JPS59163836A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS59163836A
JPS59163836A JP58038483A JP3848383A JPS59163836A JP S59163836 A JPS59163836 A JP S59163836A JP 58038483 A JP58038483 A JP 58038483A JP 3848383 A JP3848383 A JP 3848383A JP S59163836 A JPS59163836 A JP S59163836A
Authority
JP
Japan
Prior art keywords
cell
well
basic
wiring
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038483A
Other languages
Japanese (ja)
Other versions
JPH0316790B2 (en
Inventor
Hiroshi Hara
央 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58038483A priority Critical patent/JPS59163836A/en
Priority to DE8484301523T priority patent/DE3474485D1/en
Priority to EP19840301523 priority patent/EP0119059B1/en
Publication of JPS59163836A publication Critical patent/JPS59163836A/en
Publication of JPH0316790B2 publication Critical patent/JPH0316790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To prevent a semiconductor integrated circuit from generation of the latch-up phenomenon by a method wherein electric power source lines are arranged to the fundamental cells of CMOS structure as to contact with the substrate layers of respective regions in the neighborhood of the boundary between the n-channel element region and the p-channel element region. CONSTITUTION:A p<+> type layer 34 and an n<+> type layer 36 to connect a p-well 32 and an n type Si substrate 31 to electric power source lines VSS, VDD are provided in the neighborhood of the boundary between respective element regions. When a transistor Tn is made to ON according to an outside noise current, the collector current thereof flows in the n type Si substrate 31, while the current thereof is fed effectively from the n<+> type layer 36 provided adjoining to the p-well 32. Accordingly, a voltage drop according to laterally directional resistance Rn is small, and forward bias to a transistor Tp is small. Therefore, because the positive feedback gain of a parasitic transistor circuit is small, the latch-up phenomenon is hard to be generated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、マスタースライス方式の半導体集積回路に係
り、特にCMO8構造の基本セル配列を用いてゲートア
レイを構成する半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a master slice type semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit in which a gate array is constructed using a basic cell arrangement of a CMO8 structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年の半導体集積回路(LSI)技術の進歩は目覚しく
、メモリやマイコンに代表される論理用LSIは急激な
大規模化をとげている。この結果、各種電子機器システ
ムのLSI化が進められ、電子機器システムの高性能化
、化価格化、軽量小型化、高信頼性化をもたらしている
Semiconductor integrated circuit (LSI) technology has made remarkable progress in recent years, and logic LSIs, such as memories and microcomputers, are rapidly increasing in scale. As a result, the use of LSI in various electronic equipment systems is progressing, resulting in higher performance, lower cost, lighter weight, smaller size, and higher reliability of electronic equipment systems.

各種機器システムのLSI化の要求は高まる一方であり
、この要求に応えるためにはメモリやマイコン等の汎用
品の大規模化だけでなく、各種機器システムに特有の機
能をもつ電子回路部のLSI化も同時に重要になってき
ている。このような機器システムに特有の電子回路部は
当然のことながら汎用のLSIでは実現が困難なもので
、実現できたとしてもLSIの利点を発揮しにくい。こ
のため、機器システム産業を発展させるためにシステム
に専用な部分のLSI化の要求は強く、これに応えるの
も半導体企業の重要な役割であった。
The demand for LSI in various equipment systems is increasing, and in order to meet this demand, it is not only necessary to increase the scale of general-purpose products such as memory and microcontrollers, but also to increase the scale of LSI of electronic circuit parts with functions specific to various equipment systems. At the same time, compatibility is also becoming important. It goes without saying that such an electronic circuit section specific to a device system is difficult to implement using a general-purpose LSI, and even if it could be implemented, it would be difficult to demonstrate the advantages of an LSI. Therefore, in order to develop the equipment system industry, there was a strong demand for LSI parts to be used exclusively for systems, and it was an important role for semiconductor companies to respond to this demand.

しかし周知のように、半導体素子特にLSIは量産化に
よって低価格化を実現できるものである。各種機器シス
テムに特有の部分のLSI化は当然のことながら少量多
品種製品を作るこ槍 とになり、LSI開発に必要な膨大な開発賞を少量のL
SIで負担する結果、専用LSIの高価格化を招いてい
た。
However, as is well known, the cost of semiconductor devices, especially LSIs, can be reduced through mass production. The conversion of specific parts of various device systems into LSIs naturally makes it necessary to produce a wide variety of products in small quantities.
As a result of paying for the SI, the price of the dedicated LSI increased.

このような状況で生まれたのがいわゆるマスタースライ
ス方式によるゲートアレイである。
A gate array based on the so-called master slice method was born under these circumstances.

ゲートアレイの製造工程はマスタ一工程とパーソナライ
ズ工程の2つに分かれる。
The gate array manufacturing process is divided into two processes: a master process and a personalization process.

第1図はマスタ一工程を終えた半導体テップ(マスター
テップ)の表面を示す概略図である。
FIG. 1 is a schematic diagram showing the surface of a semiconductor tip (master tip) after completing one mastering process.

