JPS6165046A - Method of controlling idle rotational speed of internal-combustion engine - Google Patents

Method of controlling idle rotational speed of internal-combustion engine

Info

Publication number
JPS6165046A
JPS6165046A JP18709084A JP18709084A JPS6165046A JP S6165046 A JPS6165046 A JP S6165046A JP 18709084 A JP18709084 A JP 18709084A JP 18709084 A JP18709084 A JP 18709084A JP S6165046 A JPS6165046 A JP S6165046A
Authority
JP
Japan
Prior art keywords
engine
temperature
rotational speed
combustion engine
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18709084A
Other languages
Japanese (ja)
Inventor
Akito Oonishi
明渡 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18709084A priority Critical patent/JPS6165046A/en
Publication of JPS6165046A publication Critical patent/JPS6165046A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent engine-stalls and extraordinary drops in idle rotational speed of an engine, by controlling the amount of intake-air such that it is increased in accordance with the temperature of cooling water during a predetermined period after start of the engine, and then the increment of it is gradually decreased after lapse of the predetermined period. CONSTITUTION:Upon starting of an internal combustion engine, if the temperature of cooling water exceeds a predetermined temperature (P1), the amount of intake-air is controlled to be increased during a predetermined period after start of the engine (P2). After lapse of the predetermined period (P3) the increment of amount of intake-air is gradually decreased (P4). It is possible to prevent the lowering of torque of the engine caused by vapor which is generated in a fuel pipe line upon starting at a high temperature so that engine stalls and abnormal drops in idle rotational speed of the engine may be prevented. With this arrangement, the idle rotational speed is prevented from unreasonably increasing so that a stable idle rotational speed may be maintained.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は内燃機関のアイドル回転故制聞装置に関し、特
にアイドル回転数制御を吸入空気量の増減制御によって
実行し、高温始動時のアイドル回転数の低下、変動を防
止する、内燃機関のアイドル回転数制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an idle rotation fault suppression device for an internal combustion engine. The present invention relates to an idle speed control device for an internal combustion engine that prevents a decrease or fluctuation in speed.

[従来技術] スロットル弁のバイパス路に設けたアイドルスピードコ
ントロールバルブ(以下l5CVという)の開度を電気
的に制御することにより、スロットル弁をバイパスして
流れる空気量を制御して内燃機関のアイドル時の回転数
を制(a′llTiるアイドル回転数制御では、一般に
アイドル回転数をエンジンの暖礪状態或は運転条件に応
じて予め設定された目標回転数に一致させるように[S
CVの開度を利口■している。
[Prior art] By electrically controlling the opening degree of an idle speed control valve (hereinafter referred to as 15CV) provided in the bypass path of the throttle valve, the amount of air flowing bypassing the throttle valve is controlled to control the idle speed of the internal combustion engine. [S
The opening of the CV is clever ■.

[発明が解決しようとする問題点1 しかしながら、内燃機関が高速又は高負荷運転を長時間
行なった状態で、一旦停止し、高温状態で始動を行なう
場合、冷却ファンの停止などによってエンジンの温度が
上昇し、これによって燃料配管内の燃利渇度が異常に上
昇するために燃オ゛31配管中にベーパが発生する。し
/=がって高温状態の再始動時には燃料密度が低下し氾
合気の空燃比が極度に稀薄となってトルクが低下し、ア
イドル時の回転数が極めて不安定となり、エンストや回
転数の異常低下を生ずる問題があった。
[Problem to be Solved by the Invention 1] However, when an internal combustion engine is operated at high speed or under a high load for a long period of time and is then stopped and then started at a high temperature, the temperature of the engine may rise due to reasons such as stopping the cooling fan. As a result, the fuel thirst level in the fuel pipe increases abnormally, and vapor is generated in the fuel pipe 31. Therefore, when restarting in a high temperature condition, the fuel density decreases, the air-fuel ratio of the flooded air becomes extremely lean, the torque decreases, the rotation speed at idle becomes extremely unstable, the engine stalls, and the rotation speed decreases. There was a problem that caused an abnormal decrease in

