JPS59190435A - Fuel injection control device of internal-combustion engine - Google Patents

Fuel injection control device of internal-combustion engine

Info

Publication number
JPS59190435A
JPS59190435A JP6345883A JP6345883A JPS59190435A JP S59190435 A JPS59190435 A JP S59190435A JP 6345883 A JP6345883 A JP 6345883A JP 6345883 A JP6345883 A JP 6345883A JP S59190435 A JPS59190435 A JP S59190435A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
throttle valve
injection time
fully closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6345883A
Other languages
Japanese (ja)
Inventor
Shinichi Abe
阿部 眞一
Hidetoshi Amano
天野 英敏
Toshiaki Mizuno
利昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP6345883A priority Critical patent/JPS59190435A/en
Publication of JPS59190435A publication Critical patent/JPS59190435A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the acceleration performance from the fully-closed condition by performing more warm-up augmentation correction as compared with the condition other than the fully-closed condition when an intake air throttle valve is fully closed. CONSTITUTION:Signals of the rotating speed, load, temperature of an engine and the throttle valve opening are fed to a control circuit performing the fuel injection control. The basic Fuel injecton time is calculated based on the engine rotating speed and engine load. furthermore, the warm-up augmentation coefficient is calculated based on the engine temperature, and the final fuel injection time is calculated by correcting the basic fuel injection time calculated based on the warm-up augmentation coefficient calculated when the fully-closed condition is not detected by the full-closure detection means of an intake air throttle valve. Accordingly, when the full-closure condition of the intake air throttle valve is not detected by a full-closure detection means, the final injection time is calculated so as to be further augmented after correction, and an injection signal corresponding to this calculated final injection time is fed for fuel injection. During the warm-up augmentation correction, more worm-up augmentation correction is performed as compared withthe condition other than the fully-closed condition when the intake air throttle valve is in a fully-closed condition.

Description

【発明の詳細な説明】 本発明は内燃機関の燃料噴射制御装置に関し、特に、吸
気通路に設けられた燃料噴射弁と、その噴射弁から噴射
されて吸入空気と混合された混合気をエンジン燃焼室ま
で導く比較的長い距離の吸気通路とを有し、エンジン暖
機中の燃料増量を、吸気絞り弁の全閉状態とそれ以外の
状態とに応じて定めるようにした内燃機関の燃料噴射制
御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control device for an internal combustion engine, and in particular, to a fuel injection control device for an internal combustion engine, and in particular to a fuel injection valve provided in an intake passage, and a fuel-air mixture injected from the injection valve and mixed with intake air to be used for engine combustion. Fuel injection control for an internal combustion engine, which has a relatively long intake passage leading to the engine compartment, and determines the increase in fuel amount during engine warm-up depending on whether the intake throttle valve is fully closed or not. It is related to the device.

かかる内燃機関における電子燃料噴射制御装置では、例
えば吸気管内の絶対圧力とエンジン回転数とに基ついて
、基本燃料噴射時間、すなわち、噴射弁の基本開弁時間
を演算し、この基本燃料噴射時間に対して、エンジンの
暖機状態、過渡状態を含むエンジンの運転状態に応じて
種々の補正演算を施して、最終燃料噴射時間を求めてい
る。
In such an electronic fuel injection control device for an internal combustion engine, the basic fuel injection time, that is, the basic opening time of the injection valve is calculated based on, for example, the absolute pressure in the intake pipe and the engine speed, and the basic fuel injection time is On the other hand, the final fuel injection time is determined by performing various correction calculations depending on the operating state of the engine, including the warm-up state and transient state of the engine.

エンジンの暖機状態に応じた補正は、一般に暖機増量補
正と言われ、例えばエンジン冷却水温が70°C以下の
ときに、その水温に応じて次のようにして暖機増量補正
が行なわれる。まず、エンジン冷却水温を測定し、エン
ジン冷却水温が高くなるにつれて小さくなるように定め
られた暖機増量係数を、測定したエンジン冷却水温から
ルックアップして、その暖機増量係数を基本燃料噴射時
間に乗じて最終噴射時間を演算している。
Correction according to the warm-up state of the engine is generally called warm-up increase correction. For example, when the engine cooling water temperature is 70°C or less, warm-up increase correction is performed according to the water temperature as follows. . First, measure the engine coolant temperature, look up the warm-up increase coefficient, which is determined to decrease as the engine coolant temperature increases, from the measured engine coolant temperature, and calculate the warm-up increase coefficient for the basic fuel injection time. The final injection time is calculated by multiplying by

しかしながら、従来のかかる暖機増量補正においては、
吸気絞り弁が全閉している場合も全閉していない場合と
同じ補正処理が行なわれている。
However, in the conventional warm-up increase correction,
Even when the intake throttle valve is fully closed, the same correction process is performed as when it is not fully closed.

