JPS6060231A - Air-fuel ratio learning control method for internal-combustion engine - Google Patents

Air-fuel ratio learning control method for internal-combustion engine

Info

Publication number
JPS6060231A
JPS6060231A JP16789683A JP16789683A JPS6060231A JP S6060231 A JPS6060231 A JP S6060231A JP 16789683 A JP16789683 A JP 16789683A JP 16789683 A JP16789683 A JP 16789683A JP S6060231 A JPS6060231 A JP S6060231A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
learning
intake
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16789683A
Other languages
Japanese (ja)
Inventor
Shinichi Abe
阿部 眞一
Hidetoshi Amano
天野 英敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16789683A priority Critical patent/JPS6060231A/en
Publication of JPS6060231A publication Critical patent/JPS6060231A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent deterioration of the driving performance and the specific fuel consumption of an engine, by executing learning control when an intake throttle valve and the engine load are feedback-controlled under specific conditions and the temperature of intake air is whithin a prescribed range. CONSTITUTION:A control circuit 61 executes learning of values to be learnt when an intake throttle valve and the engine load are feedback controlled under specific conditions. For this purpose, judgement is made at first that the intake throttle valve is not in its idling position and then judgement is made whether the pressure PM in an intake pipe has entered into learning region or not. In case that the judgement is YES, learning of values to be learnt is executed when the air-fuel ratio is under feedback control, the temperature THW of engine cooling water becomes higher than a prescribed value, the temperature of intake air is within a prescribed range and skipping of an air-fuel ratio feedback correction factor FAF is caused. By employing such a method, it is enabled to reduce the number of bits of memory and the number of words of a program and to prevent deterioration of the driving performance and the specific fuel consumption of an engine due to errors of learnt values.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の空燃比学習制御方法に係り特に機関
負荷および機関回転数によって定まる基本燃料噴射時間
全排ガス中の残留酸素濃度を検出する02センサの出力
信号に基づいて得られる空燃比フィードバック補正係数
を用いて補正して混合気の空燃比が目標空燃比になるよ
うにフィードバック制御すると共に、空燃比フィートノ
(ツク補正係数の平均値が所定値に近づくよう学習する
内燃機関の空燃比学習制御方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air-fuel ratio learning control method for an internal combustion engine, and in particular detects the residual oxygen concentration in exhaust gas during a basic fuel injection period determined by engine load and engine speed. The air-fuel ratio feedback correction coefficient obtained based on the output signal of the 02 sensor is used to perform feedback control so that the air-fuel ratio of the mixture becomes the target air-fuel ratio. The present invention relates to an air-fuel ratio learning control method for an internal combustion engine that learns to approach a predetermined value.

〔従来技術〕[Prior art]

従来より、排ガス中の一酸化炭素、炭化水素および窒素
酸化物を同時に浄化するために三元触媒が用いられてお
シ、この三元触媒の浄化率を良好にするため02センサ
により排ガス中の残留酸素濃度を検出して空燃比を推定
し、空燃比を理論空燃比近傍に制御するフィード)Zツ
ク制御が行な増フれている。このフィートノくツク制御
を行なうにあたっては、機関負荷(吸気管圧力PM捷た
け機関1回転当りの吸入空気量Q/NE)と機関回転数
とによって定まる基本燃料噴射時間TPに、02センサ
から出力されかつ信号処理された空燃比信号に基づいて
燃料噴射時間を比例積分動作させるための第1図に示す
空燃比フィードバック補正係数FAF’i乗算して燃料
噴射時間TAUをめ、この燃料噴射時間TAUに相当す
る時間燃料噴射弁を開弁することにより空燃比を理論空
燃比近傍に制御している。しかし、環境変化や経時変化
等により、タベットクライアンスの変化によるパルプタ
イミングの変化、圧力センサやエアフローメータの特性
変化、燃料噴射弁の特性変化が生じ、燃料噴射量をエン
ジンの要求燃料噴射量に制御できなくなって空燃比を理
論空燃比近傍に制御できないことがある。このため、空
燃比学習制御を行ない、空燃比が常に理論空燃比近傍に
なるように制御することが行なわれている。この学習制
御は、次式に示すように所定伯仲で学習される学習値T
AUG、KG’i用いて空燃比フィードバック補正係数
の平均値FAFAVが所定値になるように制御するもの
である。
Conventionally, a three-way catalyst has been used to simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas.In order to improve the purification rate of this three-way catalyst, the 02 sensor The air-fuel ratio is increased by detecting the residual oxygen concentration, estimating the air-fuel ratio, and controlling the air-fuel ratio to near the stoichiometric air-fuel ratio. In performing this foot check control, the output from the 02 sensor is determined during the basic fuel injection time TP determined by the engine load (intake pipe pressure PM and intake air amount per engine revolution Q/NE) and the engine speed. Based on the signal-processed air-fuel ratio signal, the fuel injection time TAU is determined by multiplying the air-fuel ratio feedback correction coefficient FAF'i shown in FIG. The air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by opening the fuel injection valve for a corresponding period of time. However, due to environmental changes and changes over time, changes in the pulp timing due to changes in tabet compliance, changes in the characteristics of pressure sensors and air flow meters, and changes in the characteristics of fuel injection valves occur, resulting in changes in the fuel injection amount to the engine's required fuel injection amount. The air-fuel ratio may not be able to be controlled close to the stoichiometric air-fuel ratio. For this reason, air-fuel ratio learning control is performed to control the air-fuel ratio so that it is always near the stoichiometric air-fuel ratio. This learning control is performed using a learning value T learned at a predetermined value as shown in the following equation.
AUG and KG'i are used to control the average value FAFAV of the air-fuel ratio feedback correction coefficient to a predetermined value.