チップ中央部には複数のセル列1(’I+12+・・・
、In)が配列形成されていて、これが論理回路を構成
する主要素である。各セル列1はそれぞれ複数の基本セ
ルの配列からなる。各セル列1の間には、後のパーソナ
ライズ工程で回路を特化するための配線を施す配線領域
2が設けられている。またテップ周辺には外部からの入
力信号を受は入れるための入力回路と外部へ出力信号を
出すための出力回路を構成するl710セル3がセル列
1を取り囲むように配列形成され、更にその外側にボン
ディング・パッド4が配列形成されている。
In the center of the chip, there are a plurality of cell rows 1 ('I+12+...
, In) are arranged in an array, which are the main elements constituting the logic circuit. Each cell column 1 consists of an array of a plurality of basic cells. Between each cell row 1, a wiring region 2 is provided where wiring is provided for specializing the circuit in a later personalization step. In addition, around the step, 1710 cells 3, which constitute an input circuit for receiving an input signal from the outside and an output circuit for outputting an output signal to the outside, are arranged so as to surround the cell row 1, and further outside the cell row 1. Bonding pads 4 are formed in an array.

セル列1を構成する基本セルはまた複数の素子からなる
ものであり、その構成法にはいくつかの方法がある。0
MO8構造を用いた基本セル9 のパ致−ン例を第2図に示し、その等価回路を第3図に
示す。この基本セルは、n型St  基板に形成したp
ウェル11内にn+ffAl21〜123とポリS1 
 ゲート電極13..13□からなる2個のnチャネ/
L/MO8FET−Qnl、Qn2を形成し、pウェル
11に隣接してp4− 層14゜〜143とポリSi 
 ゲート電極15..152カラtrル2 個ノpf 
ヤ* #MO8FET−QP+ +Qp2を形成して構
成されている。図から明らかなように、基本セルはこの
ままでは具体的な論理機能を果すものではなく、論理機
能を実現する母体となるものである。
The basic cells constituting the cell row 1 are also composed of a plurality of elements, and there are several ways to configure them. 0
A pattern example of the basic cell 9 using the MO8 structure is shown in FIG. 2, and its equivalent circuit is shown in FIG. This basic cell consists of p
n+ffAl21-123 and polyS1 in well 11
Gate electrode 13. .. Two n-channels consisting of 13□/
L/MO8FET-Qnl, Qn2 are formed, and p4- layers 14° to 143 and poly-Si are formed adjacent to p-well 11.
Gate electrode 15. .. 152 color TR 2 pieces pf
Y* #MO8FET-QP+ +Qp2 is formed. As is clear from the figure, the basic cell does not perform a specific logical function as it is, but serves as a base for realizing the logical function.

以上のマスタ一工程を終えた半導体ウエノ・を用いて、
この上に金属配線を施してLSI回路を特化する工程が
パーソナライズ工程である。
Using the semiconductor wafer that has completed the above master process,
The process of specializing the LSI circuit by applying metal wiring thereon is the personalization process.

ゲートアレイでは、顧客の注文を受けてからの製作期間
がこのパーンナライズ工程だけであることが、LSI開
発期間の短縮につながるわけである。この場合、もう一
つ重要なことは、設計期間が短かいことである。このた
めには次のような方法が採られている0前述した基本セ
ルを用いて論理回路を構成するために必要な各種のゲー
ト(例えばN OR、NA、ND 、 F/F  など
基本的な回路50〜150種)が設計され、そのデータ
はコンピュータにライブラリとして登録されている。ゲ
ートアレイの場合、この用意されたゲートをマクロセル
と称する。顧客の要求が決まると、マクロセルを用いて
全体回路を設計し、それらをCADシステムを用いて自
動的に配置し、マクロセル間の配線を施す。この配線の
ために第1図に示す配線領域2が設けられている。現在
の一般的なゲートアレイでは二層の金属配線が用いられ
ている。このような方法で顧客の要求する機能を設計す
るため、設計期間の短縮が図られることになる。
For gate arrays, the only production period after receiving a customer's order is this generalization process, which leads to a reduction in the LSI development period. Another important thing in this case is that the design period is short. For this purpose, the following method is adopted.0 Various gates (e.g., NOR, NA, ND, F/F, etc., which are basic 50 to 150 types of circuits) are designed, and the data is registered in a computer as a library. In the case of a gate array, this prepared gate is called a macrocell. Once the customer's requirements are determined, the entire circuit is designed using macro cells, they are automatically placed using a CAD system, and wiring is provided between the macro cells. A wiring area 2 shown in FIG. 1 is provided for this wiring. Current typical gate arrays use two layers of metal wiring. Since the functions requested by the customer are designed using this method, the design period can be shortened.

基本セルを用いてマクロセルを構成するためには通常、
複数個の基本セルが用いられる。この場合、第1図のセ
ル列1の縦方向に並んだ複数の基本セルを用いるのが普
通である。開学な例として、第2図および第3図に示し
た0MO8構造の基本セル1個を用いて2人力NORゲ
ートを設計した例を第4図および第5図に示す。
To configure a macro cell using basic cells, usually
Multiple basic cells are used. In this case, it is common to use a plurality of basic cells arranged in the vertical direction of cell column 1 in FIG. As a basic example, FIGS. 4 and 5 show an example in which a two-manpower NOR gate is designed using one basic cell of the 0MO8 structure shown in FIGS. 2 and 3.