従って、吸気絞り弁が全閉状態からの加速時には、エン
ジンの加速量に応じた暖機加速増量を行っても燃料が不
足気味となり、エンジンの息つきやもたつきが生じる場
合がある。特に、上述したように噴射弁と燃焼室が比較
的離れている内燃機関であって、かつエンジンの加速量
を吸気管圧力の変化世に応じて演算する場合には、吸気
管圧力の変化が、吸気絞り弁の開度変化よpもやや遅れ
て現われるので、特に加速性能が問題となりやすい。
Therefore, when accelerating from a fully closed state of the intake throttle valve, even if the amount of warm-up acceleration is increased in accordance with the amount of acceleration of the engine, the fuel may be insufficient, and the engine may become sluggish or sluggish. In particular, in an internal combustion engine where the injection valve and the combustion chamber are relatively far apart as described above, and when the engine acceleration amount is calculated according to the change in intake pipe pressure, the change in intake pipe pressure is Since the change in the opening of the intake throttle valve and p also appear with a slight delay, acceleration performance in particular tends to be a problem.

なお、上記加速増量において、全閉状態からの加速時の
運転性能を考慮して、多めの増量を行なうと全閉状態で
ない場合の加速時にオーバリッチと疫ってしまう。
In addition, when increasing the amount for acceleration, if the amount is increased by a large amount in consideration of the driving performance during acceleration from the fully closed state, an overrich condition will occur when accelerating when not in the fully closed state.

本発明の目的は、このような問題を解決し、吸気絞り弁
の全閉状態からの加速性能を向上させるため、吸気絞り
弁の全閉状態には、全閉時以外の暖機増量補正よりも多
くの暖機増量補正を行うようにした内燃機関の燃料噴射
制御装置を提供することにある。
The purpose of the present invention is to solve such problems and improve the acceleration performance from the fully closed state of the intake throttle valve, in order to improve the acceleration performance from the fully closed state of the intake throttle valve. An object of the present invention is to provide a fuel injection control device for an internal combustion engine that performs a large number of warm-up increase corrections.

本発明は、エンジン回転数検出手段で検出されたエンジ
ン回転数とエンジン負荷検出手段で検出されたエンジン
負荷とに基づいて基本燃料噴射時間を演算する第1の演
算手段と、エンジン温度検出手段で検出されたエンジン
温度に基づいて暖機増量係数を演算する第2の演算手段
と、吸気絞り弁の全閉状態を検出する全閉検出手段によ
り全閉状態が検出されていないときに第2の演算手段で
演算された暖機増量係数に基づいて第1の演算手段で演
算された基本燃料噴射時間を補正して最終燃料噴射時間
を演算し、全閉検出手段によシ吸気絞シ弁の全閉状態が
検出されたときには、補正後の最終噴射時間を更に増量
するように補正して最終噴射時間を演嘗−する補正手段
と、補正手段で演算された最終噴射時間に応じた噴射信
号を燃料噴射弁に供給する信号生成手段とを具備したこ
とを特徴とする。
The present invention includes a first calculating means for calculating a basic fuel injection time based on the engine speed detected by the engine speed detecting means and the engine load detected by the engine load detecting means, and an engine temperature detecting means. A second calculating means calculates a warm-up increase coefficient based on the detected engine temperature, and a second calculating means calculates a warm-up increase coefficient when the fully closed state of the intake throttle valve is not detected by the fully closed detecting means detects the fully closed state of the intake throttle valve. The final fuel injection time is calculated by correcting the basic fuel injection time calculated by the first calculation means based on the warm-up increase coefficient calculated by the calculation means, and the final fuel injection time is calculated by the fully closed detection means. a correction means for correcting the final injection time by further increasing the final injection time after the correction when a fully closed state is detected; and an injection signal corresponding to the final injection time calculated by the correction means. and a signal generating means for supplying the fuel to the fuel injection valve.

本発明では、暖機増量補正に際して、吸気絞り弁が全開
状態にあるときには、全開以外の場合に比べて暖機増量
補正による増量を多く行うようにした。
In the present invention, during the warm-up increase correction, when the intake throttle valve is fully open, the increase due to the warm-up increase correction is performed more often than when the intake throttle valve is not fully open.

吸気絞シ弁の全閉がらの加速に最適々加速増量を行って
このような加速性能を向上させる場合には、吸気絞り弁
の全閉以外からの加速時にオーツくリッチとなるが、本
発明ではこのような問題を生ずること々く、吸気絞り弁
の全閉からの加速性能を向上させることができる。
If the acceleration performance is improved by optimally increasing the amount of acceleration when accelerating with the intake throttle valve fully closed, it will become automatically rich when accelerating with the intake throttle valve not fully closed, but the present invention However, the acceleration performance from the fully closed intake throttle valve can be improved without causing such problems.

吸気絞り弁の全開時の上記のような追加増量を、エンジ
ン始動時のエンジン温度が低いほど大きな値であり、始
動後の時m1経過に応じて減衰される始動温補正値に基
づいて行うことが好ましい。
The above-mentioned additional increase when the intake throttle valve is fully opened is performed based on a starting temperature correction value that increases as the engine temperature at engine startup is lower and that is attenuated as time m1 elapses after engine startup. is preferred.