TAU=(TP十TAUG)・KG−FAF・F(t)
 ・・・・・・ (1)ただし、TAUGは吸気絞り弁
がアイドル位置での学習値、T(Gは吸気絞り弁がアイ
ドル位置に々いときでの学習値、F(t)は暖機増量係
数や始動力が200−1−30 (1+++Hyのとき
KG、、300〜400關HPのときKG2 、400
〜500藺HpのときKG3 が採用される。
TAU=(TP ten TAUG)・KG−FAF・F(t)
...... (1) However, TAUG is the learned value when the intake throttle valve is at the idle position, T (G is the learned value when the intake throttle valve is at the idle position, and F(t) is the warm-up value. When the increase coefficient and starting power are 200-1-30 (1 + + + Hy, KG, 300-400 HP, KG2, 400
KG3 is adopted when ~500 Hp.

これらの学習値TAUG、KG(KG、、KG2、KG
3)は、空燃比フィードバック制御中でかつ機関冷却水
温が所定値(例えば、80℃)を越えるとき補正係数F
AFがスギツブする毎に次の方法によって学習される。
These learning values TAUG, KG (KG, , KG2, KG
3) is the correction coefficient F when the engine cooling water temperature exceeds a predetermined value (for example, 80°C) during air-fuel ratio feedback control.
Each time the AF is activated, it is learned by the following method.

まず、突燃比フィードバック補正係数FAFがスキップ
する毎に補正係数ト′AFの最大最小値の相加平均値F
AFΔ■、すなわち、 をめ、平均値FAFAvの値が助走範囲(例えば、+2
%)外の値になったとき学習によって学習値TAUG、
KG−i所定値増減する。すなわち、平均値FAFAV
が1.02を越えたときに学習値TAUG、KGを所定
値増加させ、平均値FAFAVが0.98未満になった
ときに学習値TAUG、KGを所定値減〆にさせる。
First, every time the sudden fuel ratio feedback correction coefficient FAF skips, the arithmetic average value F of the maximum and minimum values of the correction coefficient T'AF is calculated.
AFΔ■, that is, the value of the average value FAFAv is within the run-up range (for example, +2
%) When the value outside the range is reached, the learned value TAUG is set by learning,
KG-i increases or decreases by a predetermined value. That is, the average value FAFAV
When the average value FAFAV exceeds 1.02, the learned values TAUG and KG are increased by a predetermined value, and when the average value FAFAV becomes less than 0.98, the learned values TAUG and KG are decreased by a predetermined value.

そして、上記のように学習された学習値TAUG、KG
は、吸気絞り弁の開閉状態および吸気管圧力(または機
関1回転当勺の吸入空気量)の大きさに応じて上記(1
)式に適用され、燃料噴射時間TAUがめられる。この
結果、平均値FAFAVが1.02に越えるときには学
習値が大きくされて空燃比がリッチ側に制御され、平均
値FAFAVが0.98未満のときには学習値が小さく
されて空燃比がリーン側に制御され、平均値FAFAV
が1すなわち理論空燃比に近づくよう学習制御される。
Then, the learned values TAUG, KG learned as above
The above (1
) is applied to the equation, and the fuel injection time TAU is determined. As a result, when the average value FAFAV exceeds 1.02, the learned value is increased and the air-fuel ratio is controlled to the rich side, and when the average value FAFAV is less than 0.98, the learned value is decreased and the air-fuel ratio is controlled to the lean side. Controlled, average value FAFAV
Learning control is performed so that the ratio approaches 1, that is, the stoichiometric air-fuel ratio.

しかし、かかる空燃比学習制御方法では、学習領域を機
関負荷に応じて3領域に分け、3つの学習値を用いてい
るためマイクロコンピュータで制御する場合メモリのピ
ッド数が多くなると共にプログラムのワード数が多くな
るという問題がある。
However, in this air-fuel ratio learning control method, the learning area is divided into three areas depending on the engine load and three learning values are used. Therefore, when controlling with a microcomputer, the number of memory pids increases and the number of program words increases. The problem is that there are many.