16、〜164は第1層金属配線であって、16□ 、
162がそれぞれ電源線であるVTID(通常正電源)
線、 Vss (通常接地)線であり、16、.16.
はセル内配線である。17.および122はそれぞれ信
号入力端子となる第2層金属配線である。二層の金属配
線を用いるのは、セル列1の外側の配線領域2には多数
の第1層金属配線を設けておき、セル間接続のために各
セルの端子と配線領域2にある第1層金属配線との間の
接続を第2層金属配線で行うためである。なお第4図で
黒丸はコンタクト位置を示している。以下の図面でも同
じである。
16, to 164 are first layer metal wirings, 16□,
VTID where 162 is the power line (usually positive power supply)
line, Vss (normal ground) line, 16, . 16.
is the intra-cell wiring. 17. and 122 are second-layer metal wirings each serving as a signal input terminal. The reason why two-layer metal wiring is used is that a large number of first-layer metal wirings are provided in the wiring area 2 outside the cell row 1, and a large number of first-layer metal wirings are provided in the wiring area 2 outside the cell row 1, and the terminals of each cell and the metal wiring in the wiring area 2 are used for connection between cells. This is because the connection with the first layer metal wiring is made by the second layer metal wiring. Note that in FIG. 4, black circles indicate contact positions. The same applies to the drawings below.

以上のようにゲートアレイは、マスタ一工程では半製品
ではあるがいわば汎用品としてのマスターチップを大量
に作ることができ、パーンナライズ工程ではCADシス
テムを利用して顧客の要求に合致した論理回路を短かい
設計期間で実現することができる。このため、各種電子
機器システムの専用LSIを短かい納期でしかも安価に
供給できるものとして注目されている。
As mentioned above, gate arrays can produce large quantities of master chips, which are semi-finished products but can be used as general-purpose products, in one master process, and in the finalization process, a CAD system is used to create logic circuits that meet customer requirements. This can be achieved in a short design period. For this reason, it is attracting attention as a means of supplying dedicated LSIs for various electronic equipment systems with short delivery times and at low cost.

しかしながら、機器システムのLSI化の傾向が一層強
まる(てつれて、ゲートアレイの更なる大規模化、高性
能化、低価格化が要求されてきている。前述のようなC
MO3構造の基本セルを用いたゲートアレイが主流にな
りつつあるが、この場合上記の要求に応えるために解決
すべき大きな問題として、第1に素子の微細化に伴うラ
ッチアップ現象があり、第2に高集積化のための配線技
術がある。
However, the trend toward LSI device systems is becoming stronger (as a result, gate arrays are required to be even larger in scale, higher in performance, and lower in price.
Gate arrays using basic cells with an MO3 structure are becoming mainstream, but in order to meet the above requirements, the first major problem that must be solved is the latch-up phenomenon that accompanies miniaturization of elements. Second, there is wiring technology for high integration.

ラッテアップ現象は周知のように、0MO8における寄
生トランジスタ効果である。この現象を簡単に説明する
。第6図に示すように、n型S1  基板2)にpウェ
ル22を形成し、このPウェル22内にnチャネルMO
8FETを、これに隣接するn型S】 基板にpチャネ
ルMO3FETをそれぞれ形成して0MO8が得られる
。図ではソースとなるn+層23.p+ 層25のみ示
しである。このとき各素子領域にはp+ 層24゜n+
 層26を設けてそれぞれ電(L’j、 Vss 、 
Vl)Dに接続する。このような0MO8において、図
示のようにpnp )ランジスタTp  とnpn )
ランジスタTn  どが寄生する。Rp 、 Rnはそ
れぞれpウェル22お工びn型基板21内の横方向抵抗
を示している。この寄生トランジスタ回路を等何回路で
示すと第7図のようになる。いま、第7図のノードA、
即ちpウェル22に雑音電流が注入され、トランジスタ
Tn  がオンしたとすると、そのコレクタ電流によっ
て抵抗Rn  に電圧降下が発生し、これがトランジス
タTp  をオンにする方向に働く。これにエリトラン
ジスタTp  がオンしてコレクタ電流が流れると、抵
抗Rp  に電圧降下が発生し、これはトランジスタT
n  をオンにする方向に働く。こうして正帰還がかか
る結果、この帰還利得が1以上であると、トランジスタ
Tp 、 Tn共にオンして電源VDD 。
As is well known, the latte-up phenomenon is a parasitic transistor effect in 0MO8. This phenomenon will be briefly explained. As shown in FIG. 6, a p-well 22 is formed in an n-type S1 substrate 2), and an n-channel MO
8FET and an adjacent n-type S] p-channel MO3FET are respectively formed on the substrate to obtain 0MO8. In the figure, the n+ layer 23. which becomes the source. Only the p+ layer 25 is shown. At this time, each element region has a p+ layer 24°n+
A layer 26 is provided to provide voltages (L'j, Vss,
Connect to Vl)D. In such 0MO8, the transistors pnp) and npn) are connected as shown.
The transistor Tn is parasitic. Rp and Rn indicate the lateral resistance within the p-well 22 and the n-type substrate 21, respectively. This parasitic transistor circuit can be expressed as a circuit as shown in FIG. 7. Now, node A in Fig. 7,
That is, when a noise current is injected into the p-well 22 and the transistor Tn is turned on, the collector current causes a voltage drop across the resistor Rn, which acts in the direction of turning on the transistor Tp. When the transistor Tp is turned on and collector current flows, a voltage drop occurs across the resistor Rp, which is caused by the transistor Tp.
It works in the direction of turning on n. As a result of this positive feedback, if the feedback gain is 1 or more, both transistors Tp and Tn are turned on and the power supply VDD is turned on.