以下、図面に基づいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明に係る電子燃料噴射制御装置を適用した
自動車用内燃機関の構成例を示す。エアフィルタ1はイ
ンレットノくイブ3を介してスロットルボディ5と接続
されている。スロットルボディ5には、その上流側に燃
料噴射弁7が設けらへ燃料噴射弁7の下流にはアクセル
ペダル(不図示)と連動して吸入空気量を調節する吸気
絞シ弁9力:設けられ、吸気絞り弁9の下流には、その
部位の絶対圧力を測定する吸気管絶対圧力センサ11が
設けられている。更に、吸気絞り弁9の開度位置を測定
する弁開度位置センサ2と、吸気絞り弁9が全閉してい
るときにのみオンするアイドルスイッチ4と、例えば吸
気絞り弁9の開度が40度以上のときにのみオンするパ
ワースイッチ6とが、吸気叙り弁9に関連して取付けら
れている。
FIG. 1 shows a configuration example of an internal combustion engine for an automobile to which an electronic fuel injection control device according to the present invention is applied. The air filter 1 is connected to a throttle body 5 via an inlet nozzle 3. The throttle body 5 is provided with a fuel injection valve 7 on its upstream side, and an intake throttle valve 9 is provided downstream of the fuel injection valve 7 to adjust the amount of intake air in conjunction with an accelerator pedal (not shown). An intake pipe absolute pressure sensor 11 is provided downstream of the intake throttle valve 9 to measure the absolute pressure at that location. Furthermore, there is a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9, an idle switch 4 that is turned on only when the intake throttle valve 9 is fully closed, and a valve opening position sensor 2 that measures the opening position of the intake throttle valve 9. A power switch 6, which is turned on only when the temperature is 40 degrees or higher, is installed in association with the intake valve 9.

スロットルボディ5は、エンジンの各気筒と接続された
分岐管を有するインテークマニホルド13と接続され、
インテークマニホルド13には、その内の吸気温度’e
測測定る吸気温センサ15が設けられている。インテー
クマニホルド13の分岐前の底壁13aには、エンジン
冷却水が循環されて混合気を加熱するためのライザ部1
7が設けられている。
The throttle body 5 is connected to an intake manifold 13 having branch pipes connected to each cylinder of the engine,
The intake manifold 13 has an intake air temperature 'e
An intake air temperature sensor 15 is provided to measure the air temperature. On the bottom wall 13a of the intake manifold 13 before branching, there is a riser part 1 for circulating engine cooling water and heating the air-fuel mixture.
7 is provided.

19は周知慣例のエンジン本体であり、ピストン21と
シリンダ23とシリンダー・ラド25とにより燃焼室2
7が画成されていて、lνり気弁29を介して燃焼室2
7に吸入された混合気が点火プラグ31により着火され
る。シリンダ23の周囲にはウォータジャケット33が
形成され、そのウオークジャケット33にエンジン冷却
水が循環されてシリンダ23を含む部品が冷却される。
Reference numeral 19 designates a well-known engine body, in which a combustion chamber 2 is formed by a piston 21, a cylinder 23, and a cylinder rad 25.
7 is defined, and the combustion chamber 2 is
The air-fuel mixture sucked into the fuel tank 7 is ignited by the spark plug 31. A water jacket 33 is formed around the cylinder 23, and engine cooling water is circulated through the walk jacket 33 to cool parts including the cylinder 23.

そして、シリンダブロック35の外壁にはウォータジャ
ケット33内のエンジン冷却水温を測定するエンジン冷
却水温センサ37が設けられている。
An engine coolant temperature sensor 37 is provided on the outer wall of the cylinder block 35 to measure the temperature of the engine coolant in the water jacket 33.

シリングヘッド250図示しない排気ボートにはエキゾ
ーストマニホルド39が接続され、その下流側に、排気
ガス中の残留酸素濃度を測定する02センサ41が設け
られている。エキゾーストマニホルド39は、三元触媒
43を介して排気管45と接続されている。
An exhaust manifold 39 is connected to the exhaust boat (not shown) of the shilling head 250, and an 02 sensor 41 for measuring the residual oxygen concentration in the exhaust gas is provided downstream of the exhaust manifold 39. The exhaust manifold 39 is connected to an exhaust pipe 45 via a three-way catalyst 43.

47はエンジン本体19に接続された変速装置であり、
その最終出力軸の回転数によシ車両の速度を測定する車
速センサ49が取付けられている。
47 is a transmission connected to the engine body 19;
A vehicle speed sensor 49 is attached to measure the speed of the vehicle based on the rotational speed of the final output shaft.

また、51はキースイッチ、53はイグナイタ、55は
ディストリビュータであり、ディストリビュータ55に
は、所定のクランク角度θ1毎にオン・オフ信号を出力
するNeセンサ57が設けられ、その出力信号によりエ
ンジン回転数と所定のクランク角度位置を知ることがで
き、また、上記角度θ1よシ大きい角度θ2毎にオン・
オフ信号を出力するGセンサ59が設けられ、その出力
信号によシ気筒判別と上死点位置検出が行なわれる。
Further, 51 is a key switch, 53 is an igniter, and 55 is a distributor. The distributor 55 is provided with an Ne sensor 57 that outputs an on/off signal at every predetermined crank angle θ1, and the output signal determines the engine rotational speed. It is possible to know the predetermined crank angle position, and also to turn on and off at every angle θ2, which is larger than the above angle θ1.
A G sensor 59 that outputs an off signal is provided, and the output signal is used to determine the cylinder and to detect the top dead center position.

また、60はバッテリを示す。Further, 60 indicates a battery.