1だ、吸気温に応じて燃料噴射fjtf制御するため吸
気温センサをインテークマニホールドにITV Hケる
場合KH、センサ出力がインテークマニホールド温によ
って左右され、極低温時から始動したときに冷却水温は
第2図の紳Aのように上昇するが、インテークマニホー
ルド温が冷却水温に応じて上昇しないためセンサで1・
広出された吸気温はfiBのように上昇する。このよう
な状態では、吸気温センサで検出された吸気温が低いた
め吸気温補正により燃料a、6射知が増量されて空燃比
がリッチに制御される一方、冷却水温が所定値(80”
C) を越えているため空懇比フィードバック中である
と学習さ扛て学習1直が小さくされる。このため、吸気
温増量補正が解除された直後において学習値が異當に小
さくなり、この学習値により9燃比がり一ンVこiit
’l 両されてドライバビリティが悪化するという問題
が発生する。一方、吸気温センサはji6常サーミスタ
を使用しているため高温になると抵抗値が小さくなり、
吸気温補正よりリッチ側に空燃比が制御され、上記と同
様の問題が発生する。
1. In order to control fuel injection fjtf according to the intake temperature, the intake temperature sensor is installed on the intake manifold.KH, the sensor output is affected by the intake manifold temperature, and when starting from an extremely low temperature, the cooling water temperature The temperature rises as shown in Figure A in Figure 2, but since the intake manifold temperature does not rise according to the cooling water temperature, the sensor detects 1.
The expanded intake air temperature rises like fiB. In such a state, the intake temperature detected by the intake temperature sensor is low, so the amount of fuel a and 6 injection is increased by intake temperature correction, and the air-fuel ratio is controlled to be rich, while the cooling water temperature is kept at a predetermined value (80"
C) If the distance is exceeded and the air ratio feedback is in progress, the learning will be canceled and the learning shift will be reduced. For this reason, the learned value becomes extremely small immediately after the intake temperature increase correction is canceled, and this learned value causes the fuel ratio to increase by 1 V.
'l A problem arises in that the vehicle is erected and the drivability deteriorates. On the other hand, the intake air temperature sensor uses a JI6 thermistor, so the resistance value decreases when the temperature gets high.
The air-fuel ratio is controlled to be richer than the intake temperature correction, and the same problem as above occurs.

略同一であるという知見を得た。We obtained the knowledge that they are almost the same.

−〔発明の目的〕 本発明は、−上記問題点を解消すると共に上記知見に基
づいて成されたもので、学習領域を狭くすると共に極低
温時および高温時に学習値が異常になることを防止した
空燃比学習制御方法を提供することを目的とする。
- [Object of the Invention] The present invention has been made based on the above findings as well as solving the above-mentioned problems, and narrows the learning area and prevents the learned value from becoming abnormal at extremely low temperatures and high temperatures. The purpose of this invention is to provide an air-fuel ratio learning control method.

〔発明の構成〕[Structure of the invention]

上記目的を達成するために本発明は、機関負荷および機
関回転数によって定まる基本燃料噴射時間を排ガス中の
残留酸素濃度を検出する02センサの出力信号に基づい
て得られる空燃比フィードバック補正係数を用いて補正
して混合気の空燃比が目標空燃比になるようにフィード
バック制御すると共に、前記空燃比フィードバック補正
係数の平均値が所定値に近づくよう学習する内燃機関の
空燃比学習制御方法において、吸気絞り弁がアイドル位
置になくかつ機関負荷が所定範囲内の領域で、フィード
バック制御中でかつ吸気温が所定範囲内の温度の条件が
成立したとき学習することを特徴とする。
In order to achieve the above object, the present invention uses an air-fuel ratio feedback correction coefficient obtained based on the output signal of the 02 sensor that detects the residual oxygen concentration in exhaust gas for the basic fuel injection time determined by the engine load and engine speed. In the air-fuel ratio learning control method for an internal combustion engine, the air-fuel ratio learning control method for an internal combustion engine performs feedback control so that the air-fuel ratio of the mixture becomes a target air-fuel ratio by correcting the air-fuel ratio, and learns so that the average value of the air-fuel ratio feedback correction coefficient approaches a predetermined value. It is characterized in that learning occurs when the throttle valve is not in the idle position, the engine load is within a predetermined range, feedback control is in progress, and the intake air temperature is within a predetermined range.

上記本発明によれば、上記の学習領域((おいて上記の
学習条件が成立すると学習により学習値が変更されると
共に、極低温時および高温四に学習が禁止される。
According to the present invention, when the learning condition is satisfied in the learning region ((), the learning value is changed by learning, and learning is prohibited at extremely low temperatures and at high temperatures.

〔発明の効果〕〔Effect of the invention〕

従って本発明によれば、2つの学習値全採用(2ている
ことからマイクロコンピュータで制御する場合従来より
メモリのピッド数やプログラムのワード数を少なくでき
ると共に、極低温81++6よび品温時の学習値異常に
よるドライバビリティおよび燃費の悪化を防止すること
ができる、という効果が得られる。
Therefore, according to the present invention, since two learning values are fully adopted (2), when controlling with a microcomputer, the number of memory pids and the number of program words can be reduced compared to conventional methods. The effect is that deterioration of drivability and fuel efficiency due to value abnormality can be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実1m例全詳細に酸1明
する。
Hereinafter, one example of the present invention will be explained in detail with reference to the drawings.

第3図は本発明が適用され電子燃料噴射制御装置を含む
自動車用白煙機関(エンジン)の構成例を示す。エアフ
ィルタ1け、インレソトノ(イブ3を介してスロットル
ボディ5と接続されている。
FIG. 3 shows a configuration example of a white smoke engine for an automobile including an electronic fuel injection control device to which the present invention is applied. 1 air filter, connected to the throttle body 5 via the valve 3.