そこで、従来、特開昭56−81230号公報により、
燃料温度を検出し、燃料温度が設定値より高温の時、始
動時から一定時間はこの燃料温度に応じて燃料噴射量を
増量補正することによってベーパ発生に起因した始動性
の悪化や始動後の運転性の悪化を防止することが起案さ
れたが、燃料配管にベーパが発生していない場合には過
度に空燃比をリッチにし、排ガス中のエミッションを悪
化させたり、燃費を悪化する問題があった。
Therefore, according to Japanese Patent Application Laid-Open No. 56-81230,
The fuel temperature is detected, and when the fuel temperature is higher than the set value, the amount of fuel injection is increased for a certain period of time from the time of starting, depending on the fuel temperature. It was proposed to prevent deterioration of drivability, but if there is no vapor generated in the fuel piping, the air-fuel ratio becomes excessively rich, causing problems such as worsening emissions in exhaust gas and worsening fuel efficiency. Ta.

[問題を解決するための手段] 本発明は、上記の点にかんがみなされたもので、以下の
ように構成することにより上記の問題を解決している。
[Means for Solving the Problems] The present invention has been made in consideration of the above points, and solves the above problems by having the following configuration.

即ち本発明の内燃機関のアイドル回転数υj卯方法は、
第1図に示す如く、 内燃機関の冷却水温を検出し、該冷却水温を1つのパラ
メータとして吸入空気量を制御する内燃機関のアイドル
回転数制御方法において、上記内燃機関の始動時に、上
記冷却水(温が所定温度以上である場合(Pl)には、 始動後所定時間は上記冷却水温に応じて上記吸入空気量
を増聞制ill (P2) L、所定時間経過後(P3
)は上記吸入空気量の増量分を徐々に減m(P4)する
ことを要旨としており、これによって高温始動時のベー
パ発生に起因したトルク低下を防止し、開開回転数の低
下あるいは停止を防止することができる。
That is, the method for determining the idle speed υj of an internal combustion engine according to the present invention is as follows:
As shown in FIG. 1, in a method for controlling the idle speed of an internal combustion engine in which a cooling water temperature of the internal combustion engine is detected and the amount of intake air is controlled using the cooling water temperature as one parameter, when the internal combustion engine is started, the cooling water is (If the temperature is above the predetermined temperature (Pl), the intake air amount is increased according to the cooling water temperature for a predetermined time after startup (P2) L, after a predetermined time (P3).
) is to gradually reduce the increase in the amount of intake air (P4), thereby preventing a decrease in torque due to vapor generation at high temperature startup, and reducing or stopping the opening/opening rotation speed. It can be prevented.

[実施例] 以下に本発明を実施例を挙げて図面と共に説明する。[Example] The present invention will be described below with reference to examples and drawings.

まず第2図は本発明方法が適用される実施例の四すイク
ル四気筒内燃機関(エンジン)及びその周辺装置を表わ
す概略系統図である。
First, FIG. 2 is a schematic system diagram showing a four-stroke, four-cylinder internal combustion engine and its peripheral equipment in an embodiment to which the method of the present invention is applied.

1はエンジン、2はピストン、3は点火プラグ、4は排
気マニホールド、5は排気マニホールド4に備えられ、
排ガス中の残存酸素濃度を検出する酸素センサ、6は各
気筒に対してそれぞれ設けられ燃料を噴射する燃料噴射
弁、7は吸気マニホールド、7aは吸気マニホールド7
の接続される吸気ポート、7bは吸気バルブ、8は吸気
マニホールド7に備えられ、エンジン本体8に送られる
吸入空気の1度を検出する吸気温センサ、9はエンジン
の冷却水温を検出する水温センサ、10はスロットルバ
ルブ、11はスロットルバルブ10に連動し、スロット
ルバルブ10の開度に応じた信号を出力するスロットル
ポジションセンサ、12はスロットルバルブ10を迂回
する空気通路であるバイパス路、13はバイパス路12
の間口面積を制御してアイドル回転数を制御するアイド
ルスピードコントロールバルブ(ISCV)、14は吸
入空気量を測定するエア70−メータ、15は吸入空気
量を浄化するエアクリーナをそれぞれ表わしている。こ
こで上記18cV13は本実施例にて本発明のアイドル
回転数動制御方法を実現するために用いられるものであ
って、パルスデューティ比を制御された制御信号に応じ
て駆動され、バイパス路12の開口面積を制御する電磁
ソレノイドを備えている。
1 is an engine, 2 is a piston, 3 is a spark plug, 4 is an exhaust manifold, 5 is provided in the exhaust manifold 4,
An oxygen sensor detects the residual oxygen concentration in exhaust gas, 6 is a fuel injection valve provided for each cylinder and injects fuel, 7 is an intake manifold, 7a is an intake manifold 7
7b is an intake valve, 8 is an intake air temperature sensor provided in the intake manifold 7 and detects 1 degree of intake air sent to the engine body 8, and 9 is a water temperature sensor that detects the engine cooling water temperature. , 10 is a throttle valve, 11 is a throttle position sensor that is linked to the throttle valve 10 and outputs a signal according to the opening degree of the throttle valve 10, 12 is a bypass passage that is an air passage that bypasses the throttle valve 10, and 13 is a bypass Road 12
An idle speed control valve (ISCV) controls the idle speed by controlling the frontage area, 14 represents an air meter 70 that measures the amount of intake air, and 15 represents an air cleaner that purifies the amount of intake air. Here, the above-mentioned 18cV13 is used in this embodiment to realize the idle rotation speed dynamic control method of the present invention, and is driven according to a control signal whose pulse duty ratio is controlled. Equipped with an electromagnetic solenoid that controls the opening area.