制御回路61は、弁開度位置センサ2.アイドルスイツ
チ4.パワースイッチ6、吸気圧センサ11、吸気温セ
ンサ15.エンジン冷却水温センサ37,02センサ4
1.車速センサ49.キースイッチ51.Neセンサ5
7.Gセンサ59およびバッテリ60とそれぞれ接続さ
れていて、弁開度信号SL、アイドル信号S2.パワー
信号S3、吸気圧信号S4.吸気温信号S5.水温信号
S6.空燃比信号S7.車速信号S8.スタート信号8
9.エンジン回転数信号S10.気筒判別信号Sllお
よびバッテリ電圧信号814が各センサから入力される
。まだ、制御回路61は、燃料噴射弁7とイグナイタ5
3にも接続されていて、所定の演算に基ジいて、燃料噴
射信号S12および点火信号S13を出力する。
The control circuit 61 includes a valve opening position sensor 2. Idle switch 4. Power switch 6, intake pressure sensor 11, intake temperature sensor 15. Engine coolant temperature sensor 37, 02 sensor 4
1. Vehicle speed sensor 49. Key switch 51. Ne sensor 5
7. The G sensor 59 and the battery 60 are connected to each other, and the valve opening signal SL, idle signal S2. Power signal S3, intake pressure signal S4. Intake temperature signal S5. Water temperature signal S6. Air-fuel ratio signal S7. Vehicle speed signal S8. Start signal 8
9. Engine speed signal S10. A cylinder discrimination signal Sll and a battery voltage signal 814 are input from each sensor. The control circuit 61 is still connected to the fuel injection valve 7 and the igniter 5.
3, and outputs a fuel injection signal S12 and an ignition signal S13 based on predetermined calculations.

制御回路61は、第2図に示すように、各種機器を制御
する中央演算処理装置(CPU) 61 a。
As shown in FIG. 2, the control circuit 61 includes a central processing unit (CPU) 61a that controls various devices.

予め各種の数値やプログラムが書き込まれたす、−ドオ
ンリメモリ (ROM)6 l b、演算過程の数値や
フラグが所定の領域に書き込まれるランダムアクセスメ
モリ (RAM)61 c、アナログ入力信号をディジ
タル信号に変換するA/Dコンバータ(ADC)61 
d、各種ディジタル信号が入力され、各種ディジタル信
号が出力される入出力インタフェース(Ilo)6 i
 e、エンジン停止時に補助電源から給電されて記憶を
保持するバックアップメモリ (BU−RAM)61 
f、及びこれら各機器がそれぞれ接続されるパスライン
61gから構成されている。後述するプログラムはRO
M61bに予め書き込まれている。
Random access memory (RAM) 61c, in which various numerical values and programs are written in advance, - only memory (ROM) 6lb, numerical values and flags for calculation processes are written in predetermined areas, converts analog input signals into digital signals A/D converter (ADC) 61 to convert
d. Input/output interface (Ilo) 6 i to which various digital signals are input and various digital signals are output.
e. Backup memory (BU-RAM) 61 that receives power from the auxiliary power source and retains memory when the engine is stopped.
f, and path lines 61g to which these devices are respectively connected. The program described below is RO
It is written in M61b in advance.

上述したエンジンにおいては、第3図に示すフローチャ
ートに従って燃料が噴射される。第3図を参照するに、
手順P1において、基準位置信号であるエンジン回転数
信号S1に基づいてエンジン回転数Neを読込むととも
に吸気管圧力信号S4に基づいて吸気管圧力P M f
:H込む。手順P2において、回転数Neと吸気管圧力
P Mとに基づいて、第4図のマツプから基本噴射時間
TPを求め手順P3において、エンジンの運転条件に応
じて補正演算処理を実行して補正後の噴射時間τを求め
る。
In the engine described above, fuel is injected according to the flowchart shown in FIG. Referring to Figure 3,
In step P1, the engine speed Ne is read based on the engine speed signal S1, which is a reference position signal, and the intake pipe pressure P M f is read based on the intake pipe pressure signal S4.
:H included. In step P2, the basic injection time TP is determined based on the rotational speed Ne and the intake pipe pressure PM from the map shown in FIG. Find the injection time τ.

ここで、手順P3の補正演算処理による補正噴射時間7
は一般に次式により求められる。
Here, the corrected injection time 7 is determined by the correction calculation process in step P3.
is generally determined by the following formula.

τ=TPXF’WLXFAFX (1+FTC) ×F
THA・・・・・・(1)ここで: TP−基本燃料噴
射時間 FWL−暖機増量係数 FAF−空燃比フイードバック補正係数FTC=過渡時
空燃比補正係数 FTHA−吸気温補正係数 そこで、第5図に示すτ演算ルーチンに基づいて各係数
が算出されて噴射時間τが求められる。
τ=TPXF'WLXFAFX (1+FTC) ×F
THA... (1) Where: TP - Basic fuel injection time FWL - Warm-up increase coefficient FAF - Air-fuel ratio feedback correction coefficient FTC = Transient air-fuel ratio correction coefficient FTHA - Intake temperature correction coefficient Therefore, Fig. 5 The injection time τ is obtained by calculating each coefficient based on the τ calculation routine shown in FIG.

すなわち、まず、手順P 11−(:暖機増量係数FW
Lの演算処理を実行する。
That is, first, step P11-(: warm-up increase coefficient FW
Executes arithmetic processing of L.