VssO間に大電流が流れ、雑音電流がなくなった後に
もこの大電流が維持されるため、0MO8が破壊に至る
。このようなラッチアップ現象を生ずる外部雑音電流と
しては、例えばpウェル22内のnチャネルMO8FE
Tのドレイン近傍からpウェル22に流れ込む正孔電流
がある。
A large current flows between VssO and this large current is maintained even after the noise current disappears, leading to destruction of 0MO8. An example of an external noise current that causes such a latch-up phenomenon is the n-channel MO8FE in the p-well 22.
There is a hole current flowing into the p-well 22 from near the drain of T.

これは、素子の微細化が進み、ドレイン近傍の電界が強
くなる程問題となる。
This becomes a problem as the device becomes finer and the electric field near the drain becomes stronger.

第2の問題点である配線技術上の問題は、第1図で説明
したように、セル列10間にセル列1と同程度の占有面
積で配線領域2を設けているだめに素子のより一層の高
集積化が妨げられているということにある。
The second problem in terms of wiring technology is that, as explained in FIG. The problem is that even higher integration is being hindered.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題を解決し、より一層の大規模集積
化と高性能化を図った、0MO8構造をもつマスタース
ライス方式の半導体集積回路を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a master slice type semiconductor integrated circuit having an 0MO8 structure, which achieves even larger scale integration and higher performance.

〔発明の概要〕[Summary of the invention]

本発明においてはまず、ラッチアップ現象防止のために
、0MO8構造の基本セルに電源線(接地線を含む)を
配設するに当って、これを基本セルのn′fヤネル累子
領域とpチャネル素子領域の境界近傍で各領域の基板層
にコンタクトするように、基本セルの中央部を横切って
セル列方向に配設する。また本発明においては、大規模
集積化のために、隣接するセル列間で基本セルが対称バ
タンとなる工うにし、かつセル列間に配線領域を残さず
複数のセル列を密に配列する。そして配線は電源線を含
めて三層以上の多層構造としてセル列上に配設する。
In the present invention, in order to prevent the latch-up phenomenon, firstly, when disposing a power supply line (including a ground line) in a basic cell with an 0MO8 structure, this It is arranged in the cell column direction across the center of the basic cell so as to contact the substrate layer of each region near the boundary of the channel element region. Furthermore, in the present invention, for large-scale integration, the basic cells are arranged symmetrically between adjacent cell rows, and a plurality of cell rows are densely arranged without leaving any wiring area between the cell rows. . The wiring, including the power supply line, is arranged on the cell column in a multilayer structure of three or more layers.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、寄生トランジスタがオンしたときのコ
レクタ電流が各素子領域内を横方向ニ長いパスをも・つ
て流れることなく、電源線に流出するため、正帰還量が
小さくなり、従って微細化した0MO8構造であっても
シッチアップ劫 現象が集果的に防止される。また隣接する基本セルを背
中合せとして、従来のような配線領域をなくし三層以上
の多層配線構造とすることで従来に比べて大幅な高集積
化が図られる。この場合、背中合せにした基本セルの間
でnウェル又はnウェルを共用することも高集積化に寄
与することになる。また基本セルを背中合せの配置する
ことで、セル列の2本の電源線のうち一方のみをセル列
方向に連続的に配設し、隣接するセル列の電源線からセ
ル列と直交する方向に導出した枝配線をもう一方の電源
線として利用することができ、これも高集積化に寄与す
る。
According to the present invention, when the parasitic transistor is turned on, the collector current does not flow along a long path in the lateral direction within each element region, but instead flows out to the power supply line, which reduces the amount of positive feedback, resulting in a fine Even in the 0MO8 structure, the hitch-up phenomenon can be effectively prevented. In addition, by placing adjacent basic cells back to back, eliminating the conventional wiring area and creating a multilayer wiring structure of three or more layers, a significantly higher degree of integration can be achieved than in the past. In this case, sharing the n-well or n-well between the basic cells arranged back to back also contributes to high integration. In addition, by arranging the basic cells back to back, only one of the two power supply lines of the cell row can be arranged continuously in the direction of the cell row, and the power supply line of the adjacent cell row can be connected in a direction perpendicular to the cell row. The derived branch wiring can be used as the other power supply line, which also contributes to higher integration.