また、16は点火コイルを億え点火に必要な高電圧を出
力するイグナイタ、17は図示していないクランク軸に
連動し上記イグナイタ16で発生した高電圧を各気筒の
点火プラグ3に分配供給するディストリビュータ、18
はディストリビュータ17内に取り付けられ、ディトリ
ピータ17の1回転、即ちクランク軸2回転に24発の
パルス信号を出力する回転角センサ、19はディストリ
ビュータ17の1回転に1発のパルス信号を出力する気
筒判別センサ、20は電子制御回路をそれぞれ表わして
いる。
Further, 16 is an igniter that connects the ignition coil and outputs the high voltage necessary for ignition, and 17 is linked to a crankshaft (not shown) and distributes the high voltage generated by the igniter 16 to the spark plugs 3 of each cylinder. distributor, 18
19 is a rotation angle sensor that is installed in the distributor 17 and outputs 24 pulse signals for one revolution of the detripter 17, that is, two revolutions of the crankshaft; and 19 is a cylinder that outputs one pulse signal for one revolution of the distributor 17. The discrimination sensor and 20 each represent an electronic control circuit.

次に第3図は電子制御回路20のブロック図を表わして
いる。
Next, FIG. 3 shows a block diagram of the electronic control circuit 20. As shown in FIG.

30は各センサから出力されるデータを制御プログラム
に従って入力及び演算すると共に、燃料噴射弁6、イグ
ナイタ16等の各種装置を作動制御するための処理を行
なうセントラルブロセッシングユニット(CPU)、3
1は前記制岨プログラムや点火進角演算のためのマツプ
等のデータが格納されるリードオンリメモリ(ROM)
、32は電子制御回路20に入力されるデータや演算制
御2iIに必要なデータが一時的に読み書きされるラン
ダムアクセスメモリ(RAM)、33は図示せぬキース
イッチがオフされても以後のエンジン作動に必要なデー
タ等を保持するよう、バッテリによってバックアップさ
れたバックアップランダムアクセスメモリ(バックアッ
プRAM)、34は図示していない入力ポートや必要に
応じて設けられる波形整形回路、各センサの出力信号を
CPU30に選択的に出力するマルチプレクサ、アナロ
グ信号をデジタル信号に変換するA/D変換器、等か備
えられた入力部をそれぞれ表わしている。35は図示し
ていない入力ポート等の他に出力ボートが設けられその
他必要に応じて燃料噴射弁6、イグナイタ16等をCP
U30の制御信号に従って駆動する駆動回路等が備えら
れた入・出力部、36はCPU30.ROM31等ノ各
素子及ヒ入力部34人・出力部35を結び各データが送
られるパスラインをそれぞれ表わしている。
A central processing unit (CPU) 30 inputs and calculates data output from each sensor according to a control program, and performs processing to control the operation of various devices such as the fuel injection valve 6 and the igniter 16.
1 is a read-only memory (ROM) in which data such as the control program and a map for calculating the ignition advance angle are stored.
, 32 is a random access memory (RAM) in which data input to the electronic control circuit 20 and data necessary for the arithmetic control 2iI are temporarily read and written; 33 is a random access memory (RAM) in which data input to the electronic control circuit 20 and data necessary for the arithmetic control 2iI is temporarily read/written; A backup random access memory (backup RAM) backed up by a battery is used to store data necessary for the CPU 30, and 34 is an input port (not shown), a waveform shaping circuit provided as necessary, and an output signal from each sensor. Each of the figures represents an input section equipped with a multiplexer for selectively outputting signals, an A/D converter for converting an analog signal into a digital signal, and the like. 35 is provided with an output port in addition to an input port (not shown), and a fuel injection valve 6, an igniter 16, etc. are connected to the CP as necessary.
An input/output section 36 is provided with a drive circuit etc. that is driven according to a control signal from the CPU 30. The path lines connecting each element such as the ROM 31, the input section 34, and the output section 35 and through which each data is sent are shown.