すなわち、第6図を参照するに、手順P21で水温TH
Wを読込み、手順P22において、第7図に示す水温T
HWと暖機補正係数FWLφとのマツプから、読込捷れ
た水温TH’Wに基づいて暖機補正係数FWLφをルッ
クアップして所定領域に一時記憶して手順P23に進む
。この手順P23では、アイドルスイッチ4からのアイ
ドル信号S2により吸気絞り弁9が全閉しているか否か
を判断する。本実施例では、吸気絞り弁9が全閉してい
るときにアイドルスイッチ4が閉成するので、アイドル
スイッチ4が閉成、換言するとオンしているとこの手順
P23が肯定判断され、オフしていると否定判断される
That is, referring to FIG. 6, in step P21 the water temperature TH
W is read, and in step P22, the water temperature T shown in FIG.
From the map of HW and warm-up correction coefficient FWLφ, the warm-up correction coefficient FWLφ is looked up based on the read water temperature TH'W and is temporarily stored in a predetermined area, and the process proceeds to step P23. In step P23, it is determined based on the idle signal S2 from the idle switch 4 whether the intake throttle valve 9 is fully closed. In this embodiment, the idle switch 4 is closed when the intake throttle valve 9 is fully closed, so if the idle switch 4 is closed, in other words, turned on, this step P23 is determined to be affirmative, and the switch is turned off. If it is, it will be judged as negative.

吸気絞り弁9が全閉していて手順P24に進むと、この
手順P24において、ROM6 l bに予め記憶され
ている補正値Xを読出し、手順P25において、手順P
22で所定領域に記憶された補正係数FWLφに補正値
Xを加算し、その結果を暖機増量FWLとして所定領域
に記憶してこの演算ルーチンを終了して第5図の手順P
12にジャンプする。
When the intake throttle valve 9 is fully closed and the process proceeds to step P24, in this step P24, the correction value
At step 22, the correction value
Jump to 12.

吸気絞り弁9が全閉していない場合に手順P26に進む
と、手順P22で演算された補正係数FWLφを暖機増
量係数FWLとして所定領域に記憶してこの演算ルーチ
ンを終了して第5図の手順P12にジャンプする。
If the intake throttle valve 9 is not fully closed, proceeding to step P26, the correction coefficient FWLφ calculated in step P22 is stored in a predetermined area as the warm-up increase coefficient FWL, and this calculation routine is terminated, as shown in FIG. Jump to step P12.

第5図の手順P12のフィードバック補正係数FAFは
、02センサ41からの空燃比信号S7に基づいて周知
慣例の技術により演算できる。また、手順P13の過渡
時空燃比補正係数FTCは、例えば、吸気管圧力センサ
11からの吸気圧力信号S4に基づいて吸気圧力の変化
(皆を演算し、その変化量に応じて演算することができ
る。更に、手順P14の吸気温補正係数F T HAは
、温度によシ異なる吸入空気の密度を補償するために行
なわれるものであり、吸気温T HAのディジタル値に
所定(直kを加算して求められる。これらの手順P12
〜P14は、本発明と直接函j係がないので詳細な説明
は省略する。
The feedback correction coefficient FAF in step P12 in FIG. 5 can be calculated based on the air-fuel ratio signal S7 from the 02 sensor 41 using a well-known technique. In addition, the transient air-fuel ratio correction coefficient FTC in step P13 can be calculated, for example, by calculating the change in intake pressure based on the intake pressure signal S4 from the intake pipe pressure sensor 11, and calculating it according to the amount of change. Furthermore, the intake temperature correction coefficient F T HA in step P14 is performed to compensate for the density of intake air that varies depending on the temperature, and is calculated by adding a predetermined value (direct k) to the digital value of the intake air temperature T HA. These steps P12
~P14 is not directly related to the present invention, so a detailed explanation will be omitted.

これら合手+1x P 12〜P14の演算処理が終了
すると手順P15に、イAみ、所定の記憶領域にそれぞ
れ記憶されている上記各補正係数に基づいて、TPXF
’WLXFAFK (1+FTC) ×FTI(Aを演
算して補正噴射時間τを演算してRA M61Cに記憶
して第3図の手順P4にジャンプする。
When these arithmetic operations are completed, TPXF is
'WLXFAFK(1+FTC)×FTI(A is calculated to calculate the corrected injection time τ, stored in the RAM 61C, and jumps to step P4 in FIG. 3.

第3図の手順P4ではバッテリ電圧による補償を行う。In step P4 of FIG. 3, compensation is performed using the battery voltage.

すなわち、第8図を参照するに、手順P31でバッテリ
電圧信号S14に基づいてバッテリ電圧BVが読込まれ
、手111t P 32において、そのバッテリ電圧B
Vに基づいて、第9図に示すバッテリ電圧BVと電圧補
正係数τVのマツプから電圧補正係数τ■が求められる
。そして、手順P33において、(τ+τV)が実行さ
れて最終噴射時間いて、制御回路61から噴射弁7に向
けて噴射信号S12が出力され、これにょシ噴射弁7が
駆動される。
That is, referring to FIG. 8, in step P31, the battery voltage BV is read based on the battery voltage signal S14, and in step 111t P32, the battery voltage B is read.
Based on V, a voltage correction coefficient τ■ is determined from a map of battery voltage BV and voltage correction coefficient τV shown in FIG. Then, in step P33, (τ+τV) is executed and after the final injection time, the injection signal S12 is output from the control circuit 61 to the injection valve 7, and the injection valve 7 is driven accordingly.