従って本発明によれば、従来に比べて高性能化、高集積
化を図ったゲートアレイを実現することができる。
Therefore, according to the present invention, it is possible to realize a gate array with higher performance and higher integration than the conventional gate array.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第8図は一実施例の基本セルにおけるC M OS構造
を示している。n iu S i  基板3ノにnウェ
ル32を形成し、nウェル32内にnチャネルMO8F
ETを、これに隣接してn型S1  基板31内にpチ
ャネルMO8FETをそれぞれ形成することは従来と変
らない。図ではそれぞれのソースとなるn+層33とp
+ 層35のみを示しである。従来の第6図と異なるの
は、nウェル32およびn型S1  基板3ノをそれぞ
れ電源線Vssお工びVDDに接続するためのp+ 層
34お工びr層36を、図示のように各素子領域の境界
近傍に設けていることである。
FIG. 8 shows the CMOS structure in the basic cell of one embodiment. An n-well 32 is formed on the n iu Si substrate 3, and an n-channel MO8F is formed in the n-well 32.
It is no different from the conventional method that a p-channel MO8FET is formed adjacent to the ET in the n-type S1 substrate 31. In the figure, the n+ layer 33 and p
+ Only the layer 35 is shown. What is different from the conventional FIG. 6 is that the p+ layer 34 and the r layer 36 for connecting the n-well 32 and the n-type S1 substrate 3 to the power supply line VSS and VDD are respectively constructed as shown in the figure. It is provided near the boundary of the element region.

この0MO8構造にエリ、ラッチアップ現象が効果的に
防止される理由は次のとおりである。
The reason why this OMO8 structure effectively prevents the latch-up phenomenon is as follows.

図示のように寄生トランジスタTn 、 Tpが発生し
、それぞれのベースに横方向抵抗Rp 、 Rnが入る
ことは従来と同じである。いま、トランジスタTn  
が外部雑音電流によりオンした場合、そのコレクタ電流
はn型St  基板31内を流れるが、この電流はnウ
ェル32に隣接して設けられたn4一層36から効果的
に供給される。従って第6図の場合に比べ、横方向抵抗
Rn  による電圧降下が小さく、トランジスタTp 
 への順バイアスは小さい。同、様に、トランジスタT
pがオンした場合、そのコレクタ電流はnウェル32内
を流れるが、pチャネル素子領域に近いp″一層34に
吸収される結果、横方向抵抗Rpでの電圧降下は小さく
、トランジスタTn  への順バイアスは小さい0以上
の理由で寄生トランジスタ回路の正帰還利得が小さいた
め、ラッチアップ現象は生じにくくなる。
As shown in the figure, parasitic transistors Tn and Tp are generated and lateral resistances Rp and Rn are inserted into their respective bases, as in the conventional case. Now, the transistor Tn
When turned on by an external noise current, its collector current flows in the n-type St 2 substrate 31, but this current is effectively supplied from the n4 layer 36 provided adjacent to the n-well 32. Therefore, compared to the case shown in FIG. 6, the voltage drop due to the lateral resistance Rn is smaller, and the transistor Tp
The forward bias to is small. Similarly, transistor T
When p is turned on, its collector current flows in the n-well 32, but is absorbed by the p'' layer 34 near the p-channel device region, so that the voltage drop across the lateral resistor Rp is small and the collector current flows to the transistor Tn. Since the positive feedback gain of the parasitic transistor circuit is small because the bias is small and is greater than 0, the latch-up phenomenon is less likely to occur.

次に基本セル配列と配線構造について説明する。第9図
は従来構造の基本セルのセル列41(41,,41□ 
、・・・)をその間の配線領域を詰めて配列した様子を
示している。即ち各セル列4ノの基本セルは例えば第2
図に示す如きCP、ff OS構造であり、図中のn−
ch、p−Chはそれぞれnチャネル素子領域、pチャ
ネル素子領域を表示している。以下の図でも同様である
Next, the basic cell arrangement and wiring structure will be explained. FIG. 9 shows a cell row 41 (41,,41□) of basic cells in the conventional structure.
,...) are arranged with the wiring areas between them packed together. That is, the basic cells of each cell column 4 are, for example, the second
The CP, ff OS structure is as shown in the figure, and the n-
ch and p-Ch indicate an n-channel device region and a p-channel device region, respectively. The same applies to the following figures.

Vss電源線42(42,,4,?□ 、−・)および
vDD電源線43 (43、、43、、・)ハ基本セル
の両側側で各基板層にコンタクトさせてセル列方向に配
設している。このようにセル列の間を詰めるだけでも高
集積化に一定の効果が期待できる。この考え方を本実施
例のセル構造を用いた場合に適用すると第10図のよう
になる。
Vss power line 42 (42,,4,?□, -・) and vDD power line 43 (43,,43,,・) are arranged in the cell column direction in contact with each substrate layer on both sides of the basic cell. are doing. Just by narrowing the spaces between cell rows in this way, a certain effect on higher integration can be expected. If this concept is applied to the cell structure of this embodiment, the result will be as shown in FIG. 10.

セル列51(51,,512、・・)に対してV ss
  電源線52(52112y”’)およ 2 びvnD電源線53(53,,532、−・・)はそれ
ぞれ基本セルのnチャネル素子領域とpチャネル素子領
域の境界(破線で示す)近傍で各基板層にコンタクトさ
せ、基本セルの中央部を横切るように配設している。
V ss for cell row 51 (51,,512,...)
The power supply line 52 (52112y"') and the vnD power supply line 53 (53, 532, ...) are connected to each other near the boundary (indicated by a broken line) between the n-channel element region and the p-channel element region of the basic cell. It is placed in contact with the substrate layer and across the center of the basic cell.