電子i:、it 罪回路20は、各センサから入力され
る検出データを取り込み、運転条件に応じた最適燃料噴
射量や点火時期を演算すると共に、アイドル時には、予
め運転状態に応じて設定された目標回転数にエンジン回
転数を一致させるように1BII In信号のパルスデ
ューティ比を求め、+5CV13にこの制御信号を出力
してl5CV13の開度を制御し、アイドル回転数を制
御する。
The electronic i:, it sin circuit 20 takes in the detection data input from each sensor, calculates the optimal fuel injection amount and ignition timing according to the driving conditions, and when idling, it calculates the optimal fuel injection amount and ignition timing according to the driving conditions. The pulse duty ratio of the 1BII In signal is determined so that the engine speed matches the target speed, and this control signal is output to +5CV13 to control the opening degree of 15CV13 and control the idle speed.

次に、第4図、第5図のフローチャートを参照してCP
U30が実行するアイドル回転数制御処理ルーチンを説
明する。
Next, with reference to the flowcharts in Figures 4 and 5, CP
The idle rotation speed control processing routine executed by U30 will be explained.

第4図はメインルーチンの一部を示し、このルーチンに
入ると、まず、ステップ100にて、回転角センサ18
から送られるパルス信号をカウントしてエンジン回転数
NEを算出する。次に、ステップ110で始動時に必ず
セットされるフラグX5TAがセットの状態か否かを判
定し、始動直後でこれがセット状態の時にはステップ1
20に進み、アイドル時のエンジン回転数NEが400
[rp、m、’ ]以上か否かを判定し、エンジン回転
数NEが400 [rJ)JO,]に達するまではステ
ップ130〜150を実行する。
FIG. 4 shows a part of the main routine. When entering this routine, first, in step 100, the rotation angle sensor 18 is
The engine rotation speed NE is calculated by counting the pulse signals sent from the engine. Next, in step 110, it is determined whether or not the flag X5TA, which is always set at the time of startup, is in the set state.
Proceed to step 20 and the engine speed NE at idle is 400.
It is determined whether or not the engine rotational speed NE reaches 400 [rJ)JO,], and steps 130 to 150 are executed.

即ち、まずステップ130にてフラグX5TAをセ°ッ
トしてステップ140に移行し、始動後の経過時間をカ
ウントするカウンタを0秒にリセットし、ステップ15
0にてl5CV13の制御信号のデユーティ比りの増量
補正項となる高温時のデユーティ比DHOT [%丁を
ROM31に記憶した第6図に示すようなマツプから冷
却水温をパラメータとして求めるといった一連の処理を
実行する。従って、第6図のマツプを表わすグラフにお
いては、冷却水温が80[”C1以上の場合に、上限を
20%として増量補正のデユーティ比DHOTが設定さ
れていることから、上記ステップ150においては冷却
水温が8.0[℃]以上の高温始動時にその温度に応じ
たデユーティ比の値が認められ、その値がRA〜132
の所定エリア内に格納されることとなる。
That is, first, in step 130, flag
A series of processes such as determining the cooling water temperature as a parameter from a map as shown in FIG. 6 in which the duty ratio DHOT [%] is stored in the ROM 31 and is an increase correction term for the duty ratio of the control signal of l5CV13 at 0. Execute. Therefore, in the graph representing the map of FIG. 6, when the cooling water temperature is 80["C1 or higher, the duty ratio DHOT for the increase correction is set with the upper limit of 20%, so in step 150, the cooling water is When starting at a high temperature when the water temperature is 8.0 [℃] or higher, a duty ratio value corresponding to that temperature is recognized, and that value is RA ~ 132
will be stored within a predetermined area.