このように本発明実施例では、同期噴射制御における暖
機増量補正時において、エンジン冷却水温に基づいて暖
機補正係数FWLφを求め、吸気絞シ弁9が全閉してい
なければその係数FWLφにより基本燃料噴射時間TP
を補正、し、全閉していれば、その補正係数FWLφに
所定値Xを加算し、これにより、吸気絞シ弁9が全閉状
態のときには予め多少多めに燃料をインテークマニホル
ド13に供給しておくことができ、次の加速時の加速性
能を向上させることができる。
As described above, in the embodiment of the present invention, during warm-up increase correction in synchronous injection control, the warm-up correction coefficient FWLφ is determined based on the engine cooling water temperature, and if the intake throttle valve 9 is not fully closed, the warm-up correction coefficient FWLφ is used. Basic fuel injection time TP
If the intake throttle valve 9 is fully closed, a predetermined value The acceleration performance during the next acceleration can be improved.

次に、手順P 125の補正値Xをエンジンの始動時温
度と始動後の経過時間に応じて変化させる場合について
説明する。
Next, a case will be described in which the correction value X in step P125 is changed in accordance with the engine starting temperature and the elapsed time after starting.

所定のタイミングで第1O図に示す補正値ADD演算処
理ルーチンが起動されると、先づ手順P41でエンジン
始動中が否かが判断される。この判断は、エンジン回転
数信号SIOに基づいて実行される。肯定判断されると
、すなわち始動中であると、手順P42において、その
ときの吸気温信号S5に基づいてエンジン始動温度とし
ての始動吸気温度T J、(Aを読込む。次いで、手順
P43で、ROM61bに予め書き込まれている第11
図に示す補正値ADDと吸気温THAとのマツプから、
読込まれた始動吸気温度THAに基づいて補正値ADD
を読込む。手順P44においては、読込まれた補正値A
DDを所定数区だけ減衰させるべき一定の周期が経過し
たか否かが判断され、肯定判断されれば手順P45に進
む。手順P45では、(ADD−α)を求めてその結果
を新たな補正値ADDとして所定の記憶領域に格納する
When the correction value ADD calculation processing routine shown in FIG. 1O is activated at a predetermined timing, it is first determined in step P41 whether or not the engine is being started. This determination is performed based on the engine rotational speed signal SIO. If an affirmative determination is made, that is, if starting is in progress, in step P42, the starting intake air temperature TJ,(A is read as the engine starting temperature based on the intake air temperature signal S5 at that time.Next, in step P43, The 11th
From the map of correction value ADD and intake air temperature THA shown in the figure,
Correction value ADD based on the read starting intake air temperature THA
Load. In step P44, the read correction value A
It is determined whether a certain period for attenuating the DD by a predetermined number of sections has elapsed, and if an affirmative judgment is made, the process proceeds to step P45. In step P45, (ADD-α) is calculated and the result is stored in a predetermined storage area as a new correction value ADD.

次いで、手順P46において、補正値ADDが零より小
さいか否かを判断して肯定判断ならば手順P47で補正
値ADDを零としてADD演尊ルーチンを終了し、否定
判断ならば手順P 47をスキップしてADD@算ルー
チル−チンたん終了させる。エンジンが始動された後に
このルーチンが起動されたときには、手順P41で否定
判断されて手順P44にジャンプし、その手順で肯定判
断されれば、手順P45〜P47が実行され、否定判断
されれば手順P45〜P47がスキップされて一連の手
順が終了する。
Next, in step P46, it is determined whether the correction value ADD is smaller than zero, and if the judgment is affirmative, the correction value ADD is set to zero in step P47 and the ADD performance routine is ended, and if the judgment is negative, step P47 is skipped. and end ADD@calculation routine-chintan. When this routine is started after the engine has been started, a negative determination is made in step P41 and the process jumps to step P44. If an affirmative determination is made in that step, steps P45 to P47 are executed, and if a negative determination is made in that step, steps P45 to P47 are executed. P45 to P47 are skipped and the series of procedures ends.

上述したように、エンジン始動時の吸気温T、HAに基
づいて読込まれた始動温補正値ADDは、第12図に示
すよう((予め定められた周期毎に一定数区が減衰され
る。
As described above, the starting temperature correction value ADD read based on the intake air temperatures T and HA at the time of engine starting is attenuated in a certain number of sections at each predetermined period, as shown in FIG.

ここで、インテークマニホルド13の壁面温度の上昇率
を種々のエンジン始動渦層毎に実験により予め測定して
おき、それに合致して減衰するように始:”b a補正
値ADDおよび一定値俣を定めることにより、吸気絞り
弁9が全閉しているときに、エンジンの暖機状態により
適した量の燃料をインテークマニホルド13内に供給し
ておくことができ、吸気絞り弁全閉からの加速性能がよ
り向上する。このような補正は、第1図に示した種類の
エンジン、いわゆるSPI (シングルポイントインジ
ェクション)エンジンでは、噴射された燃料の気化がイ
ンテークマニホルドの壁面温度に依存しているので特に
有効である。
Here, the rate of increase in the wall surface temperature of the intake manifold 13 is measured in advance for each engine starting vortex layer by experiment, and the correction value ADD and the constant value are set so as to attenuate in accordance with the rate of increase in the wall surface temperature of the intake manifold 13. By setting this, when the intake throttle valve 9 is fully closed, an amount of fuel more suitable for the engine warm-up state can be supplied into the intake manifold 13, and acceleration from the fully closed intake throttle valve can be maintained. Performance is further improved.Such a correction is important because in the type of engine shown in Figure 1, the so-called SPI (single point injection) engine, the vaporization of the injected fuel is dependent on the wall temperature of the intake manifold. Particularly effective.