スロットルボディ5には、その上流側に燃料噴射弁7が
設けられ、燃料噴射弁7の下流にはアクセルペダル(不
図示)と連動して吸入空気量を調節する吸気絞シ弁9が
設けられ、吸気iり弁9の下流には、その部位の絶対圧
力を測定する吸気管絶対圧力士ンサ11が設けられてい
る。更に、吸気絞り弁9の開度位Rを測定する弁開度位
置センサ2と、吸気絞り弁9がアイドル位置(全閉して
いるとき)にのみオンするアイドルスイッチ4と、例え
ば吸気絞り弁9の開度が30度以上のときにのみオンす
るパワースイッチ6とが、吸気絞り弁9に関連して取付
けられている。
The throttle body 5 is provided with a fuel injection valve 7 on its upstream side, and an intake throttle valve 9 is provided downstream of the fuel injection valve 7 to adjust the amount of intake air in conjunction with an accelerator pedal (not shown). An intake pipe absolute pressure sensor 11 is provided downstream of the intake valve 9 to measure the absolute pressure at that location. Further, a valve opening position sensor 2 that measures the opening position R of the intake throttle valve 9, an idle switch 4 that is turned on only when the intake throttle valve 9 is in the idle position (when it is fully closed), and a valve opening position sensor 2 that measures the opening position R of the intake throttle valve 9; A power switch 6 that is turned on only when the opening of the intake throttle valve 9 is 30 degrees or more is attached in association with the intake throttle valve 9.

スロットルボディ5は、エンジンの各気筒と接続された
分岐管を有するインテークマニホルド13と接続され、
インテークマニホルド13には、その内の吸気温度を測
定する吸気温センサ15が設けられている。インテーク
マニホルド13の分岐前の底壁13aには、エンジン冷
却水が循環されて混合気を加熱するためのライザ部17
が設けられている。
The throttle body 5 is connected to an intake manifold 13 having branch pipes connected to each cylinder of the engine,
The intake manifold 13 is provided with an intake temperature sensor 15 that measures the temperature of intake air therein. On the bottom wall 13a of the intake manifold 13 before branching, there is a riser part 17 for circulating engine cooling water and heating the air-fuel mixture.
is provided.

19け周知慣例のエンジン本体であり、ピストン21と
シリンダ23とシリンダヘッド25とにより燃焼室27
が画成されていて、吸気弁29を介して炸焼室27に吸
入された混合気が点火プラグ31により着火される。シ
リンダ23の周囲fCはウォータジャケット33が形成
され、そのウォータジャケット33にエンジン冷却水が
循環されてシリンダ23を含む部品が冷却される。そし
て、シリンダブロック35の外壁にはウォータジャケッ
ト33内のエンジン冷却水温を測定するエンジン ・冷
却水温センサ37が設けられている7、−シリンダヘッ
ド250図示しない排気ボートにはエキゾーストマニホ
ルド39が接続され、その下流側に、排気ガス中の残留
酸素濃度を測定する02 センサ41が設けら才1てい
る。エキゾ−ストマニホルド39は、三元触媒コンノζ
−タ43金介して排気管45と接続されている。
This is a well-known conventional engine body, and a combustion chamber 27 is formed by a piston 21, a cylinder 23, and a cylinder head 25.
The air-fuel mixture is drawn into the ignition chamber 27 via the intake valve 29 and is ignited by the ignition plug 31. A water jacket 33 is formed around fC of the cylinder 23, and engine cooling water is circulated through the water jacket 33 to cool parts including the cylinder 23. An engine cooling water temperature sensor 37 for measuring the engine cooling water temperature in the water jacket 33 is provided on the outer wall of the cylinder block 35. An exhaust manifold 39 is connected to the cylinder head 250 and an exhaust boat (not shown). On the downstream side thereof, a sensor 41 for measuring the residual oxygen concentration in the exhaust gas is provided. The exhaust manifold 39 is a three-way catalyst cone
- It is connected to the exhaust pipe 45 through a 43-metal metal.

47はエンジン本体19に接続された変速装置であり、
その最終出力軸の回転数により車両の速度を測定する車
速センサ49が取付けられている。
47 is a transmission connected to the engine body 19;
A vehicle speed sensor 49 is attached to measure the speed of the vehicle based on the rotational speed of the final output shaft.

捷た、51はキースイッチ、53はイグナイタ、55は
ディストリビュータであり、ディストリビュータ55に
は、所定のクランク角度θ1毎にオン・オフ信号を出力
するNeセンサ57が設けられ、その出力信号によりエ
ンジン回転数と所定のクランク角度位置を知ることがで
き、才た、−ト記角度θ1よシ大きい角度θ2毎にオン
・オフ信号を出力するGセンサ59が設けられ、その出
力信号により気筒判別と上死点位置検出が行なわれる。
51 is a key switch, 53 is an igniter, and 55 is a distributor. The distributor 55 is provided with an Ne sensor 57 that outputs an on/off signal at every predetermined crank angle θ1, and the output signal controls the engine rotation. A G sensor 59 is provided, which outputs an on/off signal at each angle θ2, which is larger than the angle θ1, and the output signal is used to identify the cylinder. Dead center position detection is performed.