一方上記ステップ120にて、エンジン回転数NEが4
00 [1:l)、m、 1以上と判定された時には、
ステップ170に進み、フラグX5TAをリセットして
本ルーチンの処理を扱け、また上記ステップ101にて
フラグがリセット状態と判定された時には、続くステッ
プ160に進みエンジン回転数NEが300 [r、l
)、11. ] 以上カ否カヲ判定シ、エンジン回転数
NEが300 [r、p、m、 ]未満のときには上記
と同様にステップ130〜150を実行し、増量補正項
のデユーティ比DHOTを算出する。
On the other hand, in step 120, the engine speed NE is 4.
00 [1:l), m, When judged as 1 or more,
Proceeding to step 170, the flag X5TA is reset to handle the processing of this routine, and when it is determined in step 101 that the flag is in the reset state, the process proceeds to step 160, where the engine speed NE is 300 [r, l
), 11. ] If the engine speed NE is less than 300 [r, p, m, ], steps 130 to 150 are executed in the same manner as above, and the duty ratio DHOT of the increase correction term is calculated.

これにより、高温始動時にエンストを起こし、フラグX
5TAがリセットのまま始動した場合も対処することが
できる。一方ステップ160にてエンジン回転数NEが
300 [r、l)、m、 ]以上である旨判断すると
上記ステップ170の処理を実行して本ルーチンの処理
を抜ける。
This causes the engine to stall when starting at a high temperature, and the flag
It is also possible to deal with the case where the 5TA is started without being reset. On the other hand, if it is determined in step 160 that the engine speed NE is 300 [r, l), m, ] or more, the process in step 170 is executed and the process exits from this routine.

次に第5図はクランク軸の180 [’ CAI毎に割
込む割込みルーチンを示し、このルーチンではl5CV
13の制御信号に、l5CV13の開度、つまり吸入空
気量に対応する制御量として付与されるパルスデューテ
ィ比りが算出される。
Next, FIG. 5 shows an interrupt routine that interrupts every 180 [' CAI of the crankshaft.
The pulse duty ratio given to the control signal of 13 as a control amount corresponding to the opening degree of l5CV13, that is, the amount of intake air is calculated.

このルーチンに入ると、先ず、ステップ200を実行し
、理水デユーティ比DQを冷却水温とエンジン回転数N
Eとをパラメータとして算出し、その後ステップ210
に進み始動時からの時間をカウントするカウンタの値C
3TAが2秒に達しているか否かを判定し、2秒前であ
ればステップ250にジャンプし、上記ステップ200
にて求められた基本デユーティ比Doに前記第4図のメ
インルーチンのステップ150で算出した高温始動時の
増量補正項のデユーティ比DHOTを加篩して最終的な
パルスデューティ比りを算出する。
When entering this routine, first, step 200 is executed, and the water duty ratio DQ is calculated based on the cooling water temperature and the engine rotation speed N.
E as a parameter, and then step 210
Counter value C that counts the time since startup
It is determined whether 3TA has reached 2 seconds or not, and if it is before 2 seconds, jumps to step 250, and executes step 200 above.
The final pulse duty ratio is calculated by adding the duty ratio DHOT of the increase correction term at the time of high temperature start calculated in step 150 of the main routine of FIG. 4 to the basic duty ratio Do obtained in step 1.