々お、以上では、燃料噴射弁が吸気絞り弁の上流にひと
つだけ設けられたいわゆるSPI (シング)L(イン
ドインジェクション)エンジンについj−、)’、;・
+’:t、フこが、燃料噴射弁とエンジン燃焼室とが比
較的離れている形態のエンジンにも本発明を適用できる
ことは言うまでもない。才だ、以上では基本燃料噴射時
間TPを、エンジン回転数と吸気管圧力とにより求める
ようにしたが、エンジン回転数と吸入空気量とにより基
本燃料噴射時間TPを求めるようにしてもよい。また、
始動温補正値ADDを始動時吸気温T HAに応じて選
択するようにしたが、エンジン始動中の冷却水温T ’
HWやエンジンオイル温度あるいはシリンダブロック温
度に応じて選択するようにしてもよい。更に寸だ、エン
ジン運転中の水温、エンジンオイル温度、シリンダブロ
ック温度のいずれかに応じた補正値を選択することもで
きる。
In the above, we will discuss the so-called SPI L (India Injection) engine in which only one fuel injection valve is provided upstream of the intake throttle valve.
It goes without saying that the present invention can also be applied to an engine in which the fuel injection valve and the engine combustion chamber are relatively separated. In the above, the basic fuel injection time TP is determined based on the engine speed and the intake pipe pressure, but the basic fuel injection time TP may also be calculated based on the engine speed and the intake air amount. Also,
Although the starting temperature correction value ADD is selected according to the intake air temperature THA at the time of starting, the cooling water temperature T' during engine starting
The selection may be made depending on HW, engine oil temperature, or cylinder block temperature. Furthermore, it is also possible to select a correction value depending on the water temperature, engine oil temperature, or cylinder block temperature during engine operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した自動車用内燃機関の一例を示
す構成図、第2図はその制御回路の一例を示す詳細ブロ
ック図、第3図は燃料噴射の手順の一例を示すフローチ
ャート、第4図はエンジン回転数Neと吸気管圧力PM
とから基本燃料噴射時間TPを読出すためのマツプの一
例を示す線図、第5図は補正噴射時間τを求める手順の
一例を示すフローチャート、第6図は暖機増量係数FW
Lの演算処理の一例を示すフローチャート、第7図はエ
ンジン水温THWと暖機補正係数FWLφとの関係を示
すグラフ、第8図は最終燃料噴射時間Fτの演算処理の
一例を示すフローチャート、第9図はバッテリ電圧BV
と電圧補正係数τVとの関係を示すグラフ、第10図は
始動温補正値ADDを求める手順の一例を示すフローチ
ャート、第11図は始動時吸気温T HAと始動温梢正
値A 、DDとの関係を示すグラフ、第12図はその始
動温補正値ADDの時間減衰を示す線図である。 7・・・噴射弁、  9・・・吸気絞り弁、  11・
・・吸気管圧力センサ、  13・・・インテークマニ
ホルド。 15・・・吸気温センサ、  17・・・ライザ部。 19・・・エンジン本体、  27・・・燃焼室。 33・・・ウォータジャケット、  37・・・エンジ
ン冷却水温センサ、  41・・・02センザ。 49・・・車速センサ、  51・・・キースイッチ。 53・・・イグナイタ、  55・・・ディストリビュ
ータ。 57・・・Neセンサ、  59・・・Gセンサ。 61・・・制御回路。 代理人  鵜 沼 辰 之 (ほか7名) 筑3図   第5図 第4[A 第6図 第7図 第8図 第9図 バ2,7テIノー電圧[3V (V) 第10図 4 フ45 −
FIG. 1 is a block diagram showing an example of an automobile internal combustion engine to which the present invention is applied, FIG. 2 is a detailed block diagram showing an example of its control circuit, FIG. 3 is a flowchart showing an example of a fuel injection procedure, and FIG. Figure 4 shows engine speed Ne and intake pipe pressure PM.
A diagram showing an example of a map for reading out the basic fuel injection time TP from
FIG. 7 is a graph showing the relationship between engine water temperature THW and warm-up correction coefficient FWLφ; FIG. 8 is a flowchart showing an example of calculation processing for final fuel injection time Fτ; The figure shows battery voltage BV
FIG. 10 is a flowchart showing an example of the procedure for determining the starting temperature correction value ADD, and FIG. 11 shows the relationship between the starting temperature T HA and the starting temperature positive value A , DD FIG. 12 is a graph showing the time decay of the starting temperature correction value ADD. 7... Injection valve, 9... Intake throttle valve, 11.
...Intake pipe pressure sensor, 13...Intake manifold. 15... Intake temperature sensor, 17... Riser section. 19...Engine body, 27...Combustion chamber. 33...Water jacket, 37...Engine coolant temperature sensor, 41...02 sensor. 49...Vehicle speed sensor, 51...Key switch. 53...Igniter, 55...Distributor. 57...Ne sensor, 59...G sensor. 61...Control circuit. Agent Tatsuyuki Unuma (and 7 others) Figure 5 Figure 4 [A Figure 6 Figure 7 Figure 8 Figure 9 Voltage [3V (V)] Figure 10 4 F45 -