才た、60はバッテリを示づ−。60 indicates the battery.

制御回路61は、弁開度位置センサ2、アイドルスイッ
チ4、パワースイッチ6、吸気温センサ11、吸気温セ
ンサ15、エンジン冷却水温センサ37.02センサ4
1、車速センサ49、キースイッチ51.Neセンサ5
7、Gセンサ59およびバッテリ60とそれぞれ接続さ
れていて、弁開度信号S1、アイドル信号s2、パワー
(8号S3、吸気圧信号s4、吸気温信号s5、水温信
号S6、空燃比イg号s7、車速信号S8、イクニッシ
ョン信号S9、エンジン回転数信号s10、気が各セン
サから入力される。1だ、制御回路61は、燃料噴射弁
7とイグナイタ53にも接続されていて、所定の演算に
基づいて、燃料噴射信号S12および点火信号313會
出力する。
The control circuit 61 includes a valve opening position sensor 2, an idle switch 4, a power switch 6, an intake temperature sensor 11, an intake temperature sensor 15, an engine coolant temperature sensor 37.02 sensor 4
1, vehicle speed sensor 49, key switch 51. Ne sensor 5
7, are connected to the G sensor 59 and the battery 60, respectively, and are connected to the valve opening signal S1, idle signal s2, power (No. 8 S3, intake pressure signal s4, intake temperature signal s5, water temperature signal S6, air-fuel ratio Ig) s7, vehicle speed signal S8, ignition signal S9, engine speed signal s10, and air speed are input from each sensor.1.The control circuit 61 is also connected to the fuel injection valve 7 and the igniter 53, and performs a predetermined calculation. Based on this, a fuel injection signal S12 and an ignition signal 313 are output.

制御回路61は、第4図に示すように、各神機器を制御
する中央演算処理装置(CPU)61a、予め各41(
の載位やプログラムが書き込−1:扛だり一ドオンメモ
IJ(ROM)61b、演算過程の数値やフラグがPシ
ミ定の領域に功き込捷れるランダム“アクセスメモリ(
RA M ) (i 1 r、 、アナログ人力信号を
ディジタル信号に変換するAl1)コンバーク(八DC
)61d、各Jiltディジタル信号が入力され、各神
デイジタルイg号が出力される人lJjカインタフェー
ス(I / O) 61 e 、エンジン停止時ニ補助
′屯源から給電されて記憶ヶ保持するバンクアップメモ
リ(BU−4ΔΔ4 ) 6 ]、 f、及びこれら各
機器がそれぞれ接続されるパスライン61gから構成さ
れている。1だ、本実施例では吸気管圧力とエンジン回
転数とで定められた基本燃料噴射時間TPのマツプが予
めROMに記憶されている。
As shown in FIG. 4, the control circuit 61 includes a central processing unit (CPU) 61a that controls each device,
-1: Random "access memory" (ROM) 61b, where numerical values and flags in the calculation process are written to a predetermined area.
RAM) (i 1 r, , Al1) converting analog human input signals into digital signals (8 DC
) 61d, I/O interface (I/O) to which each Jilt digital signal is input and each digital signal G is output; 61e, Bank-up which is supplied with power from the auxiliary source and maintains memory when the engine is stopped. It is composed of a memory (BU-4ΔΔ4) 6], f, and a path line 61g to which each of these devices is connected. 1. In this embodiment, a map of the basic fuel injection time TP determined by the intake pipe pressure and the engine speed is stored in the ROM in advance.

上記のエンジンにおいては以下に示ツー手順に従って燃
料噴射弁から燃料が噴射される。1ず、エンジン回転数
信号S1により演算されたエンジン回転数Ne f読込
むと共に吸気管圧力信号S4に基づいて吸気管圧力PM
を読込む。次に、エンジン回転数Ne と吸気管圧力P
M、!:に基づいて、基本燃料噴射時間のマツプから2
次元補間法により基本燃料噴射時間TPk演′71−す
る。続いて、上記(1)式に基ついで燃料噴射時間TA
U’z求め、この燃料噴射時間TAUに相当する時間燃
料噴射弁を開いて燃料を噴射する。たたし、本実施例で
は1つの学習値T A U Gと1つの学習値KGが採
用され、学習値T AUGはスロットルスイッチのオン
オフ状態に拘らず全運転領域について上記(1)式に適
用され、学習値KGはスロットルスイツナ対フの全運転
領域について上記(11式に適用される。
In the above engine, fuel is injected from the fuel injection valve according to the following procedure. 1. First, read the engine speed Ne f calculated based on the engine speed signal S1, and calculate the intake pipe pressure PM based on the intake pipe pressure signal S4.
Load. Next, engine speed Ne and intake pipe pressure P
M,! 2 from the basic fuel injection time map based on :
The basic fuel injection time TPk is calculated by dimensional interpolation. Next, based on the above formula (1), the fuel injection time TA
U'z is determined, and the fuel injection valve is opened for a time corresponding to this fuel injection time TAU to inject fuel. However, in this embodiment, one learned value T AUG and one learned value KG are adopted, and the learned value T AUG is applied to the above equation (1) for all operating ranges regardless of the on/off state of the throttle switch. The learned value KG is applied to the above equation (11) for the entire operating range of the throttle switcher.

