring to this figure, when the signal S7 becomes larger than the reference value RE F2 or smaller than the reference value RE F 2, the correction coefficient FAF is first skipped by β1 or β2, and then the signal S7 becomes the reference value If both are -1-, a predetermined number 01 is sequentially subtracted, and if the signal S7 is less than the reference value, a predetermined number β2 is sequentially added. 3-(2) Revise Figures 14 and 15 as shown in the attached drawings. Above 4- Inner and soft juice-231- 'f' AIC, work □4,7

Claims (1)

【特許請求の範囲】 (1)吸気通路に 設けられた燃料噴射弁と、該燃料噴射弁から噴射されて
吸入空気と混合された混合気をエンジン燃焼室まで導び
く比較的長い距離の吸気通路とを有する81牽母内燃機
関の燃料噴射量を制御するにあたり、エンジン回転数お
よびエンジン負荷に基づいて基本燃料噴射時間を演算す
ると共に、少なくとも、エンジン始動時または始動直後
のエンジン温度に応じて選択されて始動後の経過時間に
応じて減衰される始動温補正値、エンジンの加速量に応
じて選択される第1の暖機加速補正係数およびエンジン
運転中のエンジン温度に応じて選択される第2の暖機加
速補正係数に基づいて、暖機中の加速時における前記基
本燃料噴射時間を補正することを特徴とする内燃機関の
燃料噴射制御装置けられた燃料噴射弁と、該燃料噴射弁
から噴射されて吸入空気と混合された混合気をエンジン
燃焼室まで導び〈比較的長い距離の吸気通路とを有する
内燃機関の燃料噴射制御装置において、(a)  エン
ジン始動中を検出する始動検出手段と、(b)  エン
ジン温度を検出する温度検出手段と、(c)  エンジ
ン回転数を検出する回転数検出手段と、 (d)  エンジン負荷を検出する負荷検出手段と、(
e)  エンジンの加速状態を検出する加速検出手段と
、(f)  始動時のエンジン温度に対応した始動温補
正値を記憶した第1の記憶手段と、 (2)  エンジンの加速状態に対応した第1の暖機加
速補正係数を記憶した第2の記憶手段と、(h)  運
転中のエンジン温度に対応した第2の暖機加速補正係数
を記憶した第3の記憶手段と、(i)  前記回転数検
出手段で検出されたエンジン回転数と前記負荷検出手段
で検出されたエンジン負荷とに基づいて基本燃料噴射時
間を演算する演算手段と、 (j)  前記始動検出手段によジエンジン始動中が検
出されているときに前記温度検出手段により検出されて
いるエンジン始動温度を格納する第1の格納手段と、 (′k)  エンジン始動後の経過時間に応じて、前記
第1の格納手段に格納されているエンジン始動温度に基
づいて、前記第1の記憶手段から読出された始動温補正
値を減算する減算手段と、 (t)該減算手段による最新の結果データを逐次書き換
えて格納する第2の格納手段と、に)前記加速検出手段
により検出されたエンジン加速状態を逐次書き換えて最
新のエンジン加速状態を格納する第3の格納手段と、(
n)  エンジン運転中に前記温度検出手段により検出
されたエンジン温度を逐次書き換えて最新のエンジン温
度を格納する第4の格納手段と、 (0)前記第2の格納手段から読出された始動濡補正値
と、前記第3の格納手段から読出されたエンジン加速状
態に基づいて前記第2の記憶手段から読出された第1の
暖機加速補正係数と、前記第4の格納手段から読出され
たエンジン温度に基づいて前記第3の記憶手段から読出
された第2の暖機加速補正係数とに基づいて、前記基本
燃料噴射時間を補正する補正手段と、 (+))  該補正手段により補正されだ補正噴射時間
だけ前記燃料噴射弁を駆動する噴射信号を出力する手段
とを具備したととを特徴とする内燃機関の燃料噴射制御
装置。
[Scope of Claims] (1) A fuel injection valve provided in an intake passage, and a relatively long intake passage that guides the air-fuel mixture injected from the fuel injection valve and mixed with intake air to the engine combustion chamber. In controlling the fuel injection amount of an 81-drive internal combustion engine having a first warm-up acceleration correction coefficient selected according to the amount of acceleration of the engine; and a first warm-up acceleration correction coefficient selected according to the engine temperature during engine operation. A fuel injection control device for an internal combustion engine, which corrects the basic fuel injection time during acceleration during warm-up based on the warm-up acceleration correction coefficient of No. 2, and the fuel injection valve. In a fuel injection control device for an internal combustion engine, which has an intake passage having a relatively long distance, the air-fuel mixture injected from the engine and mixed with intake air is guided to the engine combustion chamber. (b) temperature detection means for detecting engine temperature; (c) rotation speed detection means for detecting engine rotation speed; (d) load detection means for detecting engine load;
(e) acceleration detection means for detecting the acceleration state of the engine; (f) first storage means for storing a starting temperature correction value corresponding to the engine temperature at startup; (2) first storage means for storing a starting temperature correction value corresponding to the engine temperature at startup; (h) a third storage means that stores a second warm-up acceleration correction coefficient corresponding to the engine temperature during operation; (i) the above-mentioned (j) calculation means for calculating a basic fuel injection time based on the engine rotation speed detected by the rotation speed detection means and the engine load detected by the load detection means; (j) when the engine is being started by the start detection means; ('k) a first storage means for storing the engine starting temperature detected by the temperature detection means when the temperature is detected; (t) subtraction means for subtracting the starting temperature correction value read from the first storage means based on the stored engine starting temperature; (2) a third storage means for sequentially rewriting the engine acceleration state detected by the acceleration detection means to store the latest engine acceleration state;
n) fourth storage means for sequentially rewriting the engine temperature detected by the temperature detection means during engine operation and storing the latest engine temperature; (0) starting wetness correction read from the second storage means; a first warm-up acceleration correction coefficient read from the second storage means based on the engine acceleration state read from the third storage means, and an engine read from the fourth storage means. a correction means for correcting the basic fuel injection time based on a second warm-up acceleration correction coefficient read from the third storage means based on the temperature; A fuel injection control device for an internal combustion engine, comprising means for outputting an injection signal that drives the fuel injection valve for a corrected injection time.
JP4345783A 1983-03-15 1983-03-15 Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine Pending JPS59168230A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4345783A JPS59168230A (en) 1983-03-15 1983-03-15 Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine
US06/588,101 US4543937A (en) 1983-03-15 1984-03-09 Method and apparatus for controlling fuel injection rate in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345783A JPS59168230A (en) 1983-03-15 1983-03-15 Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59168230A true JPS59168230A (en) 1984-09-21