しかしこれだけでは、未だ高集積化は十分ではない。そ
こで本実施例では、第11図に示すように、セル列61
(611H6’2  +・・・)を隣接するものが背中
合せに対称的配置として密に配列する。VSS電源線6
2(62+  t 62t+・・)およびVDT−電源
線63(631,632、−・−)は第10図と同様、
基本セルの中央部を横切るように配設する。
However, this alone is still not sufficient for high integration. Therefore, in this embodiment, as shown in FIG.
(611H6'2 +...) are densely arranged in a symmetrical arrangement with adjacent ones back to back. VSS power line 6
2 (62+t 62t+...) and VDT- power supply line 63 (631, 632, -.-) are the same as in Fig. 10.
Arranged across the center of the basic cell.

基本セルとして第2図および第3図に示した構造を用い
た場合のエリ具体的な実施例について、第11図のセル
列61□と613の隣接する2つの基本セル部分の構造
を第12図に示す。
Regarding a concrete example in which the structure shown in FIGS. 2 and 3 is used as a basic cell, the structure of two adjacent basic cell parts of cell rows 61□ and 613 in FIG. As shown in the figure.

隣接する基本セルは1つのpウェル64を共有し、この
pウェル64内に4個のnチャネルMO8FET  を
形成し、その両側にそれぞれ2個ずつpチャネルMO8
FET  を形成して、第3図に示す回路が2個背中合
わせに並設されている。また第12図では、右側の基本
セルで第4図、第5図により説明した2人力NORゲー
トに相当するマクロセルを構成した例の配線を示してい
る。例えば、電源線62.63およびセル内のゲート電
極を接続する配線65を第1層金属配線とし、出力端と
なる配線66と入力端となる配線67、.67、を第2
層金属配線とする。そして、このようなマクロセル間の
配線を、第3層以」二の金属配線で行なう。これにより
、セル列上をそのまま配線領域として所望の論理機能を
実現することができる。
Adjacent elementary cells share one p-well 64, and four n-channel MO8FETs are formed in this p-well 64, and two p-channel MO8FETs are formed on each side of the p-well 64.
Two circuits shown in FIG. 3 are arranged back to back to form a FET. Further, FIG. 12 shows the wiring of an example in which the basic cell on the right constitutes a macro cell corresponding to the two-man power NOR gate explained with reference to FIGS. 4 and 5. For example, the wiring 65 connecting the power supply lines 62, 63 and the gate electrode in the cell is the first layer metal wiring, the wiring 66 serving as the output end, the wiring 67 serving as the input end, . 67, the second
Layer metal wiring. Then, wiring between such macro cells is performed using metal wiring from the third layer onwards. Thereby, a desired logic function can be realized by directly using the cell column as a wiring area.

以上説明したようにこの実施例によれば、0MO8構造
の基本セルでの電源線コンタクト位置を改良することで
、素子を微細化したときにもラッチアップ現象を効果的
に防止することができ、また基本セルの配列を改良し三
層以上の金属配線層を施すことにより、ゲートアレイの
高性能化、高集積化を図ることができる。
As explained above, according to this embodiment, by improving the power supply line contact position in the basic cell of 0MO8 structure, latch-up phenomenon can be effectively prevented even when the element is miniaturized. Furthermore, by improving the arrangement of basic cells and applying three or more metal wiring layers, it is possible to achieve higher performance and higher integration of the gate array.

なお、第11図に示す電源線62.63の配設パターン
は更に改良することができる。例えば第13図に示すよ
うに、セル列方向に走る電源線は各セル列に一本とする
。即ち、セル列151 HH613+ ”’にはVDI
I側電源線63.。
Note that the arrangement pattern of the power supply lines 62 and 63 shown in FIG. 11 can be further improved. For example, as shown in FIG. 13, each cell column has one power supply line running in the cell column direction. In other words, cell row 151 HH613+ "' has VDI
I side power supply line 63. .

63B 、・・・を、これらと左右対称パターンのセル
列61..61.、・・にはVss側電源線622゜6
24 、・・・をそれぞれセル列方向に走らせ、これら
の電源線から横方向に導出させた枝配線によりそれぞれ
隣接するセル列の必要な基本セルに電源を供給する。第
14図は更に第13図の変形例であり、横方向に導出す
る枝配線をセル列の上下に隣接する基本セルの境界上を
はわせ、一つの枝配線から上下の基本セルに同時に電源
を供給するようにしたものである。これを更に発展させ
れば、第15図に示すように横方向に導出する枝配線を
半分に減らすことも可能である。
63B, . . . and the cell rows 61 . .. 61. ,... has Vss side power line 622゜6
24, . . . run in the direction of the cell columns, and branch wirings led out laterally from these power supply lines supply power to the necessary basic cells in the respective adjacent cell columns. Fig. 14 is a further modification of Fig. 13, in which branch wirings led out in the horizontal direction are made to run over the boundaries of the basic cells adjacent above and below the cell column, and one branch wiring simultaneously supplies power to the upper and lower basic cells. It is designed to supply If this is further developed, it is also possible to reduce the number of branch wirings led out in the horizontal direction by half, as shown in FIG.