次に本発明の実施例について第5図および第6図?参照
して説明する。
Next, FIGS. 5 and 6 regarding embodiments of the present invention? Refer to and explain.

まず、クランク100において吸気絞り弁9がアイドル
位置にないかをアイドルスイッチのオフ状態から判断す
る。アイドルスイッチがオフのときに、ステップ101
において吸気管圧力PMが200 $1111 ]()
から400 mm Hyの范囲に人っているか、すなわ
ち吸気も圧力PMが学習領域内に入っているかを判断す
る。この吸気゛r〒圧力の範囲は定44.走雀状態での
吸気も出力を示している。また、平均値FAFΔ■の1
−れが全運転領域に16いて、略同−であることから、
定状走行−状態にのみ学習領域ケ定めている。吸気管圧
力F’ Mが学習領域内に入っているときはステップ1
03以上の学習条件を判断1〜で学習11斤の学シを杓
ない、吸気t1−圧力PMか学習領域内に入っていない
ときは学習1“ること在くその吐1次のルーチンへ進む
。−力、アイドルスイッチがオンのときはクランク10
2においてエンジン回転数Neが所定値(例えを1.1
 (100rpm)未ia’iでかつ吸気′前圧力PM
がノ”J+ ’iL値((9すえは、200iaHP)
’e越えているか否かを判断する。ステップ102の判
断が肖定の場合、すなわち通nこのアイドリングの場合
(・3ステップ103以下の学習条件を判断して学習値
の学習を行ない、ステップ102の一’l(I断が否定
の場合、うなわちクランギンク時やアイドルアップ喝等
の場合は学習ターることなく次のルーチンへ進む。
First, it is determined whether the intake throttle valve 9 of the crank 100 is in the idle position based on the off state of the idle switch. When the idle switch is off, step 101
Intake pipe pressure PM is 200 $1111] ()
It is determined whether there is a person within the range of 400 mm Hy, that is, whether the intake pressure PM is within the learning range. The range of this intake pressure is constant 44. Intake during sparrow racing also shows output. Also, 1 of the average value FAFΔ■
- Since there are 16 in all operating ranges and they are almost the same,
The learning area is defined only for the steady state running state. If intake pipe pressure F'M is within the learning range, step 1
Judging the learning conditions of 03 or above, do not use learning 11 in 1 to 1. If the intake t1-pressure PM is not within the learning range, proceed to the first routine of learning 1. .-power, crank 10 when idle switch is on
2, the engine speed Ne is a predetermined value (for example, 1.1
(100 rpm) Not ia'i and pre-intake pressure PM
GANO"J+'iL value ((9 Sue is 200iaHP)
'e is exceeded or not. If the judgment in step 102 is negative, that is, if the judgment is negative, the learning conditions in step 103 and below are judged and the learning value is learned, and if the judgment in step 102 is negative, In other words, in the case of cranking, idle up, etc., proceed to the next routine without learning.

ステップ103では02センサの出力16号に基ついて
空燃比が理論空燃比になるようにノイ〜ドハソクtbl
l mをしているか否かを旬陣[すゐ。フィー1バンク
制御中でない場合、1511−f、、ぼり一ン制御倉行
7.cつ−Cいる場合は、鼓’7!’+孝註7が行なわ
れることがらゐグこめ学習することなく次のルーテンへ
進み、フィードバンクtlill 1lij甲のと6は
ステップ′104でエンノン冷却水温T li WがL
1定値(2すえは、80“C)を越えでいるか否かを4
(+肋)る。冷却水r晶1゛HWがT91定値」状トの
ときにはエンジン1回転(幾中−C−4りるkめ学習を
行なわず、冷却水温’I” II〜Vが用矩値奮越える
と5はステップ105で吸気温センサによって4交出さ
れる吸気温T I(AかDi定4′偵囲内(を川えば4
0 ’C< ’j’ HA (90“′C)の温1隻で
あるか否か全判1ti1する。吸気温T HAが所定範
囲外の温度のときすなわち極低温時およびl・14温時
VCは学習を行なわず、吸気温THAが所定範囲内の温
度のときステップ106で空燃比フィードバック捕正係
数FAFがスキップしたか否かを判断し、スキップした
ときのみステップ107学習値の学習を行う。
In step 103, the air-fuel ratio is set to the stoichiometric air-fuel ratio based on the output No. 16 of the 02 sensor.
Check whether you are doing l m or not. If fee 1 bank control is not in progress, 1511-f, bank control warehouse line 7. If there are c-C, drum '7! ' + filial note 7 is performed, so the process proceeds to the next routine without learning the feed bank tlill 1lij, and in step '104, the ennon cooling water temperature T li W is set to L.
1 Check if it exceeds the constant value (2 is 80 "C")
(+ rib) Ru. When the cooling water temperature is at the T91 constant value, the engine rotates once (Ikuchu-C-4 Rirukme learning is not performed, and when the cooling water temperature II to V exceeds the standard value, the engine rotates 5 times. In step 105, if the intake temperature T I (A or Di constant 4') emitted by the intake temperature sensor is 4
0 'C <'j' HA (90"'C)" All tests are carried out to determine whether the temperature is 1. When the intake air temperature T HA is outside the specified range, that is, when the temperature is extremely low and when the temperature is l.14 VC. does not perform learning, and when the intake air temperature THA is within a predetermined range, it is determined in step 106 whether or not the air-fuel ratio feedback correction coefficient FAF has skipped, and only when it has skipped, the learned value is learned in step 107.