一方、ステップ210で、始動後2秒に達した時、次の
ステップ220に進み増量補正IDHOTから0.1[
%]を減算し、ステップ230にてこの増量補正項D 
HCATが0以上か否かを判定し増量補正項DHOTが
0未満となった時にはステップ240でこれをOとし、
他の場合にはそのままステップ250に進み、基本デユ
ーティ比DOにその増量補正項DHOTを加算しての最
終的なパルスデューティ比りを算出する。このように算
出されたパルスデューティ比りは入・出力部35のカウ
ンタにセットされ、l5CV13に出力される制御信号
(パルス信号)に制御量として付与され、l5CV13
はパルスデューティ比りに基づきその開度が制御され、
冷却水温が80[”C1以上の高温始動時にはl5CV
13の開度が増大して吸入空気量を増大するように制御
が行なわれ、高温時のベーパ発生によるトルク低下が防
止される。また、ステップ220が繰り返し実行される
ことによりこのような吸入空気量増量制器は高温始動か
ら2秒経過後、徐々に増量分を少な(するように制御が
行なわれ、冷却ファンの回転により始動後はエンジン温
が徐々に低下することもあって、アイドル回転数が高温
始動時に急激に上昇することは防止される。
On the other hand, in step 210, when it reaches 2 seconds after starting, the process proceeds to the next step 220, and from the increase correction IDHOT 0.1 [
%], and in step 230, this increase correction term D
It is determined whether HCAT is 0 or more, and when the increase correction term DHOT is less than 0, it is set to O in step 240,
In other cases, the process directly proceeds to step 250, and the final pulse duty ratio is calculated by adding the increase correction term DHOT to the basic duty ratio DO. The pulse duty ratio calculated in this way is set in the counter of the input/output section 35, and is given as a control amount to the control signal (pulse signal) output to l5CV13.
The opening degree is controlled based on the pulse duty ratio,
15CV when starting at a high temperature when the cooling water temperature is 80 [C1 or higher]
13 is increased to increase the amount of intake air, thereby preventing torque from decreasing due to vapor generation at high temperatures. Furthermore, by repeatedly executing step 220, such an intake air amount increase control device is controlled to gradually reduce the amount of increase after 2 seconds have passed from the high temperature startup, and the cooling fan rotates to start the intake air amount. After that, the engine temperature gradually decreases, preventing the idle speed from increasing rapidly during a high temperature start.

なお、上記の実施例では電磁ソレノイド式のISC■の
開度を制御信号のパルスデューティ比で制御したがステ
ップモータを使用するl5CVではステップ数を演算し
ステップ数によりrscvの開度を上記同様に制御して
吸入空気量を1llHすることになる。
In addition, in the above embodiment, the opening degree of the electromagnetic solenoid type ISC■ is controlled by the pulse duty ratio of the control signal, but in the 15CV using a step motor, the number of steps is calculated and the opening degree of rscv is controlled according to the number of steps in the same way as above. The amount of intake air is controlled to be 1 11H.

[発明の効果] 以上説明したように、本発明の内燃磯関のアイドル回転
数制御方法によれば、高温始動時に吸入空気量を一定時
間増量制御し、その後徐々にその増量分を減少させるた
め、高温始動時に燃料配管中に発生するベーパに起因し
たアイドル時のトルク低下を防止して、エンストやアイ
ドル回転数の異常低下を防止することができる。また、
この時、アイドル回転数を無意味に上昇させず、安定し
たアイドル回転数を維持することができる。
[Effects of the Invention] As explained above, according to the internal combustion Isoseki idle speed control method of the present invention, the intake air amount is controlled to increase for a certain period of time at the time of high temperature startup, and then the increased amount is gradually decreased. It is possible to prevent a torque drop during idling due to vapor generated in the fuel pipe during a high-temperature start, thereby preventing engine stalling and an abnormal drop in idling speed. Also,
At this time, it is possible to maintain a stable idle speed without increasing the idle speed pointlessly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図乃至第6図は本発明の
実施例を示し、第2図は本発明方法が適用される内燃開
開の制御系を含む概略構成図、第3図は電子制御回路の
ブロック図、第4図及び第5図は電子制御回路の動作を
示すフローチャート、第6因は冷却水温と増徴補正項の
デユーティ比DHOTの関係を示すグラフである。 9・・・水温センサ  12・・・バイパス路13・・
・l5CV    20・・・電子制郊回路第4図 第5図
FIG. 1 is a block diagram of the present invention, FIGS. 2 to 6 show embodiments of the present invention, and FIG. 2 is a schematic block diagram including an internal combustion opening/closing control system to which the method of the present invention is applied. 3 is a block diagram of the electronic control circuit, FIGS. 4 and 5 are flowcharts showing the operation of the electronic control circuit, and the sixth factor is a graph showing the relationship between the cooling water temperature and the duty ratio DHOT of the additive correction term. 9...Water temperature sensor 12...Bypass path 13...
・l5CV 20...Electronic suburban circuit Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 内燃機関の冷却水温を検出し、該冷却水温を1つのパラ
メータとして吸入空気量を制御する内燃機関のアイドル
回転数制御方法において、 上記内燃機関の始動時に、上記冷却水温が所定温度以上
である場合には、 始動後所定時間は上記冷却水温に応じて上記吸入空気量
を増量制御し、 所定時間経過後は上記吸入空気量の増量分を徐々に減量
する、 ことを特徴とする内燃機関のアイドル回転数制御方法。
[Scope of Claims] A method for controlling an idle rotation speed of an internal combustion engine, which detects a cooling water temperature of the internal combustion engine and controls an intake air amount using the cooling water temperature as one parameter, wherein when the internal combustion engine is started, the cooling water temperature is If the temperature is above a predetermined temperature, the intake air amount is controlled to increase according to the cooling water temperature for a predetermined time after startup, and after the predetermined time has elapsed, the increase in the intake air amount is gradually reduced. A method for controlling the idle speed of an internal combustion engine.
JP18709084A 1984-09-05 1984-09-05 Method of controlling idle rotational speed of internal-combustion engine Pending JPS6165046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18709084A JPS6165046A (en) 1984-09-05 1984-09-05 Method of controlling idle rotational speed of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18709084A JPS6165046A (en) 1984-09-05 1984-09-05 Method of controlling idle rotational speed of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6165046A true JPS6165046A (en) 1986-04-03