また以上の説明では、pウェル方式のCMO8を専ら例
示したが、本発明はnウェル方式やツインタブ方式のC
MO8を用いた場合にも同様に適用することができる。
In addition, in the above explanation, the p-well type CMO8 was exclusively illustrated, but the present invention also applies to the n-well type or twin-tub type CMO8.
The same can be applied to the case where MO8 is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のゲートアレイにおけるマスターテップの
概略パターンを示す図、第2図はCMO3を用いた基本
セルの構成例を示す図、第3図はその基本セルの等価回
路図、第4図は同じくその基本セルを用いて2人力NO
Rゲートを構成したマクロセルの配線を示す図、第5図
はそのマクロセルの等価回路図、第6図は従来の基本セ
ルでのCMO3構造を示す図、@7図はその0MO8構
造のラッチアップ現象を説明するための寄生トランジス
タ回路を示す図、第8図は本発明の一実施例の基A・セ
ルにおける0MO8構造を示す図、第9図は従来の基本
セル構造でセル列間を詰めたセル列の配置を示す図、第
10図は本発明の実施例に用いる基本セル構造でセル列
間を詰めたセル列の配置を示す図、第11図は本発明の
一実施例におけるセル列の配置を示す図、第12図はそ
の隣接するセル列間の二つの基本セル部分の具体的なパ
ターン例を示す図、第13図〜第15図は第11図の電
源配線を変形した実施例を示す図である。 31 =−n型Sr  基板、32−・pウェル、33
・・・n+層(ソース)、34・・・p+ 層(電源線
コンタクト領域)、35・・p4− 層(ソース)、3
6・・n十 層(電源線コンタクト領域)、61(61
1+2+ ・)・セル列、62(62,。 1 622 、=−)−・・電源線(Vss )、63(6
3,。 63□、 ・’) ・、電源線(VDD )’+  6
4−p ’7エル、65・・・第1層金属配線、66・
・・第2層金属配線、67、.67、・・・第3層金属
配線。 出願人代理人 弁理士  鈴 江 武 彦第 1 図 TS2図 第 5 図 Vss           VD。 ■o u を 第6図 第7図 第8図
Fig. 1 is a diagram showing a schematic pattern of a master step in a conventional gate array, Fig. 2 is a diagram showing a configuration example of a basic cell using CMO3, Fig. 3 is an equivalent circuit diagram of the basic cell, and Fig. 4 is also a two-person NO using that basic cell.
A diagram showing the wiring of the macrocell that constitutes the R gate, Figure 5 is an equivalent circuit diagram of the macrocell, Figure 6 is a diagram showing the CMO3 structure in the conventional basic cell, and Figure @7 is the latch-up phenomenon of the 0MO8 structure. 8 is a diagram showing a 0MO8 structure in a base A cell according to an embodiment of the present invention, and FIG. 9 is a diagram showing a conventional basic cell structure in which the spacing between cell columns is narrowed. A diagram showing the arrangement of cell rows. FIG. 10 is a diagram showing the arrangement of cell rows in which the spaces between cell rows are narrowed in a basic cell structure used in an embodiment of the present invention. FIG. 11 is a diagram showing the arrangement of cell rows in an embodiment of the present invention. FIG. 12 is a diagram showing a specific pattern example of two basic cell parts between adjacent cell rows, and FIGS. 13 to 15 are implementations in which the power supply wiring in FIG. 11 is modified. It is a figure which shows an example. 31 =-n-type Sr substrate, 32-/p well, 33
...n+ layer (source), 34...p+ layer (power line contact region), 35...p4- layer (source), 3
6...n layer (power line contact area), 61 (61
1+2+ ・)・Cell column, 62 (62,. 1 622 , =−)−・・Power supply line (Vss), 63 (6
3. 63□, ・') ・, Power line (VDD)'+6
4-p '7 L, 65... 1st layer metal wiring, 66.
...Second layer metal wiring, 67, . 67,...Third layer metal wiring. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure TS2 Figure 5 Figure Vss VD. ■o u Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板にCMO8構造の複数の基本セルから
なるセル列を複数個配列形成してマスターチップとし、
必要な配線を施して所望の機能回路を構成する半導体集
積回路において、隣接するセル列間で基本セルを対称的
パターンとして複数個のセル列?密に配列し、電源線を
、前記基本セルのnチャネル素子領域とpチャネル素子
領域の境界近傍で各領域の基板層にコンタクトするよう
に前記基本セルの中央部を横切って前記セル列方向に配
設し、この電源線を含めて配線層を三層以上の多層描造
としたことを特徴とする半導体集積回路。
(1) A master chip is formed by forming a plurality of cell rows each consisting of a plurality of basic cells with a CMO8 structure on a semiconductor substrate;
In a semiconductor integrated circuit that configures a desired functional circuit by applying the necessary wiring, is it possible to form multiple cell rows with basic cells in a symmetrical pattern between adjacent cell rows? The power supply lines are arranged in a dense manner and extend in the direction of the cell column across the center of the basic cell so as to contact the substrate layer of each region near the boundary between the n-channel device region and the p-channel device region of the basic cell. What is claimed is: 1. A semiconductor integrated circuit characterized in that the wiring layers including the power supply line are arranged in a multi-layered pattern of three or more layers.
(2)隣接するセル列間で基本セルがpウェルまたはn
ウェルを共有するようにした特許請求の範囲第1項記載
の半導体集積回路。
(2) Basic cells between adjacent cell rows are p-well or n-well
The semiconductor integrated circuit according to claim 1, wherein the semiconductor integrated circuit shares a well.
JP58038483A 1983-03-09 1983-03-09 Semiconductor integrated circuit Granted JPS59163836A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58038483A JPS59163836A (en) 1983-03-09 1983-03-09 Semiconductor integrated circuit
DE8484301523T DE3474485D1 (en) 1983-03-09 1984-03-07 Semiconductor integrated circuit with gate-array arrangement
EP19840301523 EP0119059B1 (en) 1983-03-09 1984-03-07 Semiconductor integrated circuit with gate-array arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038483A JPS59163836A (en) 1983-03-09 1983-03-09 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS59163836A true JPS59163836A (en) 1984-09-14
JPH0316790B2 JPH0316790B2 (en) 1991-03-06