上記学習の一例を第6図の処理ルーチンVC基ついで説
明ブる。1ず、ステップ110において空燃比フィード
バック補正係数FAFが所に回スキップしまたか否かを
判断し、所定回ス・ヤツプしたときのみステップ111
で上記(2)式に基づいて平均値]” A F A V
を計算する。ここで、所定回スキップした後平均値を計
3↓するのは、オーブンループ制御であるリーン制個1
からフィードバック制御に移行した直後は、空燃比フィ
ードバック補正係数の変化が不安冗だからである。この
ため不安定な空燃比フィードバック補正係数は計算に用
いない。
An example of the above learning will now be explained based on the processing routine VC shown in FIG. 1. In step 110, it is determined whether the air-fuel ratio feedback correction coefficient FAF has skipped a certain number of times, and only when it has skipped a predetermined number of times, step 111 is performed.
Average value based on formula (2) above]” A F A V
Calculate. Here, after skipping a predetermined number of times, the average value is reduced by 3 in total, which is oven loop control.
This is because immediately after shifting from to feedback control, changes in the air-fuel ratio feedback correction coefficient are uncertain. Therefore, the unstable air-fuel ratio feedback correction coefficient is not used in calculations.

次のステップ112では、平均値F A F A Vが
1を越えているか否かを判断し、1を越えていればすな
わち空燃比が理論空燃比よりリーンであれば、ステップ
113でアイドルスイッチがオンか否かを判断し、アイ
ドルスイッチがオンのときにステップ114で学習値T
AUG’e所定J−4,(例えば、0.002 )増加
させ、アイド/L−ヌイッチがオフのときにステップ1
15で学習値KGi所定量(例えば、8)増加させる。
In the next step 112, it is determined whether the average value F A F A V exceeds 1. If it exceeds 1, that is, if the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the idle switch is turned on in step 113. It is determined whether the idle switch is on or not, and when the idle switch is on, the learned value T is set in step 114.
AUG'e predetermined J-4, (e.g. 0.002) increase, step 1 when Id/L-nitch is off.
15, the learning value KGi is increased by a predetermined amount (for example, 8).

一方、平均値FAFA’Vが1以下のときすなわち空燃
比が理論空燃比よυリッチのときは、ステップ116で
アイドルスイッチがオンか否かを判断し、アイドルスイ
ッチがオンのときにステップ117で学習値TAUG(
j所定量、(例えば、o、 o 02 )葦’fさせ、
アイドルスイッチがオフのとべにステップ118で学習
値KGを所定量(例えば、8)ξへヶさせる。
On the other hand, when the average value FAFA'V is less than 1, that is, when the air-fuel ratio is υ richer than the stoichiometric air-fuel ratio, it is determined in step 116 whether or not the idle switch is on. Learning value TAUG (
j predetermined amount, (e.g., o, o 02 ) reed'f;
While the idle switch is off, the learned value KG is increased to a predetermined amount (for example, 8) ξ in step 118.

上記のように学習された学習値はスロットルスイッチの
オンオフ状態に応じて前記(1)式に適用され、空燃比
が学習制御される。
The learning value learned as described above is applied to the equation (1) above according to the on/off state of the throttle switch, and the air-fuel ratio is learning-controlled.

なお、上記では吸気管圧力とエンジン回転数で基本燃料
噴射時間を定めると共に1つの州別噴射弁を用いたエン
ジンについて説明したが、本発明が適用されるエンジン
はこれに1叶られるものではなく、エンジン1回転当り
の吸入空気量とエンジン回転数とで基本燃料噴射時間を
定めるエンジンヤインテークマニホルドに突出するよう
各気伺毎に撚料唱射弁を備えたエンジンにも適用す/・
ことが可能であ不。
In addition, although the engine in which the basic fuel injection time is determined by the intake pipe pressure and engine speed and uses one state-specific injection valve has been described above, the engine to which the present invention is applied is not limited to this. The basic fuel injection time is determined by the amount of intake air per engine revolution and the engine speed.It also applies to engines equipped with twisted injection valves for each air intake that protrude into the engine intake manifold.
Is it possible?