Family

ID=16199928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18709084A Pending JPS6165046A (en) 1984-09-05 1984-09-05 Method of controlling idle rotational speed of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6165046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244870A2 (en) * 1986-05-08 1987-11-11 Mitsubishi Denki Kabushiki Kaisha Idle revolution control device for internal combustion engine
JPS63140844A (en) * 1986-12-03 1988-06-13 Fuji Heavy Ind Ltd Idling speed controller
JPH0371148U (en) * 1989-11-15 1991-07-18
JP2016160781A (en) * 2015-02-27 2016-09-05 トヨタ自動車株式会社 Hybrid vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195041A (en) * 1982-05-08 1983-11-14 Honda Motor Co Ltd Feed-back control device of idling speed of internal-combustion engine
JPS59103926A (en) * 1982-12-03 1984-06-15 Toyota Motor Corp Air-fuel ratio control method of internal-combustion engine at its restarting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195041A (en) * 1982-05-08 1983-11-14 Honda Motor Co Ltd Feed-back control device of idling speed of internal-combustion engine
JPS59103926A (en) * 1982-12-03 1984-06-15 Toyota Motor Corp Air-fuel ratio control method of internal-combustion engine at its restarting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244870A2 (en) * 1986-05-08 1987-11-11 Mitsubishi Denki Kabushiki Kaisha Idle revolution control device for internal combustion engine
JPS63140844A (en) * 1986-12-03 1988-06-13 Fuji Heavy Ind Ltd Idling speed controller
JPH0371148U (en) * 1989-11-15 1991-07-18
JP2016160781A (en) * 2015-02-27 2016-09-05 トヨタ自動車株式会社 Hybrid vehicle

Similar Documents

Publication Publication Date Title
US4653452A (en) Method and apparatus for controlling fuel supply of internal combustion engine
US10662885B2 (en) Control device for internal combustion engine
JPH04353233A (en) Programmed fuel injection device for internal combustion engine
US4688534A (en) Idling speed control device of an internal combustion engine
JPS6165046A (en) Method of controlling idle rotational speed of internal-combustion engine
JPH0465227B2 (en)
JPH0536622B2 (en)
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPH0720361Y2 (en) Idle adjusting device for internal combustion engine
JP2749138B2 (en) Combustion abnormality detection device for internal combustion engine
JPS61155638A (en) Method for controling idle rotating number
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JPS6210433A (en) Control method for idle speed in internal-combustion engine
JP2006348776A (en) Engine control device and engine control method
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JPS611842A (en) Idling-up control of internal-combustion engine
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine
JPS61215428A (en) Electronic fuel injection controller
JPH0650076B2 (en) Intake air amount control method for internal combustion engine with supercharger
JPS6365144A (en) Fuel control device for electronic fuel injection type engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPS60209644A (en) Fuel injection control device for internal-combustion engine
JPS61118544A (en) Fuel injection control for internal-combustion engine
JPS6123841A (en) Air-fuel ratio controlling method in internal-combustion engine
JPH0461178B2 (en)