Claims (1)

【特許請求の範囲】 (a)  エンジン回転数検出手段で検出されたエンジ
ン回転数とエンジン負荷検出手段で検出されたエンジン
負荷とに基づいて基本燃料噴射時間を演算する第1の演
算手段と、 (b)  エンジン温度検出手段で検出されたエンジン
温度に基づいて暖機増量係数を演算する第2の演算手段
と、 (C)  前記吸気絞シ弁の全閉状態を検出する全閉検
出手段により全閉状態が検出されていないときに前記第
2の演算手段で演算された暖機増量係数に基づいて前記
第1の演算手段で演算された基本燃料噴射時間を補正し
て最終燃料噴射時間を演算し、前記全閉検出手段により
前記吸気絞p弁の全閉状態が検出されたときには、前記
補正後の最終噴射時間を更に増量するように補正して最
終噴射時間を演算する補正手段と、 (d)  該補正手段で演算された最終噴射時間に応じ
た噴射信号を燃料噴射弁に供給する信号生成手段とを具
備したことを特徴とする内燃機関の燃料噴射制御装置。 2、特許請求の範囲第1項に記載の装置において、前記
補正手段は、前記全閉検出手段により前記吸気絞り弁の
全閉状態が検出されているときに、エンジン始動時のエ
ンジン温度に応じて選択されて始動後の経過時間に応じ
て減算される、始動時のエンジン温度が低いほど大きな
値である始動温補正値に基づいて、前記吸気絞り弁が全
閉以外のときに演算される最終噴射時間を更に増量する
ように補正することを特徴とする内燃機関の燃料噴射制
御装置。
[Scope of Claims] (a) first calculation means for calculating a basic fuel injection time based on the engine rotation speed detected by the engine rotation speed detection means and the engine load detected by the engine load detection means; (b) a second calculation means for calculating a warm-up increase coefficient based on the engine temperature detected by the engine temperature detection means; and (C) a fully closed detection means for detecting a fully closed state of the intake throttle valve. When the fully closed state is not detected, the basic fuel injection time calculated by the first calculation means is corrected based on the warm-up increase coefficient calculated by the second calculation means, and the final fuel injection time is calculated. correcting means for calculating the final injection time by correcting the corrected final injection time so as to further increase the amount when the fully closed state of the intake throttle p-valve is detected by the fully closed detection means; (d) A signal generation means for supplying an injection signal to a fuel injection valve in accordance with the final injection time calculated by the correction means. A fuel injection control device for an internal combustion engine, comprising: 2. In the device according to claim 1, when the fully closed state of the intake throttle valve is detected by the fully closed detection means, the correction means adjusts the temperature according to the engine temperature at the time of starting the engine. The intake throttle valve is calculated when the intake throttle valve is not fully closed, based on a starting temperature correction value, which is selected based on the starting temperature correction value and is subtracted according to the elapsed time after starting, and which is a larger value as the engine temperature at starting is lower. A fuel injection control device for an internal combustion engine, characterized in that the final injection time is corrected to further increase the final injection time.
JP6345883A 1983-04-11 1983-04-11 Fuel injection control device of internal-combustion engine Pending JPS59190435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6345883A JPS59190435A (en) 1983-04-11 1983-04-11 Fuel injection control device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6345883A JPS59190435A (en) 1983-04-11 1983-04-11 Fuel injection control device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59190435A true JPS59190435A (en) 1984-10-29

Family

ID=13229808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6345883A Pending JPS59190435A (en) 1983-04-11 1983-04-11 Fuel injection control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59190435A (en)

Similar Documents

Publication Publication Date Title
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPH0328592B2 (en)
JPS59194053A (en) Method and device of air-fuel ratio control for internal- combustion engine
JP2580646B2 (en) Fuel injection amount control method for internal combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JPS59190451A (en) Air-fuel ratio control method and device for internal- combustion engine
JPS59190435A (en) Fuel injection control device of internal-combustion engine
JPS59176444A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPH0573907B2 (en)
JPS5828542A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS60132043A (en) Fuel injection controller
JPS59176433A (en) Method of controlling fuel injection in internal- combustion engine
JPS59170431A (en) Control of air-fuel ratio of internal-combustion engine
JPS59176427A (en) Fuel injection controller of internal-combustion engine
JPH0454054B2 (en)
JPS60249637A (en) Air-fuel ratio control for internal-combustion engine
JPS59168230A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal-combustion engine
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JPS59168233A (en) Electronic fuel injection controlling method
JPH0733782B2 (en) Fuel injection control method
JP2712255B2 (en) Fuel supply control device for internal combustion engine
JPS59200032A (en) Method of controlling air-fuel ratio of electronically controlled fuel injection engine
JPS59168231A (en) Method of controlling injection quantity of fuel and fuel injection controlling apparatus for internal- combustion engine
JPS6075739A (en) Fuel injection control method
JPS62186039A (en) Engine combustion control device