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空燃比信号と補正係数FAFの変化に示す線図
、第2図は冷却水温と吸気温の久化を示す線図、第3図
は本発明が適用されるエンジ/の一例を示j概略図、第
4図は第3し1の制個;回路の一例を示すブロック図、
第5図は第1の発明の一実施例全示す流れ図、第6図は
第5し!lのステップ。 107の詳細を示す流れ1岡である。 7・・・灼料噴躬弁、9・・・吸気絞り弁、11・・圧
力センサ、15・・・吸気温センサ、41・・02セン
サ、49・・車速センサ、61・・・制御回路。 代理人 鵜 沼 辰 之 (ほか1名)
Figure 1 is a diagram showing changes in the air-fuel ratio signal and correction coefficient FAF, Figure 2 is a diagram showing changes in cooling water temperature and intake air temperature, and Figure 3 is an example of an engine to which the present invention is applied. Figure 4 is a block diagram showing an example of the circuit;
FIG. 5 is a flowchart showing an embodiment of the first invention, and FIG. 6 is a flowchart showing the entire embodiment of the first invention. l step. This is Flow 1 Oka showing the details of 107. 7... Caustic material injection valve, 9... Intake throttle valve, 11... Pressure sensor, 15... Intake temperature sensor, 41... 02 sensor, 49... Vehicle speed sensor, 61... Control circuit . Agent Tatsuyuki Unuma (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1) 機関負荷および機関回転数によって定まる基本
燃料噴射時間を排ガス中の残留酸素濃度を検出する02
センサの出力信号に基づいて得られる空燃比フィードバ
ック補正係数を用いて補正して混合気の空燃比が目標空
燃比になるようにフィードバック制御すると共に、前記
空燃比フィードバック補正係数の平均値が所定値に近づ
くよう学習する内燃機関の空燃比学習制御方法において
、吸気絞り弁がアイドル位置になくかつ機関負荷が所定
範囲内の領域で、フィードバック制御中でかつ吸気温が
所定範囲内の温度の条件が成立したとき学習することを
特徴とする内燃機関の空燃比学習制御方法。
(1) Basic fuel injection time determined by engine load and engine speed 02 Detecting residual oxygen concentration in exhaust gas
Feedback control is performed so that the air-fuel ratio of the air-fuel mixture becomes the target air-fuel ratio by correction using an air-fuel ratio feedback correction coefficient obtained based on the output signal of the sensor, and the average value of the air-fuel ratio feedback correction coefficient is a predetermined value. In an air-fuel ratio learning control method for an internal combustion engine, the air-fuel ratio learning control method for an internal combustion engine learns the air-fuel ratio to approach An air-fuel ratio learning control method for an internal combustion engine, characterized in that the learning is performed when the air-fuel ratio is established.
JP16789683A 1983-09-12 1983-09-12 Air-fuel ratio learning control method for internal-combustion engine Pending JPS6060231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16789683A JPS6060231A (en) 1983-09-12 1983-09-12 Air-fuel ratio learning control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16789683A JPS6060231A (en) 1983-09-12 1983-09-12 Air-fuel ratio learning control method for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6060231A true JPS6060231A (en) 1985-04-06

Family

ID=15858067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16789683A Pending JPS6060231A (en) 1983-09-12 1983-09-12 Air-fuel ratio learning control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6060231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251444A (en) * 1986-04-24 1987-11-02 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270244A (en) * 1975-12-10 1977-06-11 Nissan Motor Co Ltd Air and fuel rate control system in carburetter
JPS5272044A (en) * 1975-12-11 1977-06-16 Okikimi Sai Buoyancy induced prime moving method and prime mover
JPS5813130A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270244A (en) * 1975-12-10 1977-06-11 Nissan Motor Co Ltd Air and fuel rate control system in carburetter
JPS5272044A (en) * 1975-12-11 1977-06-16 Okikimi Sai Buoyancy induced prime moving method and prime mover
JPS5813130A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251444A (en) * 1986-04-24 1987-11-02 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH03271544A (en) Control device of internal combustion engine
US4528956A (en) Method of and apparatus for controlling air-fuel ratio and ignition timing in internal combustion engine
US6609059B2 (en) Control system for internal combustion engine
JPH0531646B2 (en)
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JPS6267252A (en) Air-fuel ratio controlling method in internal combustion engine for vehicles
JPS6060231A (en) Air-fuel ratio learning control method for internal-combustion engine
JPS5963330A (en) Method of controlling electrically controlled internal- combustion engine
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JPH0454814B2 (en)
JPS6060229A (en) Air-fuel ratio learning control method for internal-combustion engine
JP2559782Y2 (en) Ignition timing control device for internal combustion engine
JPS59176433A (en) Method of controlling fuel injection in internal- combustion engine
JPS6065245A (en) Air-fuel ratio controller for internal-combustion engine
JPS6075737A (en) Air/fuel ratio control method for internal-combustion engine
JPS6165046A (en) Method of controlling idle rotational speed of internal-combustion engine
JPS6069241A (en) Air-fuel ratio controlling method for internal-combustion engine
JPS6062641A (en) Air-fuel ratio control method for internal-combustion engine
JPS6090934A (en) Method of controlling fuel supply when internal- combustion engine is operated with its throttle valve being fully opened
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JPS6060230A (en) Air-fuel ratio learning control method for internal-combustion engine
JPS6073021A (en) Air-fuel ratio control for internal-combustion engine
JP3750081B2 (en) Control device for internal combustion engine
JPS62165555A (en) Air-fuel ratio control method for internal combustion engine