Family

ID=12664229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345783A Pending JPS59168230A (en) 1983-03-15 1983-03-15 Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59168230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212640A (en) * 1985-03-18 1986-09-20 Fujitsu Ten Ltd Fuel injection control device of internal-combustion engine when it is started
JPS6293473A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Detecting device for internal pressure of intake pipe in internal combustion engine
ES2299380A1 (en) * 2005-11-07 2008-05-16 Robert Bosch Gmbh Self-igniting internal combustion engine operating method for motor vehicle, involves controlling heating device and starter motor depending on charging condition or operating parameter of battery that supplies energy to device and motor
JP4700248B2 (en) * 1999-12-31 2011-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for warm-up operation of an internal combustion engine, control element for a control device of a motor vehicle internal combustion engine, motor vehicle internal combustion engine, and control device for a motor vehicle internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212640A (en) * 1985-03-18 1986-09-20 Fujitsu Ten Ltd Fuel injection control device of internal-combustion engine when it is started
JPS6293473A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Detecting device for internal pressure of intake pipe in internal combustion engine
JP4700248B2 (en) * 1999-12-31 2011-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for warm-up operation of an internal combustion engine, control element for a control device of a motor vehicle internal combustion engine, motor vehicle internal combustion engine, and control device for a motor vehicle internal combustion engine
ES2299380A1 (en) * 2005-11-07 2008-05-16 Robert Bosch Gmbh Self-igniting internal combustion engine operating method for motor vehicle, involves controlling heating device and starter motor depending on charging condition or operating parameter of battery that supplies energy to device and motor

Similar Documents

Publication Publication Date Title
US4543937A (en) Method and apparatus for controlling fuel injection rate in internal combustion engine
CA2078492C (en) Air-fuel ratio control system for internal combustion engines
US4535736A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US4528956A (en) Method of and apparatus for controlling air-fuel ratio and ignition timing in internal combustion engine
JPS59168230A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine
JPS59176444A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPS59190451A (en) Air-fuel ratio control method and device for internal- combustion engine
JPS59176433A (en) Method of controlling fuel injection in internal- combustion engine
JPS59194042A (en) Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine
JPS62206247A (en) Fuel injection quantity control for internal combustion engine
JPS60249637A (en) Air-fuel ratio control for internal-combustion engine
JPS6065245A (en) Air-fuel ratio controller for internal-combustion engine
JPS63246435A (en) Air fuel ratio feedback control method for internal combustion engine
JPS59168231A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal- combustion engine
JPH0733782B2 (en) Fuel injection control method
JP2966258B2 (en) Air-fuel ratio correction control method
JPH0771295A (en) Stability control device for engine
JPS59176427A (en) Fuel injection controller of internal-combustion engine
JP3564923B2 (en) Engine air-fuel ratio control device
JPS59190435A (en) Fuel injection control device of internal-combustion engine
JPH04191444A (en) Fuel control device of engine
JPS6060231A (en) Air-fuel ratio learning control method for internal-combustion engine
JPS60198346A (en) Air/fuel ratio control method for internal-combustion engine
JPS59176436A (en) Method and device for controlling fuel injection of internal-combustion engine
JPS62162742A (en) Air-fuel ratio control device