Family

ID=12526500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038483A Granted JPS59163836A (en) 1983-03-09 1983-03-09 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS59163836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065546A (en) * 1983-09-20 1985-04-15 Fujitsu Ltd Gate array type integrated circuit
JPS6184030A (en) * 1984-10-02 1986-04-28 Fujitsu Ltd Gate array master slice integrated circuit device
JPS61100947A (en) * 1984-10-22 1986-05-19 Toshiba Corp Semiconductor integrated circuit device
JPS61171150A (en) * 1985-01-25 1986-08-01 Hitachi Ltd Semiconductor ic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146195A (en) * 1975-06-11 1976-12-15 Fujitsu Ltd Diode device
JPS52117086A (en) * 1976-03-29 1977-10-01 Sharp Corp Semiconductor device for touch type switch
JPS5422780A (en) * 1977-07-22 1979-02-20 Hitachi Ltd Complementary misic
JPS5591162A (en) * 1978-12-27 1980-07-10 Fujitsu Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146195A (en) * 1975-06-11 1976-12-15 Fujitsu Ltd Diode device
JPS52117086A (en) * 1976-03-29 1977-10-01 Sharp Corp Semiconductor device for touch type switch
JPS5422780A (en) * 1977-07-22 1979-02-20 Hitachi Ltd Complementary misic
JPS5591162A (en) * 1978-12-27 1980-07-10 Fujitsu Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065546A (en) * 1983-09-20 1985-04-15 Fujitsu Ltd Gate array type integrated circuit
JPH0479145B2 (en) * 1983-09-20 1992-12-15 Fujitsu Ltd
JPS6184030A (en) * 1984-10-02 1986-04-28 Fujitsu Ltd Gate array master slice integrated circuit device
JPH0531310B2 (en) * 1984-10-02 1993-05-12 Fujitsu Ltd
JPS61100947A (en) * 1984-10-22 1986-05-19 Toshiba Corp Semiconductor integrated circuit device
JPS61171150A (en) * 1985-01-25 1986-08-01 Hitachi Ltd Semiconductor ic device

Also Published As

Publication number Publication date
JPH0316790B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US6765245B2 (en) Gate array core cell for VLSI ASIC devices
JP3179800B2 (en) Semiconductor integrated circuit device
US8533641B2 (en) Gate array architecture with multiple programmable regions
US6091090A (en) Power and signal routing technique for gate array design
US20150048425A1 (en) Gate array architecture with multiple programmable regions
JP2580301B2 (en) Semiconductor integrated circuit device
JPH10335612A (en) High density gate array cell structure and its manufacture
US8788984B2 (en) Gate array architecture with multiple programmable regions
US7081778B2 (en) Semiconductor integrated circuit related to a circuit operating on the basis of a clock signal
JPS6361778B2 (en)
JPH0480538B2 (en)
JPH0434309B2 (en)
JPS59163836A (en) Semiconductor integrated circuit
JPH10284605A (en) Semiconductor integrated circuit, and semiconductor integrated circuit with layout designed according to cell-base scheme
EP0119059B1 (en) Semiconductor integrated circuit with gate-array arrangement
JPH073863B2 (en) Semiconductor integrated circuit
JP2000223575A (en) Design of semiconductor device, semiconductor device and its manufacture
WO2024047820A1 (en) Semiconductor integrated-circuit device
JPH0230163A (en) Master-slice type semiconductor integrated circuit and its manufacture
JP2001035922A (en) Semiconductor integrated circuit
JPH0563944B2 (en)
KR920005798B1 (en) Borderless master slice semiconductor device
JPH0774252A (en) Semiconductor integrated circuit
JP2001036050A (en) Basic cell for semiconductor integrated circuit
JP2002026298A (en) Semiconductor device